JPS5912135B2 - enzyme electrode - Google Patents

enzyme electrode

Info

Publication number
JPS5912135B2
JPS5912135B2 JP52117069A JP11706977A JPS5912135B2 JP S5912135 B2 JPS5912135 B2 JP S5912135B2 JP 52117069 A JP52117069 A JP 52117069A JP 11706977 A JP11706977 A JP 11706977A JP S5912135 B2 JPS5912135 B2 JP S5912135B2
Authority
JP
Japan
Prior art keywords
enzyme
electrode
redox
current collector
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52117069A
Other languages
Japanese (ja)
Other versions
JPS5450396A (en
Inventor
研一 中村
史朗 南海
孝志 飯島
雅太郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52117069A priority Critical patent/JPS5912135B2/en
Priority to US05/946,527 priority patent/US4224125A/en
Publication of JPS5450396A publication Critical patent/JPS5450396A/en
Publication of JPS5912135B2 publication Critical patent/JPS5912135B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Description

【発明の詳細な説明】 本発明は酵素電極の改良に関する。[Detailed description of the invention] The present invention relates to improvements in enzyme electrodes.

さらに詳しくは、酵素の特異的触媒作用を受ける物質で
ある各種基質の濃度を電気化学的に測定するための電極
、あるいは酵素極などの対極との組み合わせにより基質
のもつ化学エネルギを電気エネルギに変換するための電
池に用いられる電極に関する。生体内におけるエネルギ
ー変換には、酸化還元酵素が主に関与しており、この種
の酵素反応を工業的に利用する試みが最近盛んである。
例えば酵素を電気化学的測定と組み合わせて酵素基質の
濃度を測定するいわゆる酵素電極について数多くの提案
がある。まず、本発明に用いられる酸化還元酵素につい
て、これが触媒作用をする酸化還元反応と電気化学測定
との関係を説明する。
More specifically, it is an electrode for electrochemically measuring the concentration of various substrates, which are substances that undergo the specific catalytic action of enzymes, or converts the chemical energy of the substrate into electrical energy by combining it with a counter electrode such as an enzyme electrode. This invention relates to electrodes used in batteries. Oxidoreductases are mainly involved in energy conversion in living organisms, and there have recently been many attempts to utilize this type of enzymatic reaction industrially.
For example, there are many proposals for so-called enzyme electrodes that combine enzymes with electrochemical measurements to measure the concentration of enzyme substrates. First, regarding the oxidoreductase used in the present invention, the relationship between the oxidation-reduction reaction catalyzed by the oxidoreductase and electrochemical measurement will be explained.

一般に酸化還元酵素によつて基質の酸化還元を行う場合
、電子伝達体を必要とする。
Generally, when a substrate is redoxed by an oxidoreductase, an electron carrier is required.

例えば酵素としてグルコースオキシダーゼ(以下GOX
と略す)を用い、グルコースの酸化反応を行わせる場合
には、以下の反応式に示すように、酸素O2が電子伝達
体、特に電子受容体としての働きをしている。グルコー
ス+O2 一旦旦亙→グルコノラクトン+H2O2・・・・・・・
・・(1)すなわち、グルコースはGOXの触媒作用で
グルコノラクトンに酸化(脱水素)され、同時にO2は
グルコースからの電子(水素)を受容してH、O2に還
元される。
For example, the enzyme glucose oxidase (hereinafter GOX)
When the oxidation reaction of glucose is carried out using (abbreviated as ), oxygen O2 acts as an electron carrier, particularly an electron acceptor, as shown in the reaction formula below. Glucose + O2 Once → Gluconolactone + H2O2・・・・・・
(1) That is, glucose is oxidized (dehydrogenated) to gluconolactone by the catalytic action of GOX, and at the same time, O2 accepts electrons (hydrogen) from glucose and is reduced to H and O2.

ここで酸素あるいは過酸化水素は、グルコースと異なり
電気化学的濃度測定の対称となりうるため、上記反応式
(1)で消費される02あるいは生成されるH2O2の
電気化学測定から間接的にグルコース濃度の測定が可能
となる。一方GOXの場合、天然の電子受容体である0
2のかわりに、キノン、メチレンブルー、2,6−ジク
ロロフエノルインドフエノール、フエリシアン化カリ等
、レドツクス化合物の名前で総称される各種の人工電子
受容体でおきかえることができる。例えば02のかわり
にキノンを用いると下記に示す反応がおこる。グルコー
ス+キノン GOX ?グルコノラクトン+ヒドロキノン・・・(2)ここで
、キノンやヒドロキノンは電極活性物質であり、電気化
学的に濃度測定が可能であることから、やはりグルコー
スの濃度測定が可能となる。
Here, unlike glucose, oxygen or hydrogen peroxide can be used as a target for electrochemical concentration measurement, so the glucose concentration can be indirectly measured from the electrochemical measurement of 02 consumed or H2O2 produced in the above reaction formula (1). Measurement becomes possible. On the other hand, in the case of GOX, the natural electron acceptor 0
2 can be replaced with various artificial electron acceptors collectively known as redox compounds, such as quinone, methylene blue, 2,6-dichlorophenolindophenol, and potassium ferricyanide. For example, when quinone is used in place of 02, the following reaction occurs. Glucose + quinone GOX? Gluconolactone + Hydroquinone (2) Here, since quinone and hydroquinone are electrode active substances and their concentration can be measured electrochemically, it is also possible to measure the concentration of glucose.

