JPS59122592A - Thermal decomposition of carbonaceous substance - Google Patents

Thermal decomposition of carbonaceous substance

Info

Publication number
JPS59122592A
JPS59122592A JP22766382A JP22766382A JPS59122592A JP S59122592 A JPS59122592 A JP S59122592A JP 22766382 A JP22766382 A JP 22766382A JP 22766382 A JP22766382 A JP 22766382A JP S59122592 A JPS59122592 A JP S59122592A
Authority
JP
Japan
Prior art keywords
temperature
coal
reaction
compounds
conversion rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22766382A
Other languages
Japanese (ja)
Other versions
JPH0686595B2 (en
Inventor
Keisuke Horiuchi
堀内 圭介
Muneaki Kimura
木村 宗明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57227663A priority Critical patent/JPH0686595B2/en
Publication of JPS59122592A publication Critical patent/JPS59122592A/en
Publication of JPH0686595B2 publication Critical patent/JPH0686595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a ratio of conversion into mathane gas and to raise a ratio of conversion into gasoline and gas oil, by hydrogenating a carbonaceous substance in the presence of both a Cr-containing compound and a metal(compound) of Fe, Co or Ni under specific conditions. CONSTITUTION:A carbonaceous substance such as anthracite, bituminous coal, etc. is hydrogenated in the presence of both a Cr-containing compound and one or more substances selected from three metals(compounds) of Fe, Co and Ni at 35-250kg/cm<2> partial pressure of hydrogen at 500-950 deg.C under rapid heating, so that the carbonaceous substance is gasified or liquefied.

Description

【発明の詳細な説明】 本発明は、炭素質物質を水素の存在下で熱分解させ、ガ
ス及び液化油を直接に製造するための方法であ殴、さら
に詳しくは、メタンガスへの転化率を抑え、ガソリン及
び軽質オイルへの転化率を高めるための新規な方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for pyrolyzing carbonaceous materials in the presence of hydrogen to directly produce gas and liquefied oil; The present invention relates to a novel method for increasing the conversion to gasoline and light oils.

最近、将来の石油資源の枯渇化に対処する手段の一つと
して、化石燃料資源の中で最も豊富に存在し、しかも世
界各地に広く分布する石炭やタールサンドのような始生
炭素質物質が、石油に代わるエネルギー源及び化学原料
資源として再評価されるようになってきた。しかし5石
炭は極めて複雑な高分子化合液であり、主要構成要素で
ある炭素、水素のほか、かな力の量の酸素、窒素、硫黄
などのへテロ原子、それに灰分を含むため、そのまま燃
焼させると多量の大気汚染物質を発生する上に1石油に
比べて発熱量も低く、輸送や貯蔵にも問題がある。
Recently, primary carbonaceous materials such as coal and tar sands, which are the most abundant fossil fuel resources and are widely distributed around the world, have been proposed as a means to cope with the future depletion of oil resources. It is now being reevaluated as an alternative energy source and chemical raw material resource to petroleum. However, 5 coal is an extremely complex liquid polymer compound, and in addition to its main components carbon and hydrogen, it also contains significant amounts of heteroatoms such as oxygen, nitrogen, and sulfur, as well as ash, so it can be burned as is. In addition to producing large amounts of air pollutants, it also has a lower calorific value than 1 petroleum, and poses problems in transportation and storage.

このような石炭の有する本質的諸問題を解決する手段と
して、石炭を液化し、ヘテロ原子や灰分を除去するとと
もにクリーンな燃料油や燃料ガス。
As a means to solve these essential problems associated with coal, coal is liquefied, heteroatoms and ash are removed, and clean fuel oil and fuel gas are produced.

その他付加価値の高い化学原料を取得する多くの方法が
提案されてきた。これらの方法の中で代表的なものとし
ては、例えば、石炭を溶媒で抽出する方法、水素又は水
素供与体の存在下で石炭を液化する方法、水素存在下で
石炭を液化、ガス化する方法、不活性ガス中で石炭を液
化、ガス化する方法などを挙げることができる。
Many other methods of obtaining high value-added chemical raw materials have been proposed. Representative methods among these methods include, for example, a method of extracting coal with a solvent, a method of liquefying coal in the presence of hydrogen or a hydrogen donor, and a method of liquefying and gasifying coal in the presence of hydrogen. , a method of liquefying or gasifying coal in an inert gas, etc.

しかしながら、これらの方法ではエネルギー源である成
分全直接に得ることができても、輸送用燃料及び化学原
料としてのガソリン留分を、主体的にかつ効率的に取得
することができなかった。
However, although these methods can directly obtain all of the components that are energy sources, they have not been able to proactively and efficiently obtain gasoline fractions as transportation fuels and chemical raw materials.

従来、ガソリン留分を直接に取得するための方法として
、例えば微粉砕した石炭全高温、高圧の水素気流中に噴
出することによって数十ミリ秒ないし数分の短時間で、
石炭を高速水添、熱分解する方法が知られている。この
方法は、例えば粉砕した石炭を、圧力50〜2so K
g/cdt (ゲージ圧)、温度600〜1200℃の
水素気流中に噴出し、水添熱分解することによって行わ
れ、ガス生成物としてメタン、エタン、二酸化炭素、−
酸化炭素、水蒸気、硫化水素、アンモニアなどが、また
液体生成物としてガソリン留分、重質油(炭素数10以
上の芳香族化合物及び高沸点タール)が、また固体成分
としてチャーと称する灰分を含む固体生成物などが得ら
れる。
Conventionally, as a method for directly obtaining a gasoline fraction, for example, finely pulverized coal is injected into a high-temperature, high-pressure hydrogen stream in a short period of several tens of milliseconds to a few minutes.
Methods of high-speed hydrogenation and thermal decomposition of coal are known. In this method, for example, pulverized coal is heated to a pressure of 50 to 2so K.
g/cdt (gauge pressure), is injected into a hydrogen stream at a temperature of 600 to 1200°C, and hydrogenated and pyrolyzed, producing gaseous products such as methane, ethane, carbon dioxide, -
Contains carbon oxide, water vapor, hydrogen sulfide, ammonia, etc. as liquid products, gasoline fraction, heavy oil (aromatic compounds with carbon atoms of 10 or more and high boiling point tar), and ash called char as a solid component. Solid products etc. are obtained.

しかしこの方法においては、低い反応温度にすると石炭
から液体又はガスへの総転化率(全生成物中の炭素原子
数を供給石炭中の炭素原子数で除し、100を乗じた値
)が低くなり、しかも炭素数10以上の芳香族化合物や
タールのような重質油が主要生成物となる。また高い反
応温度にすると。
However, in this method, when the reaction temperature is low, the total conversion rate of coal to liquid or gas (the number of carbon atoms in the total product divided by the number of carbon atoms in the feed coal, multiplied by 100) is low. Furthermore, the main products are aromatic compounds with 10 or more carbon atoms and heavy oils such as tar. Also, if the reaction temperature is high.

全転化率は高くなるものの、液体生成物の分解が促進さ
れてメタンが主要生成物となり、結局ガソリン留分の転
化率が低下し、その転化率はせいぜい3〜8チにすぎな
くなる。
Although the total conversion rate is high, the decomposition of the liquid product is promoted and methane becomes the main product, resulting in a decrease in the conversion rate of the gasoline fraction, which is no more than 3 to 8 inches.

