JPS60186586A - Pyrolysis of carbonaceous substance - Google Patents

Pyrolysis of carbonaceous substance

Info

Publication number
JPS60186586A
JPS60186586A JP4135284A JP4135284A JPS60186586A JP S60186586 A JPS60186586 A JP S60186586A JP 4135284 A JP4135284 A JP 4135284A JP 4135284 A JP4135284 A JP 4135284A JP S60186586 A JPS60186586 A JP S60186586A
Authority
JP
Japan
Prior art keywords
methane
carbonaceous
oil
temperature
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4135284A
Other languages
Japanese (ja)
Inventor
Muneaki Kimura
木村 宗明
Keisuke Horiuchi
堀内 圭介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4135284A priority Critical patent/JPS60186586A/en
Publication of JPS60186586A publication Critical patent/JPS60186586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:A carbonaceous substance is pyrolyzed by rapidly heating up to a specific temperature in a hydrogen atmosphere containing methane to increase the yield of light fractions including gasoline with reduced gas formation and decreased hydrogen consumption. CONSTITUTION:In the gasification or liquefaction of carbonaceous substances, the pyrolysis is carried out in a hydrogen atmosphere containing 10-60v% of methane at a pressure of 20-150kg/cm<2>G, preferably in the presence of at least one selected from compounds of a metal of group VI or VIII in the periodic table by heating rapidly up to 600-850 deg.C. More preferably, rapid heating is first effected at 600-800 deg.C, then pyrolysis is conducted at 650-850 deg.C.

Description

【発明の詳細な説明】 本発明は、炭素質物質を水素の存在下で熱分解させ、ガ
スおよび液化油を直接に製造するための方法であり、さ
らに詳しくは、メタン混在イ囲気下で熱分解を行なうこ
とによって、生成するガス量を抑制し、消費水素量を低
減化させ、かつガソリン留分、軽質オイルを含む液化油
の収率を高めるための新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for directly producing gas and liquefied oil by thermally decomposing carbonaceous materials in the presence of hydrogen. The present invention relates to a novel method for suppressing the amount of gas produced, reducing the amount of hydrogen consumed, and increasing the yield of liquefied oil including gasoline fraction and light oil by performing cracking.

最近、将来の石油資源の枯渇化に苅処する手段の一つと
して、化石燃料資源の中で最も豊富に存在し、しかも世
界各地に広く分布する石炭やタールサンドのような始生
炭素質物質が、石油に代わるエネルギー源および化学原
料資源として再評価されるようになってきた。しかし、
石炭は極めて複雑な高分子化合物であシ、主要構成要素
である炭素、水素のほか、かなりの量の酸素、窒素、硫
黄などのへテロ原子、それに灰分を含むため、そのまま
燃焼させると多量の大気汚染物質を発生する上に、石油
に比べて発熱量も低く、輸送や貯蔵にも問題がある。
Recently, archaic carbonaceous materials such as coal and tar sands, which are the most abundant fossil fuel resources and are widely distributed around the world, have been used as a means to prepare for the future depletion of oil resources. is now being reevaluated as an alternative energy source and chemical raw material resource to petroleum. but,
Coal is an extremely complex polymer compound, and in addition to its main constituents carbon and hydrogen, it also contains considerable amounts of heteroatoms such as oxygen, nitrogen, and sulfur, as well as ash. In addition to emitting air pollutants, it also has a lower calorific value than petroleum, and poses problems in transportation and storage.

このような石炭の有する本質的諸問題を解決する手段と
して、石炭を液化し、ヘテロ原子や灰分を除去するとと
もに、クリーンな燃料油や燃料ガス、その他附加価値の
高い化学原料を取得する多くの方法が提案されてきた。
As a means to solve these essential problems associated with coal, we liquefy coal, remove heteroatoms and ash, and produce clean fuel oil, fuel gas, and other high value-added chemical raw materials. methods have been proposed.

これらの方法の中で代表的なものとしては、例えば、石
炭を溶媒で抽出する方法、水素または水素供与体の存在
下で石炭を液化する方法、水素存在下で石炭を液化、ガ
ス化する方法、不活性ガス中で石炭を液化、ガス化する
方法などを挙げることができる。
Typical of these methods include, for example, a method of extracting coal with a solvent, a method of liquefying coal in the presence of hydrogen or a hydrogen donor, and a method of liquefying and gasifying coal in the presence of hydrogen. , a method of liquefying or gasifying coal in an inert gas, etc.

しかしながら、これらの方法ではエネルギー源である成
分を直接に得ることができても、輸送用燃料および化学
原料としてのガソリン留分を、主体的にかつ効率的に取
得することができなかった。
However, although these methods can directly obtain components that are energy sources, they have not been able to proactively and efficiently obtain gasoline fractions as transportation fuels and chemical raw materials.

従来、ガソリン留分を直接に取得するだめの方法として
、例えば微粉砕した石炭を高温、高圧の水素気流中に噴
出することによって、数十ミリ秒ないし数分の短時間で
、石炭を高速水添、熱分解する方法が知られている。こ
の方法は、例えば粉砕した石炭を、圧力50〜250 
kP10tn2(ゲージ圧)、温度600〜1200C
の水素気流中に噴出し、水添熱分解することによって行
われ、ガス生成物としてメタン、エタン、二酸化炭素、
−酸化炭素、水蒸気、硫化水素、アンモニアなどが、ま
た、液体生成物としてガソリン留分、重質油(炭素数1
0以上の芳香族化合物および高沸点タール)が、捷た、
固体成分としてチャーと称する灰分を含む固体生成物な
どが得られる。
Conventionally, as a method to directly obtain gasoline fractions, for example, finely pulverized coal is injected into a high-temperature, high-pressure hydrogen stream, which converts the coal into high-speed water in a short period of several tens of milliseconds to several minutes. Methods of thermal decomposition are known. In this method, for example, pulverized coal is heated at a pressure of 50 to 250.
kP10tn2 (gauge pressure), temperature 600-1200C
The process is carried out by ejecting hydrogen into a stream of hydrogen and pyrolyzing it, producing methane, ethane, carbon dioxide, and gaseous products.
- Carbon oxide, water vapor, hydrogen sulfide, ammonia, etc. are also used as liquid products such as gasoline fraction, heavy oil (carbon number 1
0 or more aromatic compounds and high boiling point tars) are crushed,
A solid product containing ash called char as a solid component is obtained.