GOX以外には、キサンチンオキシダーゼ、アミノ酸オ
キシダーゼ、アルデヒドオキシダーゼ等が、02のごと
き天然の電子受容体にかわり、人工のレドツクス化合物
でもその作用を示しうる酸化還元酵素である。また酸化
還元酵素の種類によつては、基質の酸化還元反応に際し
ての電子伝達体として、補酵素と呼ばれる一群の化合物
の一つを必要とするものがある。
In addition to GOX, xanthine oxidase, amino acid oxidase, aldehyde oxidase, etc. are oxidoreductases that can substitute for natural electron acceptors such as 02 and exhibit their effects even with artificial redox compounds. Furthermore, some types of oxidoreductases require one of a group of compounds called coenzymes as electron carriers during redox reactions of substrates.

例えば、アルコール脱水素酵素や乳酸脱水素酵素ではニ
コチンアミドアデニンジヌクレオチl′(NAD)が補
酵素として必要である。このNADは補酵素として代表
的なものであるが、その他ニコチンアミドアデニンジヌ
クレオチドリン酸、ピリドキサルリン酸、コエンザイム
A、リポ酸、葉酸といつたものが補酵素として知られて
いる。これら補酵素を、前述した02のように人工のレ
ドツクス化合物で直接おきかえることは実際上不可能で
ある。しかし、補酵素とともにレドツクス化合物を共存
させると、このレドツクス化合物の電気化学的測定によ
つて基質濃度の測定が可能である。例えば酵素として乳
酸脱水素酵素、補酵素としてNAD、レドツクス化合物
としてフエナジンメトサルフエートを用いると、以下の
ように乳酸の脱水素反応がおこる。乳酸+フエナジンメ
トサルフエート(酸化型)乳酸脱水素酵素 この場合、フエナジンメトサルフエートはNADを経由
して電子を受容する電子伝達体として作用している。
For example, alcohol dehydrogenase and lactate dehydrogenase require nicotinamide adenine dinucleotide l' (NAD) as a coenzyme. NAD is a typical coenzyme, but other coenzymes such as nicotinamide adenine dinucleotide phosphate, pyridoxal phosphate, coenzyme A, lipoic acid, and folic acid are also known as coenzymes. It is practically impossible to directly replace these coenzymes with artificial redox compounds like 02 mentioned above. However, if a redox compound is allowed to coexist with the coenzyme, the substrate concentration can be measured by electrochemical measurement of the redox compound. For example, when lactate dehydrogenase is used as the enzyme, NAD is used as the coenzyme, and phenazine methosulfate is used as the redox compound, the dehydrogenation reaction of lactic acid occurs as follows. Lactic acid + phenazine methosulfate (oxidized) lactate dehydrogenase In this case, phenazine methosulfate acts as an electron carrier that accepts electrons via NAD.

ここで生成する還元型のフエナジンメトサルフエート濃
度を電気化学的に測定し、乳酸濃度を求めることができ
る。以上のように、酵素反応を電気化学反応に関連づけ
る試みは各種ある。
The concentration of reduced phenazine methosulfate produced here can be electrochemically measured to determine the lactic acid concentration. As mentioned above, there are various attempts to relate enzymatic reactions to electrochemical reactions.

これらのなかで、酸化還元酵素を固定化して用いた酵素
電極についての従来例を以下に説明する。米国特許第3
,542,662号明細書には、ボーラログラフ酸素電
極の酸素透過膜の外側を、アクリルアミドゲル中にGO
Xを包接させた固定化酵素膜でおおつた酵素電極が示さ
れている。
Among these, conventional examples of enzyme electrodes using immobilized oxidoreductases will be described below. US Patent No. 3
, 542, 662, the outside of the oxygen-permeable membrane of a boularographic oxygen electrode is coated with GO in an acrylamide gel.
An enzyme electrode covered with an immobilized enzyme membrane containing X is shown.