これに対し、石炭などの炭素質物質にFe、 Co。On the other hand, carbonaceous materials such as coal contain Fe and Co.

Niなどの化合物を添加した後熱分解することによって
、ガソリン留分前駆体としての液体生成物の量を増大さ
せ、引久糾いて行なわれる水添熱分解によってガソリン
留分を生成せしめ、最終的に該留分への転化率及び軽質
化したオイルへの転化率を増大させる方法が知られてい
る。なおここで言う軽質オイルとは、2〜5環縮合芳香
族化合物である。
By adding compounds such as Ni and then pyrolysis, the amount of liquid product as a gasoline fraction precursor is increased, and the gasoline fraction is produced by hydrogenation pyrolysis with prolonged condensation. A method of increasing the conversion rate to this fraction and the conversion rate to lightened oil is known. Note that the light oil referred to here is a 2- to 5-ring condensed aromatic compound.

しかしこれらのFe 、 Co 、 Niなどの化合物
は、炭素質物質からガンリン留分、軽質オイルへの転化
率の増大の効果はあるものの、同時に付加価値の低いメ
タンガスへの転化率も著るしく増大させてしまい、水素
消費量を大巾に増大させる結果となシ、経済的に大きな
損失を招来するという好ましからざる欠点を有していた
However, although these compounds such as Fe, Co, and Ni have the effect of increasing the conversion rate from carbonaceous substances to Ganlin fraction and light oil, they also significantly increase the conversion rate to methane gas, which has low added value. This has the undesirable drawback of significantly increasing hydrogen consumption and causing large economic losses.

本発明者らは、この問題を解決すべく鋭意検討を重ねた
結果Fe 、 Co 、 Niの金属若しくは化合物と
共にCr含有化合物を炭素質物質に添加することによっ
て、ガソリン留分及び軽質オイルへの転化率を更に増大
させつつ、メタンガスへの転化率を効果的に抑えること
ができることを見い出し、この知見を基に本発明を完成
するに至った。
As a result of intensive studies to solve this problem, the present inventors have found that by adding a Cr-containing compound to a carbonaceous material together with a metal or a compound of Fe, Co, or Ni, it is possible to convert it into a gasoline fraction and light oil. It has been discovered that the conversion rate to methane gas can be effectively suppressed while further increasing the conversion rate, and based on this knowledge, the present invention has been completed.

すなわち本発明は、炭素質物質の分解を増大させ、メタ
ンガスへの転化を抑制させつつ液体生成物への転化を促
進してガソリン留分及び軽質オイル(主にナフタレンな
ど)を極めて高収率で直接的に生成しうる新しい分解法
であって、炭素質物質をガス化又は液化するに’AV)
、Cr含有化合物と、Fe、Co及びNiの3種の金属
あるいはその化合物の中から選ばれた少なくとも1種の
物質との共存下、圧力35〜250Kg/ca(ゲージ
圧)の実質的な水素ガス雰囲気中で該炭素質物質を温度
500〜950℃に急速加熱して分解させることを特徴
とする炭素質物質の熱分解法、及び前記触媒の存在下、
前記圧力の実質的な水素ガス雰囲気中で、該炭素質物質
を500〜900 ℃に急速加熱して分解させたのち、
さらに前段の加熱温度より高く、がっ60Q〜950℃
の範囲の温度で分解させることを特徴とする炭素質物質
め熱分解法である。
In other words, the present invention increases the decomposition of carbonaceous materials and promotes their conversion to liquid products while suppressing their conversion to methane gas, thereby producing gasoline fractions and light oils (mainly naphthalene, etc.) in extremely high yields. A new decomposition method that can directly produce gasification or liquefaction of carbonaceous materials.
, in the coexistence of a Cr-containing compound and at least one substance selected from three metals, Fe, Co, and Ni, or their compounds, at a pressure of 35 to 250 Kg/ca (gauge pressure). A method for thermally decomposing a carbonaceous material, characterized in that the carbonaceous material is decomposed by rapidly heating it to a temperature of 500 to 950°C in a gas atmosphere, and in the presence of the catalyst,
After rapidly heating the carbonaceous material to 500 to 900 °C to decompose it in a substantial hydrogen gas atmosphere at the above pressure,
Furthermore, it is higher than the heating temperature of the previous stage, 60Q ~ 950℃
This is a method of pyrolyzing carbonaceous materials, which is characterized by decomposing them at a temperature in the range of .

本発明方法において使用するCr含有化合物としては、
Cr2O5,Cr0a Cr (NOa)a、 K2’
Cr2O7()他種種のものがあるが、これらの化合物
と後で述べる、Fe I Co及びNi  の3種の金
属元素のうち少なくとも1種の金属あるいはその化合物
とを混合して使用した場合には、Fe + Co + 
Ni含有化合物の特徴的な効果に加えて、更に炭素質物
質の急速加熱分解率特に、ガソリン留分及びナフタレン
を主とする軽質オイルへの転化率が増大し、一方で特に
メタンガスへの転化率が極めて低く抑えられる。このよ
うな、ガソリン留分及びナフタレンを主とする軽質オイ
ルへの転化率の選択的な増加とメタンガスへの転化率の
低下は、他の金属化合物には見られず、クロム含有化合
物に特徴的な効果である。
The Cr-containing compounds used in the method of the present invention include:
Cr2O5, Cr0a Cr (NOa)a, K2'
There are various other types of Cr2O7 (), but when these compounds are used in combination with at least one metal or a compound thereof from among the three metal elements FeICo and Ni, which will be described later. , Fe + Co +
In addition to the characteristic effects of Ni-containing compounds, the rate of rapid thermal decomposition of carbonaceous materials, especially to gasoline fractions and light oils mainly containing naphthalene, is increased, while the rate of conversion to methane gas is increased. can be kept extremely low. This selective increase in the conversion rate to gasoline fraction and naphthalene-based light oil and the decrease in the conversion rate to methane gas are not observed in other metal compounds and are characteristic of chromium-containing compounds. This is a great effect.

本発明方法において上記クロム含有化合物と組み合わせ
て使用するFe、Co及びNiの金属あるいは化合物に
は特に制限はなく、何を使ってもよい使用した場合でも
、炭素質物質の急速加熱分解率更には、ガソリン留分及
び軽質オイルへの転化率が極めて高いが、Cr含有化合
物と組み合わせて使用した場合には、これらの効果は更
に促進され、他の金属あるいは、その化合物にCr含有
化合物を組み合わせた場合と比べて、Cr含有化合物の
効果がより顕著に現われる為、特に有利である。更に特
徴的なことは、これらの化合物には同時にメタンガスへ
の転化率が著しく増大するという大きな欠点があったが
、Cr含有化合物との組み合わせによシこの転化率を低
く抑えることが初めて可能になったことである。
There are no particular restrictions on the metals or compounds of Fe, Co, and Ni used in combination with the above-mentioned chromium-containing compound in the method of the present invention, and any metal or compound may be used. , the conversion rate to gasoline fractions and light oils is extremely high, but these effects are further enhanced when used in combination with Cr-containing compounds. This is particularly advantageous because the effect of the Cr-containing compound appears more markedly than in the case of the Cr-containing compound. What is also unique is that these compounds had the major drawback of significantly increasing the conversion rate to methane gas, but by combining it with a Cr-containing compound, it became possible for the first time to keep this conversion rate low. That's what happened.