しかし、この方法においては、低い反応偏度にすると、
石炭から液体またはガスへの総幅化率(全生成物中の炭
素原子数を供給石炭中の炭素原子数で除し、100を乗
じだ値)が低くなり、(7かも、炭素数10以上の芳香
族化合物やタールのような重質油が主要生成物となる。
However, in this method, when the reaction polarity is low,
The total conversion rate from coal to liquid or gas (the number of carbon atoms in all products divided by the number of carbon atoms in the feed coal, multiplied by 100) will be lower (7, or even 10 or more carbon atoms). The main products are aromatic compounds and heavy oils such as tar.

また、高い反応温度にすると、全転化率は高くなるもの
の、液体生成物の分解が促進されてメタンが主要生成物
となり、ガソリン留分や軽質オイル分などの液体生成物
の収率が低下するうえに、消費される水素′Mが著しる
しく増大し、工業的に極めて不利になるという問題があ
った。
In addition, if the reaction temperature is high, although the total conversion rate will be high, the decomposition of the liquid product will be accelerated and methane will become the main product, and the yield of liquid products such as gasoline fraction and light oil fraction will decrease. Moreover, there is a problem in that the amount of hydrogen 'M consumed increases significantly, which is extremely disadvantageous industrially.

本発明渚らは、このような問題を解決し、石炭などの炭
素質物質を輸送用燃料および化学原料としてのガソリン
留分や軽質オイルに高収率で転化させるに当り、J!;
て 体とするガスの生成を抑制し、/l(素消費量を低
減化すべく鋭意検討を重ねた結果、メタンを含む水素ガ
ス゛雰囲気中で、炭素質物質全急速に加熱し分解きせる
ことによって、炭素質勿′P1から生成するメタン酸を
減少させることが可能となり、しだがって、水素の消費
量が減少し、捷た、液体中11に物への転化率が高まる
ことを見い出シフ、この知見に暴いて本発明を完成する
に至った。なお、ここでいう軽質オイルとは、2〜5邸
縮合芳香族化合物を主体とするものである。
In the present invention, Nagisa et al. solved these problems and converted carbonaceous materials such as coal into gasoline fractions and light oils as transportation fuels and chemical raw materials in high yields.J! ;
As a result of intensive studies to suppress the production of carbonaceous substances and reduce the amount of carbonaceous substances consumed, we found that by rapidly heating and decomposing all carbonaceous substances in an atmosphere of hydrogen gas containing methane, It has been found that it is possible to reduce methanoic acid generated from carbonaceous Naru'P1, thereby reducing hydrogen consumption and increasing the conversion rate to 11 in the broken liquid. Based on this knowledge, Schiff was able to complete the present invention.The light oil mentioned here is mainly composed of 2-5 condensed aromatic compounds.

すなわら、本発明は、主としてメタンの生成を抑制し、
水素消費量を低減化させることを最大の目的とし、その
結果、軽質オイルをけじめとする液体化合物を、高収率
で直接的に炭素質物質から生成させうる新しい分解法で
あって、炭素質物質をガス化または液化するに当り、メ
タンを10〜60’8#t%含有すル圧力20〜150
 kr)、10ttL2G(ゲージ圧)の水素ガス雰囲
気中で、温度600〜850Cに急速加熱して分解させ
ることを特徴とする炭素質物質の熱分解法を提供するも
のである。
In other words, the present invention mainly suppresses the production of methane,
The main objective is to reduce hydrogen consumption, and as a result, it is a new decomposition method that can directly produce liquid compounds, including light oil, from carbonaceous materials in high yield. When gasifying or liquefying a substance, a pressure of 20 to 150 liters containing 10 to 60'8 #t% of methane is used.
Kr), 10ttL2G (gauge pressure) in a hydrogen gas atmosphere, the present invention provides a method for thermally decomposing a carbonaceous material, which is characterized by rapid heating to a temperature of 600 to 850C for decomposition.

メタンの反応機構は不明であるが、供給メタンから熱分
解によって生成したメチルラジカル、カルベンなどの活
性種が、炭素質物質の熱分解によって生成した活性中間
体を安定化させ、メタンなどのガスへの一層の分解を抑
制するものと考えられる。
The reaction mechanism of methane is unknown, but active species such as methyl radicals and carbenes generated by thermal decomposition of supplied methane stabilize active intermediates generated by thermal decomposition of carbonaceous materials, and convert into gases such as methane. This is thought to suppress further decomposition of .