これは先きに説明した酵素を触媒としてグルコースと反
応する02濃度を電気化学的に測定する方式である。こ
の方式は、02濃度の測定値が、電極付近の溶存酸素濃
度に大きく影響されるので、安定した測定値を得ること
が困難である。また酸素は、酵素固定膜、酸素透過膜の
2重の膜を通して電極まで拡敢する必要があり、応答速
度が遅くなる傾向がある。米国特許第3,838,03
3号明細書には、集電体の外側を半透膜でおおい、半透
膜と集電体との空間内に酵素(GOX)とレドツクス化
合物を存在させる構造の酵素電極が示されている。
This is a method of electrochemically measuring the concentration of 02 that reacts with glucose using the previously described enzyme as a catalyst. In this method, the measured value of the 02 concentration is greatly influenced by the dissolved oxygen concentration near the electrode, so it is difficult to obtain a stable measured value. In addition, oxygen needs to pass through a double membrane of an enzyme-immobilized membrane and an oxygen-permeable membrane to the electrode, which tends to slow down the response speed. U.S. Patent No. 3,838,03
Specification No. 3 describes an enzyme electrode having a structure in which the outside of the current collector is covered with a semipermeable membrane, and an enzyme (GOX) and a redox compound are present in the space between the semipermeable membrane and the current collector. .

この場合、レドツクス化合物は、この空間内に、一部が
溶解しない状態で大過剰に存在している。これは先きに
説明したレドツクス化合物の濃度を電気化学的に測定す
る方式である。このレドツクス化合物濃度は、前記の酸
素濃度と異なり一定値を保ち、ある程度安定な測定値が
得られる。
In this case, the redox compound exists in this space in large excess, with some of it remaining undissolved. This is a method of electrochemically measuring the concentration of the redox compound described above. Unlike the oxygen concentration described above, this redox compound concentration maintains a constant value, and a somewhat stable measurement value can be obtained.

しかし、ここで用いられている半透膜は、巨大分子であ
る酵素は透過させないが、小分子である基質は自由に透
過させるものであり、基質と同程度の大きさの分子であ
るレドツクス化合物は当然膜外へ移動しで失われていく
。この失われた分は、膜内の溶解していない形で存在す
るレドツクス化合物が溶解することによりある程度は供
給される。しかしこれも限度があり、電極寿命は、酵素
の寿命によるよりもむしろレドツクス化合物が失われる
ことによつて決定されてしまい、大変短いものである。
またこの構成で微小電極を作製し、生体内の基質濃度を
直接測定しようとしても、レドツクス化合物の生体内へ
の溶出の影響を考えると、実用的には不可能である。ま
た乳酸脱水素酵素やアルコール脱水素酵素を包接固定化
したコラーゲン膜を集電体に密着させた酵素電極を用い
、基質である乳酸やエタノール量を測定した例がある。
However, the semipermeable membrane used here does not allow the passage of enzymes, which are macromolecules, but allows the substrate, which is a small molecule, to freely pass through. Naturally, it moves outside the membrane and is lost. This loss is partially replaced by the dissolution of redox compounds present in undissolved form within the membrane. However, this also has a limit; the electrode life is determined by the loss of redox compounds rather than by the lifespan of the enzyme, and is very short.
Furthermore, even if a microelectrode with this configuration is manufactured and an attempt is made to directly measure the substrate concentration in the living body, it is practically impossible, considering the influence of the elution of the redox compound into the living body. There is also an example of measuring the amount of lactic acid and ethanol as substrates using an enzyme electrode in which a collagen membrane in which lactate dehydrogenase or alcohol dehydrogenase is included and immobilized is closely attached to a current collector.

(BulletinOftheChem.SOc.Of
Japan,↓乱(11),3246,1975年)。
この場合は、必要な補酵素(NAD)やレドツクス化合
物(フエナジンメトサルフエート)は基質の存在する溶
液中に溶解させる。
(BulletinOftheChem.SOc.Of
Japan, ↓Ran (11), 3246, 1975).
In this case, the necessary coenzyme (NAD) and redox compound (phenazine methosulfate) are dissolved in a solution containing the substrate.

従つて、測度のたびごとに高価なこれら試薬が使い棄て
になるので、実用的に好ましいことではない。さらに測
定に際し、常に一定量のレドツクス化合物や補酵素を溶
液中に加える必要があり、測定操作も煩雑である。また
生体の直接測定は当然不可能である。以上述べたように
、固定化酸化還元酵素を用いた従来の酵素電極は、いず
れも本質的な問題点を含んでおり、広く実用化に至つて
いないのが現状である。これらの問題を解決するため、
レドツクス化合物をポリマ一中に導入した高分子化合物
(レドツクスポリマ一あるいは酸化還元樹脂の名称で総
称される)を用いる試みがある。
Therefore, these expensive reagents are discarded each time a measurement is performed, which is not practical. Furthermore, during measurement, it is necessary to always add a certain amount of redox compounds and coenzymes to the solution, making the measurement operation complicated. Furthermore, direct measurement of living organisms is naturally impossible. As described above, all conventional enzyme electrodes using immobilized oxidoreductases have essential problems, and at present they have not been widely put into practical use. In order to solve these problems,
Attempts have been made to use polymer compounds (generally referred to as redox polymers or redox resins) in which a redox compound is introduced into a polymer.