以上のことから、クロム含有化合物と、Fe、C。From the above, chromium-containing compounds, Fe, and C.

及びNiの金属あるいは化合物との組み合わせは、メタ
ンガスの生成を抑えつつ、ガソリン留分及び軽質オイル
への転化率を高めるという本発明方法の目的に対して特
に有効なものとなる。なおこの場合、Fe、Co及びN
iの金属あるいは化合物は1種類でもよいし、2種類以
上混合してもよい。またこの1也にこれら以外の金属化
合物を添加併用してもよい。
The combination of Ni and metals or compounds is particularly effective for the purpose of the method of the present invention, which is to increase the conversion rate to gasoline fractions and light oils while suppressing the production of methane gas. In this case, Fe, Co and N
The metal or compound of i may be one type, or two or more types may be mixed. Moreover, metal compounds other than these may be added to these compounds.

解反応益中に導入することもできるが、ガス及び液体生
成物への転化率を効率よく増加するには、予め炭素質物
質と該金属化合物を混合しておき、その混合物を反応器
へ送シ込むことが望ましい。
However, in order to efficiently increase the conversion to gas and liquid products, it is necessary to mix the carbonaceous material and the metal compound in advance and send the mixture to the reactor. It is desirable to sink in.

例えば、炭素質物質とこれらの添加物の混合については
、両者を微粉砕して乳鉢、ボールミル、■型粉体混合機
、攪拌混合機などで機械的に行なうことができるし、ま
た、水、アルコールその他の有機溶剤に添加物を溶解又
は懸濁させておき、それに炭素質物質を加えて付着させ
たのち、溶剤を除去するという方法で混合してもよい。
For example, mixing of carbonaceous substances and these additives can be carried out mechanically by finely pulverizing them in a mortar, ball mill, type powder mixer, stirring mixer, etc. The additive may be dissolved or suspended in alcohol or other organic solvent, the carbonaceous material may be added thereto, and then the solvent may be removed.

また、CrあるいはFe 、 Co 、 Niのハロゲ
ン化物、カリウム、水酸化ナトリウムなどの水酸化アル
カリを添加して生成せしめた水酸化物又は酸化物は非常
に微粉状態で、炭素質物質に対する分散性が非常に優れ
ている。なかでも炭素質物質の共存下でこの様な水酸化
物・酸化物を生成させ、涙過・洗浄する方法は、得られ
た混合物において、炭素質物質に対する添加物の分散性
・付着性がすぐれており、極めて高い反応活性を示すの
で望ましい方法の1つである。
Furthermore, hydroxides or oxides produced by adding Cr or halides of Fe, Co, or Ni, or alkali hydroxides such as potassium or sodium hydroxide are in a very fine powder state and have poor dispersibility in carbonaceous materials. Very good. Among these, a method in which hydroxides and oxides are generated in the coexistence of carbonaceous substances and then filtrated and washed has excellent dispersibility and adhesion of additives to carbonaceous substances in the resulting mixture. It is one of the desirable methods because it shows extremely high reaction activity.

本発明方法において使用するCr含有化合物及びFe 
、 Co 、 Niの金属あるいは化合物の添加量は、
使用する原料炭素質物質の種類によって適宜選択しうる
が、一般には無水・無灰基準の炭素質物質1重量部に対
して各々0.0001−0.2重量部の範囲が望ましい
。いずれかの量がo、oooi重量部未満では、ガソリ
ン留分及び軽質オイルへの転化率が特に高くはならず本
発明の目的に合わなくなり、また0、2重量部を越えた
場合には、添加物の増加に対して転化率の増加が極めて
小さくなってしまう。
Cr-containing compounds and Fe used in the method of the present invention
, Co, and Ni metals or compounds are added as follows:
Although they can be appropriately selected depending on the type of raw material carbonaceous material to be used, it is generally desirable that the amount is in the range of 0.0001-0.2 parts by weight per 1 part by weight of the carbonaceous material on an anhydrous and ash-free basis. If either amount is less than 0.000 parts by weight, the conversion rate to gasoline fraction and light oil will not be particularly high and it will not meet the purpose of the present invention, and if it exceeds 0.2 parts by weight, The increase in conversion rate becomes extremely small with respect to the increase in additives.

また1’ e + Co + Niの金属あるいは化合
物として2種以上の添加物を混合してCr含有化合物と
組み合わせて使用する場合には、その複数の添加物のう
ちの少なくとも1種の量が炭素質物質1重量部に対し 
−c 、o、oooi〜0.1重量部の範囲であること
が望質物質あるいは、Fe 、 Co 、 NM属ある
いは化合物属あるいは化合物100重量部に対して、C
r化合物の量が、1〜200重量部の範囲であることが
望ましく、特に20〜80重量部の範囲が好ましい。
In addition, when two or more additives are mixed as a metal or compound of 1' e + Co + Ni and used in combination with a Cr-containing compound, the amount of at least one of the multiple additives is carbon. per part by weight of the substance
-c, o, oooi to 0.1 parts by weight of the desired substance or Fe, Co, NM group or compound group or 100 parts by weight of the compound.
The amount of the r compound is preferably in the range of 1 to 200 parts by weight, particularly preferably in the range of 20 to 80 parts by weight.

本発明方法における分解温度は、500〜950℃の範
囲であり、溶媒を使用した通常の液化プロセス温度より
は高いが、ガス化プロセス温度よリハ低く、かつ金属化
合物を添加しない炭素質物質の熱分解温度に比べ、20
〜200℃程度低い温度でガンリン留分の最大収率を得
ることができる。
The decomposition temperature in the method of the present invention is in the range of 500 to 950°C, which is higher than the normal liquefaction process temperature using a solvent, but lower than the gasification process temperature, and the heat of the carbonaceous material without adding metal compounds. Compared to the decomposition temperature, 20
The maximum yield of Ganlin fraction can be obtained at temperatures as low as ~200°C.

熱分解温度は、原料炭素質物質の種類、粘度、粒径など
の原料の特性及び加熱時間などによって、前記範囲内で
適宜選択しうるが、その温度が500℃未満の場合は、
分解が減速されて総転化率及びガソリン留分並びに軽質
オイルへの転化率が低下し、一方950℃を越えると、
ガソリン留分および軽質オイルの分解速度が著しく増大
し、ガソリン留分および@質オイルの収率低下と、メタ
ンの大巾な増加が起って好ましくない。
The thermal decomposition temperature can be appropriately selected within the above range depending on the type of raw carbonaceous material, characteristics of the raw material such as viscosity and particle size, and heating time, but if the temperature is less than 500 ° C.
Cracking is slowed down and the total conversion rate and conversion rate to gasoline fraction and light oil decreases, while above 950°C;
The decomposition rate of gasoline fraction and light oil increases significantly, resulting in a decrease in the yield of gasoline fraction and light oil, and a large increase in methane, which is undesirable.

加熱時間については、特に制限はないが、通常0.02
〜60秒が適邑である。
There are no particular restrictions on the heating time, but it is usually 0.02
~60 seconds is appropriate.