本発明にふ)いて、水素ガス中に宮有させるメタンの量
は10〜60りg涜チである。1o容積係未満では、本
発明の目的を達成するには不光分であシ、60容積%を
越えると、熱分解による煤の発生が起こり好ましくない
。本発明の目的を光分に達成するだめには、好ましくは
15〜40容積係であり、より好ましくけ20〜35容
積チである。
According to the present invention, the amount of methane contained in the hydrogen gas is 10 to 60 grams. If the volume ratio is less than 10% by volume, the object of the present invention cannot be achieved. If it exceeds 60% by volume, soot may be generated due to thermal decomposition, which is not preferable. In order to achieve the object of the present invention, the volume is preferably 15 to 40, more preferably 20 to 35.

なお、このメタンは、本発明の方法によって炭素質物質
から生成するメタンを循環使用することができる。寸だ
、メタンを含有させる水素ガスは、全く細砕な水素ガス
でなくてもよく、−酸化炭素、二酸化炭素、水蒸気、窒
素などが若干混入していてもよい。
Note that this methane produced from carbonaceous material by the method of the present invention can be recycled and used. In fact, the hydrogen gas containing methane does not have to be pulverized hydrogen gas at all, and may contain a small amount of carbon oxide, carbon dioxide, water vapor, nitrogen, etc.

メタンを含む水素ガスの圧力が20 kP/αM2G未
満であると、炭素質物質のガスまたは液体への総幅化率
が低下1〜、結局は液体生成物の収率が下るので好寸し
くない。また、高圧にすると、設備費がかさみ経済的に
不利となるので、150 kflom” G以下が適当
である。本発明で言う効果を発現し、経済的に不利にな
らない好ましい範囲は35〜120 kP/(s2Gで
あり、より好ましい範囲は50〜100 ky/薗2G
である、 炭素質物質はメタンを含む水素ガス雰囲気中で急速に加
熱され、600〜850Cで熱分解するが、この熱分解
温度は、原料炭素質物質の種類、粘度、粒径などの原料
の特性および加熱時間などによって、前記範囲内で適宜
選択できるが、6000未満の場合は、原料炭素質物質
および供給メタンの分解が遅く、総幅化率が低下する。
If the pressure of hydrogen gas containing methane is less than 20 kP/αM2G, the overall rate of conversion of carbonaceous material to gas or liquid will decrease1~, which is not favorable because the yield of liquid product will eventually decrease. . In addition, if the pressure is high, the equipment cost will increase and it will be economically disadvantageous, so a pressure of 150 kflom"G or less is appropriate. A preferable range that produces the effects of the present invention and does not become economically disadvantageous is 35 to 120 kP. /(s2G, and the more preferable range is 50 to 100 ky/Sono2G
The carbonaceous material is rapidly heated in a hydrogen gas atmosphere containing methane and thermally decomposed at 600 to 850C, but this thermal decomposition temperature depends on the raw material, such as the type, viscosity, and particle size of the carbonaceous material. It can be appropriately selected within the above range depending on the characteristics, heating time, etc., but if it is less than 6,000, the decomposition of the raw carbonaceous material and the supplied methane will be slow, and the overall width increase rate will decrease.

一方、850Cを越えると、ガソリン留分、軽質オイル
などの液体生成物の分解が起こりけじめ、収率が低下す
ると共に、メタンから煤が生成するだめに好ましくない
On the other hand, if the temperature exceeds 850C, decomposition of liquid products such as gasoline fractions and light oils will occur, resulting in a decrease in yield and undesirable production of soot from methane.

加熱時間については、特に制限はないが、通常、2〜6
0秒が適当であり、分解温度が高ければ短時間であるこ
とが望ましい。
There are no particular restrictions on the heating time, but it is usually 2 to 6 hours.
0 seconds is appropriate, and if the decomposition temperature is high, a short time is desirable.

炭素質物質の加熱速度は、液体生成物を効率よく生成さ
せ、ガスの生成を抑えるために、100C/秒以上であ
ることが望ましく、特に1000C/秒以上が好ましい
、 一方、本発明者らは、ガソリン留分および軽質オイルを
より高収率で取得すべく検討を重ねた結果、周期律表第
■原寸たは第■族の金属化合物を炭素質物質に添加する
ことによって、熱分解が促進し、効率的に炭素質物質が
液体生成物に転化し、引き続いて水冷分解によってガソ
リン留分や軽質オイルに転化する一力、供給メタンによ
って炭素質物質のメタンへの転化が抑制され、消費水素
量が低減することを見い出した。
The heating rate of the carbonaceous material is desirably 100 C/sec or more, particularly preferably 1000 C/sec or more, in order to efficiently generate a liquid product and suppress gas generation. On the other hand, the present inventors As a result of repeated studies to obtain gasoline fractions and light oils at higher yields, it was discovered that thermal decomposition could be accelerated by adding metal compounds from Group ■ or Group ■ of the periodic table to carbonaceous materials. The carbonaceous materials are effectively converted into liquid products, which are subsequently converted into gasoline fractions and light oil by water-cooled cracking, and the supplied methane suppresses the conversion of carbonaceous materials to methane, reducing the consumption of hydrogen. It was found that the amount was reduced.

すなわち、メタンi10〜60容積係含有する圧力20
〜150 kPl薗2Gの水素ガスガ囲気中で、周期律
表第■まだは第■■族から選ばれた少なくとも1種の金
属化合物の存在下、炭素質物質を温度600〜850C
に急速加熱して分解さぜることによグ、メタン生成を抑
え、消費水素量を減少させ、経済的にガソリン留分や軽
質オイルを高収率で取得するものである。
That is, the pressure containing methane i10-60 by volume is 20
A carbonaceous material is heated to a temperature of 600 to 850 C in a hydrogen gas atmosphere of ~150 kPl and 2 G in the presence of at least one metal compound selected from Group 1 of the Periodic Table.
By rapidly heating and decomposing it, methane production is suppressed, the amount of hydrogen consumed is reduced, and gasoline fractions and light oil can be economically obtained in high yields.