例えば、酵素としてGOX、レドツタスポリマ一として
下記の構造式で示されるキノンとホルムアルデヒドと塩
酸ピペラジンの縮合ポリマ一を用いる。第1図はこの酵
素電極に構造を示すもので、1は絶縁材よりなる円筒状
の電極支持体、2はその底面に設けた凹部に取り付けた
円板状の白金製集電体、3は支持体をその底面から側面
にわたつて被覆したセロフアン、コロジオンなどの半透
膜、4は膜3を支持体へ固定するための固定用リング、
5は集電体2に接続したリード線である。
For example, GOX is used as the enzyme, and a condensation polymer of quinone, formaldehyde, and piperazine hydrochloride represented by the following structural formula is used as the redotus polymer. Figure 1 shows the structure of this enzyme electrode. 1 is a cylindrical electrode support made of an insulating material, 2 is a disk-shaped platinum current collector attached to a recess provided on the bottom surface, and 3 is a platinum current collector. a semipermeable membrane such as cellophane or collodion that covers the support from the bottom to the sides; 4 is a fixing ring for fixing the membrane 3 to the support;
5 is a lead wire connected to the current collector 2.

支持体1の底面には集電体と半透膜との間に空間部6が
形成されており、この空間部に酵素とレドツクス化合物
が閉じ込められる。
A space 6 is formed between the current collector and the semipermeable membrane on the bottom surface of the support 1, and the enzyme and redox compound are confined in this space.

すなわちこの例に用いた上記のレドツクスポリマ一は水
溶性であるので、PIl5.6のリン酸緩衝液中にGO
Xとともに溶解させて、膜3により空間部6内へ閉じ込
める。この場合、酵素及びレドツクスポリマ一はともに
巨大分子であるため、膜3の外へ移動することはなく、
実質的に集電体2の近傍へ固定化されていることになる
。この酵素電極の先に述べた米国特許第 3,838,033号の例との大きな違いは、レドツク
ス化合物がポリマー化されている点であり、このためレ
ドツクス化合物が電極系外へ溶出することは全くない。
That is, since the above redox polymer used in this example is water-soluble, GO
It is dissolved together with X and confined in the space 6 by the membrane 3. In this case, since both the enzyme and the redox polymer are macromolecules, they do not move outside the membrane 3.
This means that it is substantially fixed near the current collector 2. The major difference between this enzyme electrode and the example of U.S. Patent No. 3,838,033 mentioned above is that the redox compound is polymerized, so that the redox compound does not elute out of the electrode system. Not at all.

しかし、半透膜が必要であり、半透膜の存在により基質
の拡散が遅れ、その結果応答特性が低下し、また、繰り
返しの使用にも十分耐えるものではなかつた。本発明は
、以上の不都合をなくし、半透膜を必要としない酵素電
極を提供するものである。
However, a semi-permeable membrane is required, and the presence of the semi-permeable membrane retards the diffusion of the substrate, resulting in a decrease in response characteristics and does not sufficiently withstand repeated use. The present invention eliminates the above-mentioned disadvantages and provides an enzyme electrode that does not require a semipermeable membrane.

すなわち、本発明は、酸化還元酵素とその電子伝達体と
なるレドツクス化合物とを電子集電体と一体に固定化し
たことを特徴とする。以下、本発明を実施例により説明
する。
That is, the present invention is characterized in that an oxidoreductase and a redox compound serving as its electron carrier are immobilized integrally with an electron current collector. The present invention will be explained below using examples.

実施例 1 酵素としてグルタルアルデヒドで架橋したGOXレドツ
クスポリマ一として、メチロール化ポリアクリルアミド
にチオニンを結合させた下記の構造式で示される化合物
を用い、これらを炭素粉末と混合し、さらに結着剤のフ
ツ素樹脂粉末を加えてプレス成型し、白金集電体と接触
させた。
Example 1 As a GOX redox polymer cross-linked with glutaraldehyde as an enzyme, a compound represented by the following structural formula in which thionine was bonded to methylolated polyacrylamide was used, and these were mixed with carbon powder, and the binder body was A base resin powder was added, press-molded, and brought into contact with a platinum current collector.

このように構成した酵素電極では、半透膜がなくでも酵
素ならびにレドツクス化合物は液中に溶出せず、酵素な
らびにレドツタス化合物が集電体(炭素)と一体化して
第2の集電体(白金)に固定化されている。
In the enzyme electrode constructed in this way, the enzyme and the redox compound do not elute into the liquid even without a semipermeable membrane, and the enzyme and the redox compound are integrated with the current collector (carbon), and the second current collector (platinum) ) is fixed.