一方本発明者らは、Cr含有化合物とFe 、 Co 
+ Ni金属あるいはその化合物とを添加した炭素質物
質の熱分解によって生じるガソリン留分の前駆体である
液体生成物のガソリン留分への転化について更に詳しく
検討した結果、前記金属あるいはその化合物を添加した
炭素質物質をSOO〜900 ℃で急速に加熱して分解
させ、揮発分を固体マ)IJソックスり拡散させ、引き
続いてこれを、前段の加熱温度より高く、々ユっ600
〜950 t:、の範囲の温度で分解するという方法を
とれば、ガソリン留分をより多量に取得しうろことを見
出した。
On the other hand, the present inventors have discovered that Cr-containing compounds and Fe, Co
+ As a result of a more detailed study on the conversion of a liquid product, which is a precursor of a gasoline fraction, produced by thermal decomposition of a carbonaceous material to which Ni metal or its compound has been added into a gasoline fraction, it was found that the addition of the metal or its compound The carbonaceous material was rapidly heated at SOO ~ 900 °C to decompose it, and the volatile matter was diffused through a solid mass (IJ), and then this was heated to 600 °C at a temperature higher than the heating temperature in the previous stage.
It has been found that a larger amount of gasoline fraction can be obtained by decomposing at a temperature in the range of ~950 t:.

前記の方法において、前段階の炭素質物質の分解温度と
後段階の分解温度との組合わせの中で最適な組合せは、
炭素質物質の種類によって適宜選択されるが、その温度
差は一般に10−100 ℃であり、石炭化度の低い石
炭はど前段階の温度が低くてよく、後段階との温度差が
大きくなる偵向にあるO また、後段階の分解における反応時間は1〜6゜秒が好
甘しく、その時間が1秒未満ではガソリン留分、軽質オ
イルへの転化が十分に進行せず、一方、60秒を越える
とガソリン留分、軽質オイルの分解の可能性が大きくな
る。
In the above method, the optimal combination of the decomposition temperature of the carbonaceous material in the previous stage and the decomposition temperature in the latter stage is as follows:
Although it is selected appropriately depending on the type of carbonaceous material, the temperature difference is generally 10-100 °C, and coal with a low degree of coalification requires a low temperature in the front stage and a large temperature difference with the latter stage. In addition, the reaction time in the later stage of decomposition is preferably 1 to 6 seconds; if the time is less than 1 second, the conversion to gasoline fraction and light oil will not proceed sufficiently; If the time exceeds 60 seconds, the possibility of decomposition of gasoline fraction and light oil increases.

本発明方法における炭素質物質の加熱速度は、熱分解時
におけるガソリン留分および軽質オイルを効率よく生成
させるために、100 ℃/秒以上であることが望まし
く、特に1000 ’C/秒以上が好ましい。加熱速度
が100 U/秒以上であると、本願目的生成物及びそ
の前駆体である液体生成物を生成させうる炭素質物質構
造の架橋結合の開裂が優先的に起る。
The heating rate of the carbonaceous material in the method of the present invention is desirably 100°C/sec or more, particularly preferably 1000'C/sec or more, in order to efficiently generate gasoline fraction and light oil during thermal decomposition. . A heating rate of 100 U/sec or more preferentially cleaves the crosslinks of the carbonaceous material structure, which can produce the desired product and its precursor liquid product.

また、本発明における実質的水素ガス雰囲気の圧力は3
5〜250〜/−(ゲージ圧)であることが必要であり
、好ましくは50〜200Ky/crAである。ここで
いう実質的な水素ガス雰囲気とは、純粋な水素ガスのみ
でなく、水素ガスが主体的に構成要素となっているガス
雰囲気をいい、例えば不活性ガスその細氷蒸気、炭酸ガ
ス、−酸化炭素、メタンなどの合計約30容量チ以下の
ガスで希釈されてぃてもよい。この実質的水素ガス雰囲
気の圧力は、炭素質物質の直接熱分解時において生成す
る活性な液体化合物の重縮合防止の効果を与えるために
特に重要な条件であり、更に該液体化合物のガソリン留
分への効率的な転化に必要である。
Further, the pressure of the substantial hydrogen gas atmosphere in the present invention is 3
It is necessary that it is 5 to 250 ~/- (gauge pressure), preferably 50 to 200 Ky/crA. The substantial hydrogen gas atmosphere here refers not only to pure hydrogen gas but also to a gas atmosphere in which hydrogen gas is the main component, such as inert gas, thin ice vapor, carbon dioxide gas, - It may be diluted with a total of up to about 30 volumes of gas such as carbon oxide, methane, etc. The pressure of this substantial hydrogen gas atmosphere is a particularly important condition for providing the effect of preventing polycondensation of the active liquid compound produced during direct thermal decomposition of carbonaceous materials, and also for preventing the gasoline fraction of the liquid compound. It is necessary for efficient conversion to

前記の後段階の分解においては、高圧であるほどより効
果的であるが、ある程度以上の圧力になるとその効果は
あまり増加せず、むしろ設備費がかさむだけ経済的に不
利となる。
In the latter stage of decomposition, the higher the pressure, the more effective it is, but once the pressure exceeds a certain level, the effect does not increase much, and rather becomes economically disadvantageous due to increased equipment costs.

本発明方法において供給炭素質物質(無水・無灰基準)
に対する反応用水素の重量比は、該炭素質物質の種類や
所要の反応生成物の組成によって異なるが、一般に理論
的に必要な水素の重量比は0.03〜0.08あればよ
い。しかしながら炭素質物質からの液体生成物の拡酸や
水素の炭素質物質粉体細孔への拡散をよくし、炭素質物
質からガソリン留分や軽質オイルへの転、化率を烏め、
コーキングを防止するためには:過剰に水素を供給する
ことが望ましい。しかし過剰の水素は、炭素質物質から
の生成物と分離して反応装置に戻して循環使用するため
、過剰の水素量が多くなると分離・循環及び加熱に要す
るエネルギーや設備も大きくなって、経済的に不利にな
る。したがって実際に供給炭素質物質に対する供給水素
重量比は、0.1以上2.5以下が好ましく、さらに望
ましくは0.12以上2.0以下である。
Carbonaceous material supplied in the method of the present invention (anhydrous/ashless standard)
Although the weight ratio of reaction hydrogen to the carbonaceous material varies depending on the type of the carbonaceous material and the composition of the required reaction product, generally the theoretically necessary weight ratio of hydrogen is 0.03 to 0.08. However, by improving the acid expansion of liquid products from carbonaceous materials and the diffusion of hydrogen into the pores of carbonaceous material powder, the conversion rate from carbonaceous materials to gasoline fractions and light oil is greatly reduced.
To prevent coking: It is desirable to supply hydrogen in excess. However, excess hydrogen is separated from products from carbonaceous materials and returned to the reactor for recycling, so as the amount of excess hydrogen increases, the energy and equipment required for separation, circulation, and heating also increase, making it economical. be at a disadvantage. Therefore, the actual weight ratio of supplied hydrogen to supplied carbonaceous material is preferably 0.1 or more and 2.5 or less, and more preferably 0.12 or more and 2.0 or less.