本発明方法に2いて用いる周期律表第■族金属元素とし
てはMo、Wなどで、また、第■族金属元素としては、
Fe、、C0% Nis Ru、Rhs Pd。
The metal elements of group Ⅰ of the periodic table used in the method of the present invention include Mo, W, etc., and the metal elements of group Ⅰ of the periodic table include
Fe, C0% Nis Ru, Rhs Pd.

ptなどが挙げられる。これら金属元素の化合物として
は、酸化物、水酸化物、硫化物、硫酸塩、硝酸基、ハロ
ゲン化物などの塩、酸アンモニウム塩あるいは不機金属
化合物として使用する。
Examples include pt. As compounds of these metal elements, salts such as oxides, hydroxides, sulfides, sulfates, nitric acid groups, halides, acid ammonium salts, or inorganic metal compounds are used.

本発明方法においては、前記の金属化合物を単独で用い
てもよいし、あるいは2種以上混合して用いてもよい。
In the method of the present invention, the above metal compounds may be used alone or in combination of two or more.

また、前記以外の金属化合物を添加、併用してもよい。Further, metal compounds other than those mentioned above may be added or used in combination.

添加方法としては、炭素質物質と該金属化合物を別々に
分解反応器中に導入することもできるが、ガスおよび液
体生成物への転化率を効率よく増加するには、予め炭素
質物質と該金属化合物を混合しておき、その混合物を反
応器へ送シ込むことが望ましい。該添加物の65加量は
、使用する原料炭素質物質の棟+1によって適宜選択で
きるが、一般には無水・無灰基準の炭素質物質1重量部
に対して、0.0001〜0.2重量部の範囲が重重し
い。その旨が0.0001重量部未満では、本目的に合
わなく々す、0.2市駄部を越えても効果はかわらない
。また、2a!以上の施加物を混合して用いる場合は、
少なくとも1棹の添加物の量が炭素質物質1重量部に対
して0.000’05〜0.1重量部の範囲が重重しい
、さらに、液体生成物をより一層効果的にガソリン留分
や軽質オイルに転化すべく検討した結果、炭素質物質を
急速加熱して分解生成させた液体生放物を、その熱分解
温度より高い温度でさらに分解させる方法が望しいこと
を見出した。
As an addition method, the carbonaceous material and the metal compound can be introduced separately into the cracking reactor, but in order to efficiently increase the conversion rate to gas and liquid products, it is necessary to add the carbonaceous material and the metal compound in advance. It is desirable to mix the metal compounds and pump the mixture into the reactor. The amount of the additive can be appropriately selected depending on the raw material carbonaceous material used, but it is generally 0.0001 to 0.2 parts by weight per 1 part by weight of the carbonaceous material on an anhydrous and ashless basis. The scope of the section is heavy. If it is less than 0.0001 parts by weight, it is not suitable for the present purpose, and even if it exceeds 0.2 parts by weight, the effect will not change. Also, 2a! When using a mixture of the above additives,
Preferably, the amount of at least 1 stick of additive is in the range of 0.000'05 to 0.1 parts by weight per 1 part by weight of carbonaceous material. As a result of studying the idea of converting it into light oil, we found that it is desirable to further decompose the liquid raw material produced by rapid heating of carbonaceous material at a temperature higher than its thermal decomposition temperature.

すなわち、メタンを10〜60答積チ含有する圧力20
〜I s Oky/m”G (7)水素ガス雰囲気中で
、周期律表第■族または第■1族から選ばれた少なくと
も1棟の金属化合物の存在下、該炭素質物質を600〜
800Cに急速加熱して分解させた後、さらにこの温度
よりも高く、かつ650〜850Cの範囲の温度で分解
させ、メタン生成を抑制させる一方で、より高収率でガ
ソリン留分や怪質オイルを取得するものである。
That is, the pressure containing 10 to 60 parts of methane is 20
~Is Oky/m"G (7) In a hydrogen gas atmosphere, in the presence of at least one metal compound selected from Group Ⅰ or Group Ⅰ of the Periodic Table, the carbonaceous material is heated to 600~
After decomposition by rapid heating to 800C, further decomposition is performed at a temperature higher than this temperature and in the range of 650 to 850C, suppressing methane production and producing gasoline fractions and suspicious oils with a higher yield. The purpose is to obtain

この方法において、前段階の炭素質物質の分解温度と後
段階の分解温度との糸目合わせの中で最適な絹合せは、
炭素質物質の種類によって適宜選択されるが、その温度
差は一般に10〜100Cであり、例えば石炭化度の低
い石炭はど前段階の温度が低くてよく、後段階との温度
差が大きくなるイ頃向にある。
In this method, the optimum silk combination between the decomposition temperature of the carbonaceous material in the previous stage and the decomposition temperature in the latter stage is determined by
Although it is selected as appropriate depending on the type of carbonaceous material, the temperature difference is generally 10 to 100 C. For example, coal with a low degree of coalification requires a low temperature in the front stage and a large temperature difference with the latter stage. It's in the direction of Iroki.

本発明における供給炭素質物質(無水・無灰基準)に対
する反応用水系の重量比は、該炭素質物質の種類などに
よって異なるが、0.05以上、265以下が好ましい
The weight ratio of the reaction aqueous system to the supplied carbonaceous material (anhydrous and ashless basis) in the present invention varies depending on the type of carbonaceous material, but is preferably 0.05 or more and 265 or less.