第2図は酵素電極7を用いた測定系を示し、8は飽和カ
ロメル電極、9は塩橋、10は対極、11は基質を含む
緩衝液である。
FIG. 2 shows a measurement system using an enzyme electrode 7, in which 8 is a saturated calomel electrode, 9 is a salt bridge, 10 is a counter electrode, and 11 is a buffer solution containing a substrate.

上記の酵素電極を飽和カロメル電極に対して0Vの定電
位にし、基質であるグルコースの濃度を0から3×10
−3モル/彊こ変化させたときのアノード電流の変化量
(レドツタスポリマ一の還元型の酸化電流)を測定をす
ると、3×10−3モル/lのグルコースに対して約1
5μAの電流増を示し、約1分で定常値に達した。
The above enzyme electrode was set at a constant potential of 0 V with respect to the saturated calomel electrode, and the concentration of glucose, the substrate, was varied from 0 to 3 × 10
When we measure the amount of change in anode current (the oxidation current of the reduced form of redotus polymer) when changing the amount by -3 mol/l, we find that it is approximately 1 for 3 x 10-3 mol/l glucose.
The current increased by 5 μA and reached a steady value in about 1 minute.

実施例 2 レドツクスポリマ一としてスチレンとアクリルアミドの
共重合体のメチロール化物にキノンを結合させた下記の
構造式で示される化合物を用いた。
Example 2 As a redox polymer, a compound represented by the following structural formula in which quinone was bonded to a methylolated product of a copolymer of styrene and acrylamide was used.

―八i▼ 八i1 「 八i▼ 八▼▼ Iiこの
化合物のテトラヒドロフラン溶液を白金集電体表面に塗
布乾燥し、さらにこの上にGOXをグルタルアルデヒド
を用い直接固定化して酵素電極を作製した。このレドツ
クスポリマ一はテトラヒドロフランに可溶であるが緩衝
液には不溶である。このようにして酵素ならびにレドツ
クス化合物が集電体表面に一体化して固定され、半透膜
による保持は実施例1と同様特に必要はなくなる。この
酵素電極の構造を第3図に示す。12は白金集電体、1
3は集電体上に塗布されたレドツクスポリマ一 14は
架橋結合している酵素、15は集電体のリード線である
- 8i▼ 8i1 `` 8i▼ 8▼▼ Ii A tetrahydrofuran solution of this compound was applied to the surface of a platinum current collector and dried, and then GOX was directly immobilized thereon using glutaraldehyde to prepare an enzyme electrode. This redox polymer is soluble in tetrahydrofuran but insoluble in buffer solution.In this way, the enzyme and redox compound are integrated and immobilized on the surface of the current collector, and retention by the semipermeable membrane is the same as in Example 1. This is no longer necessary.The structure of this enzyme electrode is shown in Figure 3. 12 is a platinum current collector;
3 is a redox polymer coated on the current collector; 14 is a cross-linked enzyme; and 15 is a lead wire of the current collector.

この電極の特性は、3X10−3モル/lのグルコース
に対して約40μAの電流増を示し、約1分で電流は定
常値に達した。
The characteristics of this electrode showed a current increase of about 40 μA for 3×10 −3 mol/l glucose, and the current reached a steady value in about 1 minute.

そして約2力月にわたつてグルコース濃度の測定が可能
であつた。実施例 3レドツクスポリマ一としてArI
lberllteIR−120の名で販売されている陽
イオン交換樹脂にフエリシアン化カリを吸収させたイオ
ン交換樹脂を用い、これに炭素粉末、グルタルアルデヒ
ドで架橋したGOXと、フツ素樹脂粉末を混合し、白金
集電体上にプレス成型して酵素電極を作製した。
The glucose concentration could be measured for about 2 months. Example 3 ArI as a redox polymer
Using a cation exchange resin sold under the name of lberllte IR-120 in which potassium ferricyanide has been absorbed, carbon powder, GOX crosslinked with glutaraldehyde, and fluororesin powder are mixed, and platinum An enzyme electrode was prepared by press molding on a current collector.

飽和カロメル電極に対して0.4の定電位に保つてグル
コースに対する応答をみると、3X10−3モル/lの
グルコースに対し約15μAの電流増を示し、約1分で
電流は定常値に達した。またレドツクスポリマ一として
下記の構造式で示されるポリアクリル酸の鉄塩を用いた
場合も同様の結果が得られた。
When looking at the response to glucose while maintaining a constant potential of 0.4 with respect to a saturated calomel electrode, a current increase of about 15 μA was observed for 3×10 −3 mol/l of glucose, and the current reached a steady value in about 1 minute. did. Similar results were also obtained when an iron salt of polyacrylic acid represented by the following structural formula was used as the redox polymer.

r−6−j??― つぎにレドツクス化合物を直接集電体上に化学結合を利
用して固定化した例を説明する。
r-6-j? ? - Next, we will explain an example in which a redox compound is directly immobilized on a current collector using chemical bonds.