本発明方法において原料として用いる炭素質物質として
は、例えば無煙炭、歴青炭、亜歴青炭、かつ炭、亜炭、
泥炭、草炭などの石炭及びオイルシェール、タールサン
ド、有機廃棄物、木材などの植物、原油などが挙げられ
る。
Carbonaceous substances used as raw materials in the method of the present invention include, for example, anthracite coal, bituminous coal, subbituminous coal, and charcoal, lignite,
Examples include coal such as peat and grass charcoal, oil shale, tar sands, organic waste, plants such as wood, and crude oil.

本発明方法によると、炭素質物質の分解が増大され、ガ
ス及び液体生成物への転化が促進されてガソリン留分お
よび軽質オイルの収率が極めて高くなる。
According to the process of the present invention, the cracking of carbonaceous materials is increased and the conversion to gaseous and liquid products is promoted, resulting in very high yields of gasoline fractions and light oils.

次に実施例によって本発明をさらに詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

なお、各反応生成物への転化率は、次式によって定義さ
れる。
In addition, the conversion rate to each reaction product is defined by the following formula.

実施例1 オーストラリア産の褐炭を粉砕し、100メツシユ(J
IS規格)のふるいを通し微粉炭とした。この石炭の元
素分析値は無水基準で第1表のとおシであった。
Example 1 Australian lignite was crushed to produce 100 mesh (J
The coal was passed through a sieve of IS standard) to produce pulverized coal. The elemental analysis values of this coal were as shown in Table 1 on an anhydrous basis.

第  1  表 この微粉炭10fPを、予め硝酸クロム2.9t(無水
基準)を溶解した蒸留水500 tnl中に加え30分
間攪拌した。この混合液にNH3として1.01のアン
モニアを含むアンモニア水50−を添加し更に一昼夜攪
拌した。この液から吸引濾過によって、沈殿した酸化ク
ロムと石炭の混合物を分離し、ろ液にアンモニウムイオ
ンが検出されなくなるまで充分に水洗した。
Table 1 10 fP of this pulverized coal was added to 500 tnl of distilled water in which 2.9 t of chromium nitrate (anhydrous standard) had been dissolved in advance and stirred for 30 minutes. To this mixed solution was added 50 mm of ammonia water containing 1.01 ammonia as NH3, and the mixture was further stirred all day and night. The precipitated mixture of chromium oxide and coal was separated from this liquid by suction filtration and thoroughly washed with water until no ammonium ions were detected in the filtrate.

次にこの混合物を、予め硫酸第一鉄S、5t (無水基
準)を溶解した蒸留水50〇−中に加え、−昼夜かきま
ぜた。
Next, this mixture was added to 500 ml of distilled water in which 5 t of ferrous sulfate S (anhydrous basis) had been dissolved in advance, and stirred day and night.

最後に、ここで作成した混合物を201Ht 、 75
℃の減圧加熱条件下で乾燥し、混合物100重量部に対
し水分量を5重量部に調製した。
Finally, the mixture created here is 201Ht, 75
The mixture was dried under reduced pressure and heating conditions at 0.degree. C., and the moisture content was adjusted to 5 parts by weight based on 100 parts by weight of the mixture.

この添加炭itを、温度730℃、水素圧カフ0Ky/
cA  (ゲージ圧)の条件で水素ガスを流通している
インコロイ800製の反応管に、1分間かけて均一に供
給し反応させた。この時、加熱反応部を通過する水素ガ
スの滞留時間すなわち反応時間は7秒であり、また供給
炭に対する反応用供給水素量の重量比はi、sであった
。反応管から出た生成物のうち、チャーはチャートラッ
プで分離し、葦たガソリン留分及びオイルは一68℃の
冷媒を用いた間接冷却器で凝縮分離させ、ガスは減圧後
、サンプリング容器に採集し分析した。
This added carbon was heated to a temperature of 730°C and a hydrogen pressure cuff of 0 Ky/
Hydrogen gas was uniformly supplied over 1 minute to a reaction tube made of Incoloy 800 in which hydrogen gas was flowing under the condition of cA (gauge pressure) to cause a reaction. At this time, the residence time of the hydrogen gas passing through the heating reaction section, that is, the reaction time, was 7 seconds, and the weight ratio of the amount of hydrogen supplied for reaction to the supplied coal was i, s. Of the products that came out of the reaction tube, char was separated using a char trap, the reed gasoline fraction and oil were condensed and separated using an indirect cooler using a refrigerant at -68°C, and the gas was depressurized and then transferred to a sampling container. collected and analyzed.

これら反応生成物を分析した結果、炭素基準における石
炭からの各生成物への転化率は第2表のとおシであった
As a result of analyzing these reaction products, the conversion rates from coal to each product on a carbon basis were as shown in Table 2.

実施例2 実施例1と同様であるが、添加物と反応温度をかえて行
なった。、すなわち、実施例1で用いた微粉炭101F
を、予め硝酸クロム1=51 (無水基準)及び硝酸第
二鉄2.9 g(無水基準)を溶解した蒸留水50〇−
中に加え、30分攪拌し7、この混合液にNH3として
1,0グのアンモニアヲ含ムアンモニア水100 mを
添加し、更に一昼夜攪拌した。この液から、沈殿した酸
化クロム及び水酸化鉄と石炭の混合物を吸引濾過によっ
て分離し、ろ液にアンモニウムイオンが検出されなくな
るまで充分に水洗した。
Example 2 The same procedure as Example 1 was carried out, except that the additives and reaction temperature were changed. , that is, the pulverized coal 101F used in Example 1
1=51 chromium nitrate (anhydrous standard) and 2.9 g of ferric nitrate (anhydrous standard) were dissolved in 500 - of distilled water.
After stirring for 30 minutes, 100 m of aqueous ammonia containing 1.0 g of ammonia was added as NH3 to the mixture, and the mixture was further stirred all day and night. From this liquid, precipitated chromium oxide and a mixture of iron hydroxide and coal were separated by suction filtration and thoroughly washed with water until no ammonium ions were detected in the filtrate.

次いで20 mxHl、75℃の減圧加熱条件下で乾燥
し、混合物100重量部に対し水分量を51量部に調製
した〇 この混合物を、温度680℃とした以外は実施例1と同
様の条件で反応を実施した。反応生成物を分析した結果
は第2表のとおりであった。なお、反応時間を同一にす
るため、反応温度に応じて水素流量を変化させた。(実
施例3以降及び比較例も同様の方法をとった。) 実施例3 実施例1と同様であるが、添加物と反応温度を変えて行
なった。すなわち実施例1で用いた微粉炭lOfを、予
め硝酸クロム1.Of (無水基準)及び硫酸ニッケル
2.Of (無水基準)を溶解した蒸留水500 ml
中に加え、1時間攪拌した。この混合液から、20 u
Hf %  75℃の減圧加熱条件で水分をほとんど除
去して、混合物ioo重量部に対し。
The mixture was then dried under reduced pressure and heating conditions of 20 mxHl and 75°C to adjust the moisture content to 51 parts by weight per 100 parts by weight of the mixture. This mixture was dried under the same conditions as in Example 1 except that the temperature was 680°C. The reaction was carried out. The results of analysis of the reaction products are shown in Table 2. In addition, in order to keep the reaction time the same, the hydrogen flow rate was changed depending on the reaction temperature. (The same method was followed for Example 3 and subsequent examples and Comparative Examples.) Example 3 The same procedure as Example 1 was carried out, but the additives and reaction temperature were changed. That is, the pulverized coal 1Of used in Example 1 was preliminarily mixed with chromium nitrate 1. Of (anhydrous basis) and nickel sulfate2. 500 ml of distilled water containing Of (anhydrous standard)
and stirred for 1 hour. From this mixture, 20 u
Hf % Based on 100 parts by weight of the mixture after removing most of the moisture under vacuum heating conditions at 75°C.