本発明方法において原料として用いる炭素質物質として
は、例えば無煙炭、歴青炭、亜属#炭、かつ炭、亜炭、
泥炭、草炭などの石炭およびオイルシェール、タールサ
ンド、有機廃棄物、木材などの植物、原油などが挙げら
れる。
Examples of carbonaceous substances used as raw materials in the method of the present invention include anthracite, bituminous coal, subgenus carbon, and charcoal, lignite,
Examples include coal and oil shale such as peat and grass charcoal, tar sands, organic waste, plants such as wood, and crude oil.

本発明方法によると、炭素質物質の分解から生成するメ
タン量が減少し、したがって、水素消費量が大巾に低下
し、経済的に有利となるほかに、液体生成物、特にガソ
リン留分、軽質オイルの収率が高くなる。
According to the process of the invention, the amount of methane produced from the decomposition of carbonaceous materials is reduced, and therefore the hydrogen consumption is significantly reduced, which is economically advantageous, as well as liquid products, especially gasoline fractions, Higher yield of light oil.

次に、実施例によって本発明をさらにflTi IT(
II K説明するが、本発明は、これらの実施例に限定
きれるものではない。
Next, the present invention will be further explained by examples.
IIK However, the present invention is not limited to these embodiments.

なお、各反応生成物への転化率(佳、次式によって定義
される。
In addition, the conversion rate to each reaction product (good, defined by the following formula).

界施例1 オーストラリヤ産の褐炭を粉砕し、100メツシユ(J
IS規格)のふるいを通し微粉炭とした。
World Example 1 Australian lignite is crushed to produce 100 mesh (J
The coal was passed through a sieve of IS standard) to produce pulverized coal.

この石炭の元素分析値は無水基準で第1表のとおりであ
った。
The elemental analysis values of this coal were as shown in Table 1 on an anhydrous basis.

第1表 2011mHg、75Cの減圧加熱φ件下で、乾燥し、
水分酸を5重ivt%にI−A製したこの微粉炭31を
、温度805C1圧力フ 0 kg/ra” Gで、メ
タンを20容積チ含有する水素混合ガスを流通している
インコロイ800製の反応管に3分間かけて均一に供給
し、反応させた。このとき加熱反応部を通過する混合ガ
スの滞留時間、すなわち、反応時間は7秒であった。反
応管から出た生成物のうち、チャーはチャートラップで
分離し、また、ガソリン留分およびオイルは、−68U
の冷媒を用いた間接冷却器で凝縮分離させ、ガスは減圧
後、サンプリング容器に採集して分析した。待に生成メ
タンは、採集メタンから供給メタンの量を差し引いて算
出した。これら反応生成物分析の結果、炭素基準におけ
る石炭からの各生成物への転化$(以下同様)は、次の
とおりであった。
Table 1: Dry under reduced pressure heating at 2011mHg and 75C,
This pulverized coal 31 produced by I-A with a water acid content of 5 ivt% was heated at a temperature of 805 C1 and a pressure of 0 kg/ra"G using an Incoloy 800 model in which a hydrogen mixed gas containing 20 volumes of methane was flowing. The reaction was carried out by uniformly supplying the gas to the reaction tube over a period of 3 minutes.At this time, the residence time of the mixed gas passing through the heating reaction section, that is, the reaction time, was 7 seconds.Of the products that came out of the reaction tube, , the char is separated in a char trap, and the gasoline fraction and oil are -68U
The gas was condensed and separated using an indirect cooler using a refrigerant, and after reducing the pressure, the gas was collected in a sampling container and analyzed. The amount of methane produced was calculated by subtracting the amount of methane supplied from the amount of methane collected. As a result of the analysis of these reaction products, the conversion $ (the same applies hereinafter) from coal to each product on a carbon basis was as follows.

CH420,2% C,H,、,3,8 CO十C0,7,5 ガソリン留分 6.7 オイル 12,6 チャー 49.2 オイル中には軽質オイルが44%含有されていた。CH420, 2% C,H,,3,8 CO1C0,7,5 Gasoline fraction 6.7 Oil 12,6 Char 49.2 The oil contained 44% light oil.

・比較例1 実施例1と同様であるが、供給ガスと温度をかえて実施
した。すなわち、圧力フ o kP/1m2Gの水素ガ
ス雰囲気中で、温度795Cにて反応させた。なお、反
応時間を同じにするため、反応温度に応じて水素流量を
変化さぜた(実施例2以降および比較例2以降も同様の
処理をとった)。反応生成物を分析した結果は次のとお
りであった。
Comparative Example 1 This was carried out in the same manner as in Example 1, but with different supply gas and temperature. That is, the reaction was carried out at a temperature of 795C in a hydrogen gas atmosphere with a pressure of P/1m2G. In order to keep the reaction time the same, the hydrogen flow rate was varied depending on the reaction temperature (the same process was carried out in Example 2 and later and Comparative Example 2 and later). The results of analysis of the reaction product were as follows.

C11425,8% C2H65・4 “ CO+C027,8〃 ガンリン留分 6.6 I オイル 4.81 チャー 51.6# また、オイル中には軽質オイルが66%含有されていた
C11425.8% C2H65.4 "CO+C027.8〃 Ganlin fraction 6.6 I oil 4.81 Char 51.6# Also, the oil contained 66% light oil.

実施例1におけるメタンを含有する水素ガスガ囲気中で
の反応は、比較例1における水素のみのイ囲気中での反
応に比べ、生成するメタンの散が22%も低下する一方
で、オイ栂2.6倍、軽質オイルは6.2倍に各々」W
加しており、本発明によるメタン生成の抑制とオイルの
収率向上の効果は明らかである。
The reaction in Example 1 in a hydrogen gas atmosphere containing methane produced 22% less methane than the reaction in Comparative Example 1 in a hydrogen gas atmosphere; .6 times, and 6.2 times for light oil.''W
The effects of the present invention on suppressing methane production and improving oil yield are clear.