実施例 4 レドツクス化合物としてガロシアニン をSnO2ネサガラス集電体上にその表面水酸基を利用
してエステル結合で直接固定化し、さらにその上にGO
Xをグルタルアルデヒドで固定化して酵素電極を作製し
た。
Example 4 Gallocyanine as a redox compound was directly immobilized on a SnO2 Nesaglass current collector using its surface hydroxyl groups through ester bonds, and GO was further immobilized thereon.
An enzyme electrode was prepared by immobilizing X with glutaraldehyde.

このように酵素、レドツクス化合物が一体固定化された
SnO2電極では、グルコース3×10−3モル/!に
対しては10μAの電流増加が起こり、約2分で電流は
定常値を示した。実施例 5 カーボン集電体表面のカルボキシル基と、イソドフエノ
ール酸基とを反応させ、エステル結合でレドツクス化合
物を前記集電体表面に固定し、さらにこの表面に酵素と
してアルデヒドオキシダーゼを直接グルタルアルデヒド
を用いて架橋固定化する。
In this SnO2 electrode in which enzymes and redox compounds are integrally immobilized, glucose is 3 x 10-3 mol/! A current increase of 10 μA occurred, and the current reached a steady value in about 2 minutes. Example 5 A carboxyl group on the surface of a carbon current collector was reacted with an isodophenolic acid group to fix a redox compound on the surface of the current collector through an ester bond, and then glutaraldehyde was directly applied to the surface using aldehyde oxidase as an enzyme. cross-linking and immobilization using

この様にして作製した酵素電極は、アセトアルデヒド1
×10−3モル/!に対し5μAの電流増がみられ、電
流は約2分で定常値を示した。つぎに酵素、レドツクス
化合物の固定化に加えて、補酵素をも含めて固定した酵
素電極について説明する。
The enzyme electrode prepared in this way was made of acetaldehyde 1
×10-3 mol/! A current increase of 5 μA was observed, and the current reached a steady value in about 2 minutes. Next, an enzyme electrode in which not only enzymes and redox compounds are immobilized but also coenzymes is immobilized will be explained.

実施例 6 補酵素として代表的なニコチンアミドアデニンジヌクレ
オチド(NAD)を用い、これを多糖ポリマー担体であ
るセフアロースに共有結合させて固定化する。
Example 6 Nicotinamide adenine dinucleotide (NAD), a typical coenzyme, is used and immobilized by covalent bonding to Sepharose, a polysaccharide polymer carrier.

一方レドツクスポリマ一として、メチロール化ポリアク
リルアミドにリボフラピン一5′−リン酸エステルを結
合させた下記の構造式で示される化合物を用いる。上記
の固定化NAD、及びレドツクスポリマ一をグラフアイ
ト粉末と混合してプレス成型し、この成型体の表面にア
ルコール脱水素酵素をグルタルアルデヒドを利用して架
橋固定化した。
On the other hand, as a redox polymer, a compound represented by the following structural formula in which riboflavin-5'-phosphate is bonded to methylolated polyacrylamide is used. The above-described immobilized NAD and redox polymer were mixed with graphite powder and press-molded, and alcohol dehydrogenase was cross-linked and immobilized on the surface of this molded body using glutaraldehyde.

こうして酵素、レドツクス化合物及び補酵素を一体に固
定化した電極を、飽和カロメル電極に対し−0.1の定
電位に設定して、エタノールに対する応答をみると、l
×10−3モル/lのエタノール濃度の増加に対して約
20ttAの電流増を示し、電流は約3分で定常値に達
した。
The electrode on which the enzyme, redox compound, and coenzyme were immobilized in this way was set at a constant potential of -0.1 with respect to the saturated calomel electrode, and the response to ethanol was observed as follows:
The current increased by about 20 ttA for an increase in ethanol concentration of ×10 −3 mol/l, and the current reached a steady value in about 3 minutes.

実施例 7 補酵素NADと乳酸脱水酵素とを溶解した…7.7のリ
ン酸緩衝液を、グラフアイト粉末と実施例6で用いたレ
ドツクスポリマ一との混合粉末に加え、乾燥させた後、
グルタルアルデヒドを作用させ、補酵素及び酵素をグラ
フアイトとレドツクスポリマ一の混合粉末上に同時に架
橋固定化する。
Example 7 A phosphate buffer solution of 7.7 in which coenzyme NAD and lactate dehydratase were dissolved was added to the mixed powder of graphite powder and the redox polymer used in Example 6, and after drying,
Coenzymes and enzymes are simultaneously cross-linked and immobilized on the mixed powder of graphite and redox polymer by the action of glutaraldehyde.