て水分量を5重量部に調製し、硝酸クロム及び硫酸ニッ
ケルを微粉炭に付着させた。
The moisture content was adjusted to 5 parts by weight, and chromium nitrate and nickel sulfate were applied to the pulverized coal.

この混合物を、温度750 ℃とした以外は実施例1と
同様の条件で反応させた。反応生成物の分析結果は第2
表のとおシであった。
This mixture was reacted under the same conditions as in Example 1 except that the temperature was 750°C. The analysis results of the reaction products are shown in the second
It was the front door.

実施例4 実施例1と同じであるが、添加物と反応温度を変えて実
施した。すなわち添加物中硫酸第一鉄を炭酸コバルトと
し、反応温度も685℃と変えて行なった。
Example 4 The same procedure as Example 1 was carried out, but with different additives and reaction temperature. That is, cobalt carbonate was used instead of ferrous sulfate among the additives, and the reaction temperature was changed to 685°C.

添加物の量、混合物の調製及び温度以外の反応条件は実
施例1と同様とした。反応生成物を分析した結果は第2
表のとおりであった。
The amount of additives, preparation of the mixture, and reaction conditions other than temperature were the same as in Example 1. The results of analyzing the reaction products are shown in the second
It was as shown in the table.

実施例5 実施例1で用いた微粉炭10fを、予め硝酸クロムo、
s y (無水基準)を溶解した蒸留水500 d中に
加え、1 t+−間攪拌した。この混合液から、2゜+
u+HP、75℃の減圧加熱条件下で水分をほとんど除
去し、混合物100重量部に対して水分が5重量部にな
るように調製した後、金属ニッケル粉末1.01と共に
磁製ボールミルに入れ、器内を窒素で封じて、−昼夜混
合した。
Example 5 The pulverized coal 10f used in Example 1 was treated with chromium nitrate o,
sy (anhydrous basis) was added to 500 d of distilled water and stirred for 1 t+-. From this mixture, 2°+
u+HP, remove most of the moisture under reduced pressure heating conditions at 75°C and adjust the moisture content to 5 parts by weight per 100 parts by weight of the mixture, then place it in a porcelain ball mill with 1.01 parts of metal nickel powder, and place in a container. The inside was sealed with nitrogen and mixed day and night.

この混合物を実施例1と同様の条件で反応させた。反応
生成物の分析結果は第2表のとおりであった。
This mixture was reacted under the same conditions as in Example 1. The analysis results of the reaction products were as shown in Table 2.

比較例1〜2 実施例1と同様条件であるが、添加物を加えずに粉砕・
乾燥した石炭を、温度730 ℃及び6701:でそれ
ぞれ反応させた。それぞれの反応生成物を分析した結果
は第2表のとおりであった。
Comparative Examples 1 to 2 The same conditions as in Example 1, but without adding any additives.
The dried coal was reacted at temperatures of 730°C and 670°C, respectively. The results of analysis of each reaction product are shown in Table 2.

比較例3〜5 実施例1で用いた微粉炭10Fを、それぞれ予め硫酸第
一鉄0.52、硫酸ニッケル0.51及び炭酸コバル)
 0.5 F (各々無水基準)を溶解した蒸留水50
01nl中に加え1時間かきまぜた。これら混合液から
、20 van Hff、750℃の減圧加熱条件下で
水をほとんど除去して、混合物100重量部に対し水分
量5重量部に調製し、それぞれ硫酸第一鉄、硫酸ニッケ
ル及び炭酸コバルトを微粉炭に刺着させた。これらの添
加炭を用い、温度をそれぞれ740℃、745℃及び6
70℃とした以外は実施例1と同様の条件で反応させた
。それぞれの反応生成物の分析結果は第2表のとおりで
あった。
Comparative Examples 3 to 5 The pulverized coal 10F used in Example 1 was preliminarily mixed with 0.52% of ferrous sulfate, 0.51% of nickel sulfate, and 0.51% of cobal carbonate).
Distilled water with 0.5 F (each anhydrous standard) dissolved in 50
01nl and stirred for 1 hour. From these mixed liquids, most of the water was removed under reduced pressure and heating conditions of 20 van Hff and 750°C to adjust the water content to 5 parts by weight per 100 parts by weight of the mixture, and ferrous sulfate, nickel sulfate, and cobalt carbonate were added, respectively. was stuck on pulverized coal. Using these added carbons, the temperature was set to 740°C, 745°C, and 6°C, respectively.
The reaction was carried out under the same conditions as in Example 1 except that the temperature was 70°C. The analysis results of each reaction product are shown in Table 2.

比較例6 比較例1,2で用いた微粉炭のl0IFを、金属ニッケ
ル粉末i、o tと共に磁製ボールミルに入れ、窒素雰
囲気下で一昼夜攪拌した。
Comparative Example 6 The pulverized coal 10IF used in Comparative Examples 1 and 2 was placed in a porcelain ball mill together with metal nickel powders i and ot, and stirred all day and night under a nitrogen atmosphere.

この混合物を用い、実施例1と同様の条件で反応を実施
した。反応生成物の分析結果を第2表に示す。
Using this mixture, a reaction was carried out under the same conditions as in Example 1. The analysis results of the reaction products are shown in Table 2.

以上の結果から、本発明によるクロム含有化合物とFe
、CoもしくはNiの化合物とを添加した石炭の熱分解
においては、無添加の石炭の場合に比べてガンリン留分
及びオイル分への転化率が著しく増加し、紀伝化率が高
くなっており、熱分解反応が促進されていることが明白
である。またOr化合物を添加せずFe、Coあるいは
Niの化合物のみを添加した石炭の場合に比べると、メ
タンへの転化率が著るしく低下しており、なおかっ、ガ
ソリン留分及び軽質オイル分への転化率が増加している
ことが明らかである。
From the above results, it is clear that the chromium-containing compound according to the present invention and Fe
In the thermal decomposition of coal to which Co or Ni compounds have been added, the conversion rate to Ganlin fraction and oil fraction increases significantly compared to the case of coal without additives, and the conversion rate becomes higher. It is clear that the thermal decomposition reaction is accelerated. In addition, compared to coal with only Fe, Co, or Ni compounds added without Or compounds, the conversion rate to methane is significantly lower, and moreover, the conversion rate to gasoline fraction and light oil fraction is significantly lower. It is clear that the conversion rate of

この様に石炭を加熱分解して生成物を得るに際して、ガ
ソリン留分及び軽質オイルの転化率を著しくしかも選択
的に向上させたことは、従来にない新規なものである。
This remarkable and selective improvement in the conversion of gasoline fractions and light oils when thermally decomposing coal to obtain products is novel and unprecedented.