実施例2 実施例1で用いたものと同じ微粉炭20゛7を、予め塩
化第2鉄1.Ofを浴解した蒸留水500d中に加え、
30分間かきまぜた。この混合液から、20 mm H
gs 75 Cの減圧加熱条件で水をほとんど除去し、
微粉炭に塩化第2鉄を付着バ有させた。
Example 2 The same pulverized coal 20゛7 as used in Example 1 was preliminarily mixed with ferric chloride 1. Add Of to 500 d of distilled water,
Stir for 30 minutes. From this mixture, 20 mm H
Most of the water is removed under reduced pressure heating conditions of GS 75C,
Pulverized coal was coated with ferric chloride.

この添加炭に含まれる水分量を5重fit%に〜M製し
た。
The water content contained in this added carbon was adjusted to 5% by weight.

この添加炭を用いて、実施例1と同様ではあるが、メタ
ンの含有率を24容積チに、また、温度を745Cに代
えて反応させた。反応生成物を分析した結果、CH42
1,1%、(:2)1. 6.2%、CO十C017,
1%、ガソリン留分10.4%、オイル21.0%(オ
イル中の軽質オイル分は62%)、チャー34.2チで
あった。
Using this added carbon, a reaction was carried out in the same manner as in Example 1, except that the methane content was changed to 24 volumes and the temperature was changed to 745C. As a result of analyzing the reaction product, CH42
1.1%, (:2)1. 6.2%, CO17,
1%, gasoline fraction 10.4%, oil 21.0% (light oil content in the oil was 62%), and char 34.2%.

比較例2 実施例2で用いたものと同じ増化第2鉄含有微粉炭を使
用し、圧力フ 0 kg/(ln”Gの水素ガス中、温
度730Cで反応させた。
Comparative Example 2 The same enriched ferric-containing pulverized coal as used in Example 2 was used and reacted at a temperature of 730C in hydrogen gas at a pressure of 0 kg/(ln''G).

反応生成?lを分析した結果、CH426,7%、C,
H,5,8%、CO+C□、7.5 %、ガソリン留分
10.3 %、オ°イル14.0%(オイル中の軽質オ
イル分は60%)、チャー65.9%であった。
Reaction generation? As a result of analyzing 1, CH426, 7%, C,
H, 5.8%, CO + C□, 7.5%, gasoline fraction 10.3%, oil 14.0% (light oil content in oil is 60%), char 65.9%. .

実施例2における反応は、比較列2の反応に比べ、生成
するメタンの歌が21%低下する一方で、オイルは1.
5倍に増加した。筐だ、実施例2は実Mat例1に比べ
、カッリン留分、軽質オイル分の収率が大rijK増加
した。以上から、本発明で言う%l果は明白である。
In the reaction in Example 2, compared to the reaction in Comparison Series 2, the amount of methane produced was reduced by 21%, while the amount of oil was reduced by 1.
It increased five times. In fact, in Example 2, the yields of the Kallin fraction and light oil fraction increased by a large amount as compared to Actual Mat Example 1. From the above, the %l effect referred to in the present invention is clear.

実施例3 実施例1で用いた微粉炭に、モリブデン酸アンモニウム
と硫酸を用いて沈殿させた微粉末の酸化モリブデン酸を
、無水・無灰基準の使用層にT−1シて5.8重敏係の
割合で添加し、減圧乾燥によって、水分率5重献チの添
加炭を調製した。この添加炭を用いて、実施例1と同様
であるが、メタンの含有率を25容積チに、温度を74
0Cに代えて反応させた。
Example 3 Finely powdered molybdic acid oxide, which was precipitated using ammonium molybdate and sulfuric acid, was added to the pulverized coal used in Example 1 in a layer using T-1 based on anhydrous and ashless standards. Additive charcoal with a moisture content of 5 times was prepared by adding the charcoal at a ratio of 100% and drying under reduced pressure. Using this added carbon, the procedure was the same as in Example 1, but with a methane content of 25 vol. and a temperature of 74 vol.
The reaction was performed in place of 0C.

反応生成物を分析した結果、CH422,5%、C,H
,4,4%、CO+CO26,6%、ガンリン留分7.
1チ、オイル12.1%(オイル中の軽質オイルは44
%)、チャー47.5%であった。
As a result of analyzing the reaction product, CH422, 5%, C, H
,4.4%, CO+CO26.6%, Ganlin fraction 7.
1 inch, oil 12.1% (light oil in oil is 44%
%), and the char was 47.5%.

比較例5 実施例6で用いたものと同じ微粉炭を使用し、圧力フ 
0 kg/(ltz”Gの水素ガス中、r黒度725C
で反応させた。
Comparative Example 5 The same pulverized coal as used in Example 6 was used, and the pressure
0 kg/(ltz”G hydrogen gas, r blackness 725C
I reacted with

反応生成物を分析した結果、CH429,5チ、C2H
As a result of analyzing the reaction product, CH429,5CH, C2H
.

4.2係、CO+Co、 6.2%、ガソリン留分6.
9%、オイル5.2%(オイル中の軽質オイルは40%
)、チャー48.0%であった。
Section 4.2, CO+Co, 6.2%, gasoline fraction 6.
9%, oil 5.2% (light oil in oil is 40%)
), the char was 48.0%.