このようにしてできた粉末をプレス成型することによつ
て酵素、レドツクス化合物、補酵素が集電体と一体に固
定化された酵素電極ができる。この酵素電極は実施例6
と同一の条件で、1X10−3モル/′の乳酸に対して
約15μAの電流増を示した。以上説明した実施例では
、集電体材料として、白金、炭素(グラフアイトを含む
)、酸化スズについて述べたが、その他金、銀、イリジ
ウム、パラジウム等の貴金属やこれらの合金、あるいは
チタニウム、タンタル等の耐腐食性金属や合金、酸化ル
テニウムなどの導電性酸化物、シリコン、ゲルマニウム
、酸化チタンなどの半導体を用いてもよい。
By press-molding the powder thus produced, an enzyme electrode in which the enzyme, redox compound, and coenzyme are immobilized integrally with the current collector can be obtained. This enzyme electrode is Example 6
Under the same conditions as above, a current increase of about 15 μA was shown for lactic acid of 1×10 −3 mol/′. In the embodiments described above, platinum, carbon (including graphite), and tin oxide were used as current collector materials, but other noble metals such as gold, silver, iridium, and palladium, alloys of these, titanium, and tantalum may also be used. Corrosion-resistant metals and alloys such as, conductive oxides such as ruthenium oxide, and semiconductors such as silicon, germanium, and titanium oxide may also be used.

また酵素固定法としてグルタルアルデヒドを用いる架橋
法について述べたが、酵素を共有結合によつて直接水不
溶性担体上に結合することも可能である。
Furthermore, although a crosslinking method using glutaraldehyde has been described as an enzyme immobilization method, it is also possible to directly bind the enzyme onto a water-insoluble carrier through a covalent bond.

さらにレドツクスポリマ一としていくつかの例をあげた
が、これらは必ずしも正確にポリマーとして化学式に示
した構造を有していない可能性もあり、例えばポリマ一
鎖間の橋かけやレドツクス化合物の鎖中からの脱落など
もありうる。いずれにしても本発明の要点は、酸化還元
酵素の電子伝達体であるレドツクス化合物及び前記酵素
によつて必要とされる補酵素を、酵素とともに集電体と
一体に固定化することであり、この固定化のためのレド
ツクス化合物誘導体、レドツクスポリマ一や集電体の表
面修飾などの種類や酵素、補酵素の固定化法の種類の違
いは実施例のものに制限されることはない。さらに酵素
、レドツクス化合物、補酵素は2種類以上であつてもよ
く、これらの固定化は一つの固定化法でなく種々の固定
化法の組み合わせも可能である。
Furthermore, although we have given some examples of redox polymers, these may not necessarily have the exact structure shown in the chemical formula as a polymer. There is also a possibility that it may fall off. In any case, the gist of the present invention is to immobilize a redox compound, which is an electron carrier of an oxidoreductase, and a coenzyme required by the enzyme, together with the enzyme, into a current collector; The types of redox compound derivatives, redox polymers, and surface modifications of current collectors used for this immobilization, as well as the types of immobilization methods for enzymes and coenzymes, are not limited to those in the examples. Furthermore, there may be two or more types of enzymes, redox compounds, and coenzymes, and these can be immobilized by a combination of various immobilization methods instead of a single immobilization method.

さらに酵素について述べるならば、酸化還元酵素に属さ
ない酵素を酸化還元醇素とともに固定化し、第一段階で
前者に属する酵素反応で前者の基質を反応させ後者に属
する酵素の基質に変換する複合酵素反応系を用いること
も可能である。
Furthermore, regarding enzymes, a complex enzyme that immobilizes an enzyme that does not belong to oxidoreductases together with a oxidoreductase, and in the first step, reacts the substrate of the former in an enzymatic reaction that belongs to the former and converts it into the substrate of the enzyme that belongs to the latter. It is also possible to use a reaction system.

また酵素については、天然抽出物をそのまま使用するの
ではなく、若干の化学修飾を加え、活性を上げて使用す
ることもできる。さらにこれら酵素を含んだ微生物やオ
ルガネラを、それらから酵素を単離せずに直接固定化し
、電極に組み入れることも可能である。以上のように、
酸化還元酵素、レドツクス化合物、さらには補酵素を集
電体と一体固定化することにより、酵素、レドツクス化
合物さらに補酵素が半透膜がなくても被測定液中に溶出
することなく再使用が可能で、長寿命かつ取り扱いの簡
便な、高信頼性の酵素電極を得ることができる。
As for enzymes, instead of using natural extracts as they are, they can be used with slight chemical modifications to increase their activity. Furthermore, it is also possible to directly immobilize microorganisms and organelles containing these enzymes without isolating the enzymes from them, and incorporate them into electrodes. As mentioned above,
By integrally immobilizing oxidoreductases, redox compounds, and coenzymes with a current collector, enzymes, redox compounds, and coenzymes can be reused without eluting into the sample liquid even without a semipermeable membrane. It is possible to obtain a highly reliable enzyme electrode that has a long life and is easy to handle.