もしくは水酸化物を石炭に混合付着させる方法は、その
添加炭のガソリン留分、軽質オイル並びにエタンへの転
化率及び紀伝化率が高く、またメタンへの転化率が低い
上に反応温度が低くてすみ、特に望ましい方法であるこ
とも明白である。
Alternatively, the method of mixing and adhering hydroxide to coal has a high conversion rate and conversion rate of the added coal to gasoline fraction, light oil, and ethane, and a low conversion rate to methane and a low reaction temperature. It is also clear that this is a particularly desirable method.

実施例 インコロイ800製の反応器を2つの領域に分け、前段
部たる一方は石炭供給機と接続し、供給された石炭が急
速加熱分解し、分解生成物と反応用水素ガス気流との滞
留時間が1秒以内になるようにした。後段部たるもう一
方は、分解生成物と反応用水素ガス気流との滞゛留時間
が6秒となるようにし5、両領域間は細管を用いて接続
し、分留生成物と反応用水素ガスとの通過時間が50ミ
リ秒となるようにした。また加熱用電気ヒーターは両領
域にそれぞれ別系統にした。前段部を670℃、後段部
を800℃に設定し、反応器内圧力を70 K9/cr
/1(ゲージ圧)に保ち、かつ上記に示した滞留時間に
なるように、反応用水素ガスを流通せしめた。
Example A reactor made of Incoloy 800 is divided into two regions, one of which is the front stage is connected to a coal feeder, the supplied coal is rapidly heated and decomposed, and the residence time of the decomposition products and the hydrogen gas stream for reaction is determined. was made to be within 1 second. In the other rear stage, the residence time of the decomposition products and the hydrogen gas stream for reaction is set to 6 seconds5, and the two regions are connected using a thin tube, so that the fractional distillation product and the hydrogen gas for reaction are connected to each other using a thin tube. The passage time with the gas was set to 50 milliseconds. In addition, separate electric heater systems were used for both areas. The front stage was set at 670°C and the rear stage at 800°C, and the reactor internal pressure was set at 70 K9/cr.
/1 (gauge pressure), and the hydrogen gas for reaction was made to flow so that the residence time shown above was achieved.

この反応器に実施例2と同様にして酸化クロムと水酸化
鉄を付着含有させた微粉炭を毎分1tの割合で供給し反
応させた。石炭に対する反応用水素の重量比は1.6で
あった。反応生成物は実施例1と同様にして採取し分析
した。
Pulverized coal containing chromium oxide and iron hydroxide was supplied to this reactor at a rate of 1 ton per minute in the same manner as in Example 2, and a reaction was caused. The weight ratio of reaction hydrogen to coal was 1.6. The reaction product was collected and analyzed in the same manner as in Example 1.

生成物の分析結果は、炭素基準における石炭からの転化
率を用いて第3表に示す。
The product analysis results are shown in Table 3 using conversion from coal on a carbon basis.

実施例7 実施例6と同様であるが添加物と前段温度を変えて実施
した。すなわち、水酸化鉄のがわりに、水酸化ニッケル
を酸化クロムと共に沈殿付着させて石炭に添加し、前段
部温度を6so ℃、後段部温度を800℃として反応
を実施した。反応生成物の分析結果を第3表に示す。
Example 7 The same procedure as Example 6 was carried out except that the additives and the temperature of the front stage were changed. That is, instead of iron hydroxide, nickel hydroxide was precipitated together with chromium oxide and added to the coal, and the reaction was carried out at a temperature in the front stage of 6so°C and a temperature in the rear stage of 800°C. The analysis results of the reaction products are shown in Table 3.

実施例8 実施例6と同様であるが、添加物と前段温度を変えて実
施した。すなわち実施例1で用いた微粉炭101を予め
硝酸コバル) 2.Of (無水基準)を溶解した蒸留
水500−中に加え30分攪拌した後、この混合液に0
.4 Fの水酸化ナトリウムを溶解した蒸留水100−
を添加し、更に一昼夜攪拌した。この液から、沈殿した
水酸化コバルトと石炭の混合物を吸引P鍋によって分離
し、更に炉液に水酸化ナトリウムが検出されなくなるま
で充分に水洗した。
Example 8 The same procedure as Example 6 was carried out, except that the additives and the pre-stage temperature were changed. That is, the pulverized coal 101 used in Example 1 was pre-coated with cobal nitrate)2. Of (anhydrous standard) was dissolved in distilled water of 500% and stirred for 30 minutes.
.. 4 F sodium hydroxide dissolved in distilled water 100-
was added thereto, and the mixture was further stirred all day and night. A mixture of precipitated cobalt hydroxide and coal was separated from this liquid using a suction P pan, and the mixture was thoroughly washed with water until no sodium hydroxide was detected in the furnace liquid.

次にこの混合物令、予め硝酸クロム0.4 t (無水
基準)を溶角イした蒸留水500i中に加え、2時間攪
拌した。最後にこの混合物から20 關HS’ 、75
℃の減圧加熱条件下で水分をほとんど除去し、混合物i
oo重量部に対して水が5重量部になるように調製した
。この混合物を、前段温度を670℃に変えた以外は実
施例6と同様の条件で反応させた。
Next, this mixture was added to 500 μl of distilled water in which 0.4 t of chromium nitrate (anhydrous standard) had been preliminarily heated and stirred for 2 hours. Finally from this mixture 20 關HS', 75
Most of the water was removed under reduced pressure heating conditions at ℃, and the mixture i
The amount of water was adjusted to 5 parts by weight based on 0 parts by weight. This mixture was reacted under the same conditions as in Example 6 except that the temperature in the first stage was changed to 670°C.

反応生成物の分析結果を第3表に示す。The analysis results of the reaction products are shown in Table 3.

比較例7 実施例6と同様の条件で、添加物を加えないで粉砕・乾
燥したオーストラリア産褐炭を用いて反応を実施した。
Comparative Example 7 A reaction was carried out under the same conditions as in Example 6 using crushed and dried Australian lignite without adding any additives.

反応生成物の分析結果は第3表のとおりであつグζ○ 比較例8〜lO 前段部温度と添加物だけをそれぞれ変えて実施例6と同
様の条件で実施した。条件及び反応生成物分析結果を第
3表に示す− 第3表から、本発明における添加物の使用により、石炭
からのガソリン留分、軽質オイル及びエタンへの転化率
が著しく増大し、メタンへの転化率はあまり変わらない
ことが明らかである。
The analysis results of the reaction products are as shown in Table 3.Comparative Example 8-1O The reaction was carried out under the same conditions as in Example 6, except that only the temperature of the front section and the additives were changed. The conditions and reaction product analysis results are shown in Table 3. From Table 3, it can be seen that the use of the additive in the present invention significantly increases the conversion rate from coal to gasoline fraction, light oil and ethane, and increases the conversion rate to methane. It is clear that the conversion rate of is not significantly different.

更にFe、CoもしくはNiの化合物のみの添加に比べ
て、Cr化合物を混合使用づ−るとメタンが大巾に低下
しており、またガンリン留分及び軽質オイルへの転化率
が向上しており、Cr化合物の使用の効果は明白である
Furthermore, compared to the addition of only Fe, Co or Ni compounds, when a Cr compound is used in combination, methane is significantly reduced, and the conversion rate to Ganlin fraction and light oil is improved. , the effect of using Cr compounds is obvious.