実施例4 インコロイaooyの反応器を二つの領域に分け、前段
部である一方は石炭供給器と接続し、供給された石炭が
急速加熱分解し、分解生成物と反応用ガス気流との滞留
時間が1秒以内になるようにしだ。後段部であるもう一
力は、分解生成物と反応ガス気流との滞留時間が6秒と
なるようにし、両領域間は細い管を用いて接続し、その
管のガス通過時間が50ミリ秒となるようにした。また
・加熱JQ ?に気ヒーターは両領域にそれぞれ別に設
置した。
Example 4 The Incoloy aooy reactor is divided into two regions, one of which is the front stage is connected to a coal feeder, and the supplied coal is rapidly thermally decomposed and the residence time of the decomposition products and the reaction gas stream is Try to keep it within 1 second. The second step, which is the latter part, is to ensure that the residence time of the decomposition products and the reaction gas stream is 6 seconds, and a thin tube is used to connect the two regions, and the gas passage time through that tube is 50 milliseconds. I made it so that Also, heating JQ? Air heaters were installed separately in both areas.

前段部を755C,後段部を80DCに設定し、反応器
内EjEを73 ky、/Gy+2に保ち、かつ上記滞
留時開になるように12、メタンを26’H債%を含有
する水素ガスを流通きせだ。
The front stage was set at 755C and the rear stage at 80DC, the EjE in the reactor was kept at 73ky, /Gy+2, and hydrogen gas containing 12% and 26% of methane and 26'H was added so that it would open during the retention period. It's distribution style.

この反応器に、実施例2と同様にして、値酸ニッケルを
付着富有させた添加炭を毎分11の割合で供給し、反応
させた。
In the same manner as in Example 2, added carbon enriched with nickel oxide was supplied to this reactor at a rate of 11 per minute to cause a reaction.

反応生成物を分析した結果、CH,22,9%、C21
1,5,8%、CO+C027,5%、ガソリン留分1
5.5%、オイル12.4%(オイル中の軽質オイルは
69%)、チャー36.1%であった。
As a result of analyzing the reaction product, CH, 22.9%, C21
1,5,8%, CO+CO27,5%, gasoline fraction 1
5.5%, oil 12.4% (light oil in the oil was 69%), and char 36.1%.

比戟例4 実施例4と同様であるが、前段温度を745Cにし、メ
タンを含まない水素ガスを用いて反応させた。
Comparison Example 4 The same as Example 4, but the temperature in the first stage was set to 745C, and the reaction was carried out using hydrogen gas not containing methane.

その生成物を分析した結果、CI(430,8%、C2
1(65,2%、CO+ CO,、7、4%、ガンリン
留分15.2%、オイル7.4%(オイル)中の軽質オ
イルは65%)、チャー36.7%であった。
Analysis of the product revealed that CI (430.8%, C2
1 (65.2%, CO + CO, 7.4%, Ganlin fraction 15.2%, light oil in oil 7.4% (oil) 65%), char 36.7%.

実施例4における反応は、1を較例4の反応に比べ、生
成するメタンの量が26%低下する一方で、オイルは1
.6倍に増加した。捷だ、ガソリン留分が増しており、
本発明で言う93+呆は明白である。
In the reaction in Example 4, compared to the reaction in Comparative Example 4, the amount of methane produced was reduced by 26%, while the oil was
.. It increased six times. Sorry, gasoline distillate is increasing.
The term 93+ dumbness referred to in the present invention is obvious.

手続?111正書 昭和59年4月20日 特許庁長官 若杉和夫 殿 1 事件の表示 特願昭59−1”13’52号 2 発明の名称 炭素質物質の熱分解法 3 補正をりる者 事件との関係・特許出願人 (003) 旭化成工業株式会社 4代理人 東京都港区虎ノ門−丁目2番29号虎ノ門産業ビル5階
明細出の発明の詳細な説明の欄 6 補正の内容 明細書第11頁15行の 「10〜1oOtl’jを [10へ一200c、好ましくは10〜50CJ と補正する。
procedure? 111 Author: April 20, 1980 Director of the Patent Office Kazuo Wakasugi 1 Indication of the case Patent application No. 13'52 1981 2 Title of the invention Method for thermal decomposition of carbonaceous materials 3 Case of a person who submits an amendment Relationship/Patent Applicant (003) Asahi Kasei Kogyo Co., Ltd. 4 Agent 5th Floor, Toranomon Sangyo Building, 2-29 Toranomon-chome, Minato-ku, Tokyo Column 6 Detailed Description of the Specified Invention Detailed Description of the Specification of the Amendment No. 11 "10~1oOtl'j on page 15 is corrected by [10~200c, preferably 10~50CJ].

Claims (1)

【特許請求の範囲】 +11、炭素質物質をガス化または液化するに当り、メ
タンを10〜60容積チ含有する圧力20〜150 k
g10m2Gの水素ガス芥囲気中で、温度600〜85
0Cに急速加熱して分煩させることを特徴とする炭素質
物質の熱分解法。 (21、炭素質物質をガス化まだは液化するに当り、メ
タンを10〜60容積係含有する圧力20〜150 k
g/1ytn2Gの水素ガスダF囲気中で、周期律表第
■■または第v■族から選ばれた少なくとも1種の金属
化合物の存在下、温度600〜850Cに急速加熱して
分解させることを特徴とする炭素質物質の熱分解法。 (3)、炭素質物質をガス化または液化するに当り、メ
タンを10〜60容!!t%含有する圧力20〜150
k1./(yI/L2G)水素ガス−Ir囲気中で、周
期律表第VIまたは第Vl族から選ばれた少なくとも1
種の金属化合物の存在下、該炭素質物質を600〜80
0Cに急速加熱して分解させたのち、さらに前段の加熱
温度よりも高く、かつ650〜850−Cの範囲の温度
で分解させることを特徴とする炭素質物質の熱分解法。
[Claims] +11. When gasifying or liquefying a carbonaceous material, a pressure of 20 to 150 k containing 10 to 60 volumes of methane;
In a hydrogen gas atmosphere of g10m2G, the temperature is 600-85
A method for thermal decomposition of carbonaceous materials, characterized by rapid heating to 0C and disintegration. (21. When gasifying or liquefying carbonaceous substances, a pressure of 20 to 150 k containing methane of 10 to 60 vol.
g/1ytn2G hydrogen gas atmosphere in the presence of at least one metal compound selected from Group ■■ or Group V■ of the periodic table, and is rapidly heated to a temperature of 600 to 850C to cause decomposition. A method of thermal decomposition of carbonaceous materials. (3) When gasifying or liquefying carbonaceous materials, use 10 to 60 volumes of methane! ! Pressure containing t% 20-150
k1. /(yI/L2G) in a hydrogen gas-Ir atmosphere, at least one member selected from Group VI or Vl of the periodic table.
In the presence of a seed metal compound, the carbonaceous material is
A method for thermally decomposing a carbonaceous material, which comprises decomposing it by rapidly heating it to 0C, and then decomposing it at a temperature higher than the heating temperature in the previous stage and in the range of 650 to 850C.
JP4135284A 1984-03-06 1984-03-06 Pyrolysis of carbonaceous substance Pending JPS60186586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135284A JPS60186586A (en) 1984-03-06 1984-03-06 Pyrolysis of carbonaceous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135284A JPS60186586A (en) 1984-03-06 1984-03-06 Pyrolysis of carbonaceous substance

Publications (1)

Publication Number Publication Date
JPS60186586A true JPS60186586A (en) 1985-09-24

Family

ID=12606113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135284A Pending JPS60186586A (en) 1984-03-06 1984-03-06 Pyrolysis of carbonaceous substance

Country Status (1)

Country Link
JP (1) JPS60186586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197582A (en) * 2006-01-27 2007-08-09 Shigemi Sawada Apparatus and method for treating fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152063A (en) * 1961-04-21 1964-10-06 Fossil Fuels Inc Hydrogenation of coal
JPS52140505A (en) * 1976-05-19 1977-11-24 Cities Service Co Hydrogenation method of carbonaceous material
JPS57165487A (en) * 1981-04-07 1982-10-12 Asahi Chem Ind Co Ltd Hydrocracking of coal
JPS57202378A (en) * 1981-06-08 1982-12-11 Asahi Chem Ind Co Ltd Hydrogenating and thermally decomposition method of coal
JPS5920382A (en) * 1982-07-28 1984-02-02 Asahi Chem Ind Co Ltd New thermal cracking of carbonaceous substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152063A (en) * 1961-04-21 1964-10-06 Fossil Fuels Inc Hydrogenation of coal
JPS52140505A (en) * 1976-05-19 1977-11-24 Cities Service Co Hydrogenation method of carbonaceous material
JPS57165487A (en) * 1981-04-07 1982-10-12 Asahi Chem Ind Co Ltd Hydrocracking of coal
JPS57202378A (en) * 1981-06-08 1982-12-11 Asahi Chem Ind Co Ltd Hydrogenating and thermally decomposition method of coal
JPS5920382A (en) * 1982-07-28 1984-02-02 Asahi Chem Ind Co Ltd New thermal cracking of carbonaceous substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197582A (en) * 2006-01-27 2007-08-09 Shigemi Sawada Apparatus and method for treating fuel

Similar Documents

Publication Publication Date Title
US4661237A (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US4322222A (en) Process for the gasification of carbonaceous materials
US4597776A (en) Hydropyrolysis process
US4229185A (en) Process for the gasification of carbonaceous materials
CN103173233B (en) Coal dry-distillation and gasification process and device implemented by using two-stage riser
DE3330750A1 (en) METHOD FOR GENERATING ACETYLENE AND SYNTHESIS OR REDUCING GAS FROM COAL IN AN ARC PROCESS
US4778585A (en) Two-stage pyrolysis of coal for producing liquid hydrocarbon fuels
Zhai et al. Study on the co-pyrolysis of oil shale and corn stalk: Pyrolysis characteristics, kinetic and gaseous product analysis
Bilge et al. Effect of metal oxide nanoparticles on the evolution of valuable gaseous products during pyrolysis of Turkish low-rank coal
CN113072981B (en) Chemical chain deoxidation gasification synergistic CO for functional composite oxygen carrier2Transformation method
AU2015268773A1 (en) A brown coal gasification system and method thereof
CA1199039A (en) Hydropyrolysis process
US3600130A (en) Desulfurization of fluid petroleum coke
JPS60186586A (en) Pyrolysis of carbonaceous substance
US4412908A (en) Process for thermal hydrocracking of coal
Fu et al. Pyrolysis of coals in a microwave discharge
US3347647A (en) Conversion of solid fossil fuels to high-b. t. u. pipeline gas
DE3035715C2 (en) Process for the production of synthesis gas from solid fuels by means of an electric arc
JPS58167682A (en) Thermal cracking of carbonaceous substance
JP2562851B2 (en) A new pyrolysis method for carbonaceous materials
US10589999B2 (en) Conversion of flue gas to valuable products
JPH0557315B2 (en)
JPS60190493A (en) Thermal decomposition of carbonaceous substance
CS199271B2 (en) Process for preparing synthesis gas
JPH0686595B2 (en) Pyrolysis method of coal