また第3表及び第2表から、本発明でいう熱分解時に急
速加熱分解したのち、引き続いてその分解生成物を前段
よりも高い温度で水素化分解することによって、さらに
一層ガソリン留分への転化率が向上していることが明白
である。
Furthermore, from Tables 3 and 2, it is clear that after rapid thermal decomposition during the pyrolysis of the present invention, the decomposition products are subsequently hydrocracked at a higher temperature than in the previous stage, resulting in further conversion to gasoline fraction. It is clear that the conversion rate is improved.

以下余白Below margin

Claims (1)

【特許請求の範囲】[Claims] 1、 炭素質物質をガス化又は液化するに当F) 、C
r含有化合物とFe、’Co及びNiの3種の金属ある
いはその化合物の中から選ばれた少なくとも1種の物質
との共存下、圧力35〜250に9/讐(ゲージ圧)の
実質的な水素ガス雰囲気中で、該炭素質物質を温度50
0〜950℃に急速加熱して分解させることを特徴とす
る炭素質物質の熱分解法2 炭素質物質をガス化又は液
化するに当り、Cr含有化合物とFe、Co及びNiの
3種の金属あるいはその化合物の中から選ばれた少なく
とも1種の物質との共存下、圧力35〜2 s OKg
/ctA (ゲージ圧)の実質的な水素ガス雰囲気中で
、該炭素質物質を温度500〜900℃に急速加熱して
分解させたのち、さらに前段の加熱温度よりも高く、か
つ600〜950℃の範囲の温度で分解させることを特
徴とする炭素質物質の熱分解法
1. For gasifying or liquefying carbonaceous materials F), C
Under the coexistence of an r-containing compound and at least one substance selected from three metals, Fe, Co, and Ni, or their compounds, a substantial The carbonaceous material is heated to a temperature of 50°C in a hydrogen gas atmosphere.
Method 2 of thermal decomposition of carbonaceous materials characterized by decomposition by rapid heating to 0 to 950°C In gasifying or liquefying carbonaceous materials, a Cr-containing compound and three metals of Fe, Co and Ni are used. Or in the coexistence with at least one substance selected from the compounds, under a pressure of 35 to 2 s OKg.
/ctA (gauge pressure) in a substantial hydrogen gas atmosphere, the carbonaceous material is rapidly heated to a temperature of 500 to 900°C to decompose it, and then further heated to a temperature higher than the previous heating temperature and 600 to 950°C. A method for thermal decomposition of carbonaceous materials characterized by decomposition at a temperature in the range of
JP57227663A 1982-12-28 1982-12-28 Pyrolysis method of coal Expired - Lifetime JPH0686595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227663A JPH0686595B2 (en) 1982-12-28 1982-12-28 Pyrolysis method of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227663A JPH0686595B2 (en) 1982-12-28 1982-12-28 Pyrolysis method of coal

Publications (2)

Publication Number Publication Date
JPS59122592A true JPS59122592A (en) 1984-07-16
JPH0686595B2 JPH0686595B2 (en) 1994-11-02

Family

ID=16864380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227663A Expired - Lifetime JPH0686595B2 (en) 1982-12-28 1982-12-28 Pyrolysis method of coal

Country Status (1)

Country Link
JP (1) JPH0686595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295372A (en) * 1992-04-17 1993-11-09 Mitsui Eng & Shipbuild Co Ltd Thermal cracking of coal
JP2007197582A (en) * 2006-01-27 2007-08-09 Shigemi Sawada Apparatus and method for treating fuel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479235A (en) * 1977-11-08 1979-06-25 Coal Industry Patents Ltd Coal treating method
JPS5529560A (en) * 1978-08-23 1980-03-01 Gni Enerugechichiesukii I Imee Heat treating method and apparatus of crushed lignite
JPS5540763A (en) * 1978-06-13 1980-03-22 Commw Scient Ind Res Org Flash thermal decomposition of carbonaceous material
JPS56136887A (en) * 1980-03-31 1981-10-26 Asahi Chem Ind Co Ltd High-speed liquefying method of coal
JPS5742790A (en) * 1980-08-29 1982-03-10 Asahi Chem Ind Co Ltd Coal liquefaction
JPS57177349A (en) * 1981-04-08 1982-11-01 British Petroleum Co Catalyst for hydrogenation
JPS57198788A (en) * 1981-05-30 1982-12-06 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of pitch-like material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479235A (en) * 1977-11-08 1979-06-25 Coal Industry Patents Ltd Coal treating method
JPS5540763A (en) * 1978-06-13 1980-03-22 Commw Scient Ind Res Org Flash thermal decomposition of carbonaceous material
JPS5529560A (en) * 1978-08-23 1980-03-01 Gni Enerugechichiesukii I Imee Heat treating method and apparatus of crushed lignite
JPS56136887A (en) * 1980-03-31 1981-10-26 Asahi Chem Ind Co Ltd High-speed liquefying method of coal
JPS5742790A (en) * 1980-08-29 1982-03-10 Asahi Chem Ind Co Ltd Coal liquefaction
JPS57177349A (en) * 1981-04-08 1982-11-01 British Petroleum Co Catalyst for hydrogenation
JPS57198788A (en) * 1981-05-30 1982-12-06 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of pitch-like material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295372A (en) * 1992-04-17 1993-11-09 Mitsui Eng & Shipbuild Co Ltd Thermal cracking of coal
JP2007197582A (en) * 2006-01-27 2007-08-09 Shigemi Sawada Apparatus and method for treating fuel

Also Published As

Publication number Publication date
JPH0686595B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US4661237A (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
FI84620B (en) FOERFARANDE FOER FRAMSTAELLNING AV KOLVAETEHALTIGA VAETSKOR UR BIOMASSA.
DE112006002722T5 (en) Catalytic vapor gasification of petroleum coke to methane
DE3237002C2 (en)
WO2009076894A1 (en) A thermal dissolution catalysis method for preparing liquid fuel from lignite and the catalyst and the solvent suitable for the method
CN110819390A (en) Method and system for low-rank coal fractional conversion
JPH05501537A (en) Method for converting carbonaceous raw materials into granular carbon and methanol
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
JPS59122592A (en) Thermal decomposition of carbonaceous substance
US4412908A (en) Process for thermal hydrocracking of coal
JP2562851B2 (en) A new pyrolysis method for carbonaceous materials
US3347647A (en) Conversion of solid fossil fuels to high-b. t. u. pipeline gas
JPH0557315B2 (en)
JPS58167682A (en) Thermal cracking of carbonaceous substance
JPH10121055A (en) Method for liquefying coal
JPS5968391A (en) Coal liquefaction
JPS5846280B2 (en) Coal hydrogenation and liquefaction method
NO791105L (en) RECOVERY OF NON-GLASSIFIED SOLID FUEL PARTICLES FROM WATER SUSPENSION
JP4122695B2 (en) Low-grade coal reforming method
JPS60217290A (en) Thermal decomposition of carbonaceous material
JPS58132080A (en) Conversion of carbon-containing substance to paraffinic hydrocarbons and monocyclic aromatic hydrocarbons
US2006996A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
JPS60190493A (en) Thermal decomposition of carbonaceous substance
JPS60186586A (en) Pyrolysis of carbonaceous substance
JPS60212485A (en) Hydrogenative thermal cracking of carbonaceous material