さらに酵素電極、参照電極及び対極の測定電極系をコン
パクトにまとめた微小複合電極を作製することにより、
生体液中に異種物質を混入させることなく、生体内基質
濃度を直接、短時間で測定することもできる。さらに本
発明による酵素電極は、基質濃度測定用に限らず電池用
電極にも用いられる。
Furthermore, by creating a micro-composite electrode that compactly combines the measurement electrode system of enzyme electrode, reference electrode, and counter electrode,
It is also possible to directly measure the substrate concentration in a living body in a short time without mixing foreign substances into the biological fluid. Furthermore, the enzyme electrode according to the present invention can be used not only for measuring substrate concentration but also as an electrode for batteries.

たとえばグルコースオキシダーゼ、チオニン固定化酵素
電極は、対極として酸素電極を用いると、グルコースを
燃料とする燃料電池を構成できる。第4図に燃料電池の
構造を示す。図において、16は酵素電極、17は酸素
電極、18はセパレータ、19は電解液例えばリン酸緩
衝液である。
For example, a glucose oxidase or thionine immobilized enzyme electrode can constitute a fuel cell using glucose as fuel when an oxygen electrode is used as a counter electrode. Figure 4 shows the structure of the fuel cell. In the figure, 16 is an enzyme electrode, 17 is an oxygen electrode, 18 is a separator, and 19 is an electrolyte, such as a phosphate buffer.

20はガス室で酸素または空気が供給される。20 is a gas chamber to which oxygen or air is supplied.

21は液室で燃料であるグルコースの溶液が供給される
A liquid chamber 21 is supplied with a solution of glucose, which is a fuel.

この電池は、約0.7の電圧を発生し、1mA程度の電
流値を得ることができる。
This battery generates a voltage of about 0.7 and can obtain a current value of about 1 mA.

この場合、酵素、レドツクス化合物は当然固定化されて
おり、燃料液中に加えて補給する必要はなく、真の意味
での燃料補給型電池となり約6力月にわたる長寿命を実
現できた。その他、各種物質の合成に、この電極を用い
ることも可能で、グルコースからのグルコン酸(直接生
成するグルコノラクトンの加水分解物)、乳酸からのピ
ルビン酸などがその例である、この場合、生成物中に酵
素、レドツクス化合物、補酵素といつた異物が混在せず
生成物の単離が著しく簡単となるといつた利点もある。
In this case, the enzymes and redox compounds are of course immobilized, and there is no need to add them to the fuel liquid for replenishment, making it a true refueling type battery with a long life of approximately 6 months. In addition, this electrode can also be used to synthesize various substances, such as gluconic acid from glucose (a directly produced gluconolactone hydrolyzate), pyruvic acid from lactic acid, etc. In this case, Another advantage is that the product is not contaminated with foreign substances such as enzymes, redox compounds, and coenzymes, making it extremely easy to isolate the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酵素電極の構造を示す要部の断面図、第
2図は酵素電極を用いた測定系の構成を示す図、第3図
は本発明の一実施例の酵素電極を示す模式図、第4図は
酵素電極を用いた電池の略図である。
Figure 1 is a sectional view of the main parts showing the structure of a conventional enzyme electrode, Figure 2 is a diagram showing the configuration of a measurement system using the enzyme electrode, and Figure 3 is an enzyme electrode according to an embodiment of the present invention. The schematic diagram, FIG. 4, is a schematic diagram of a battery using an enzyme electrode.

Claims (1)

【特許請求の範囲】 1 少なくとも酸化還元酵素と、この酵素の電子伝達体
となるレドックス化合物と、電子集電体とを有し、前記
酵素とレドックス化合物を、前記集電体と一体固定化し
たことを特徴とする酵素電極。 2 レドックス化合物がポリマーである特許請求の範囲
第1項記載の酵素電極。 3 レドックス化合物が化学結合により集電体に固定さ
れた特許請求の範囲第1項記載の酵素電極。 4 少なくとも酸化還元酵素と、この酵素の補酵素と、
前記酸化還元酵素の電子伝達体となるレドック化合物と
、電子集電体とを有し、前記酵素と補酵素およびレドッ
クス化合物を、前記集電体と一体固定化したことを特徴
とする酵素電極。 5 レドックス化合物がポリマーである特許請求の範囲
第4項記載の酵素電極。 6 レドックス化合物が化学結合により集電体に固定さ
れた特許請求の範囲第4項記載の酵素電極。
[Claims] 1. A method comprising at least an oxidoreductase, a redox compound serving as an electron carrier for the enzyme, and an electron current collector, and the enzyme and the redox compound are integrally immobilized with the current collector. An enzyme electrode characterized by: 2. The enzyme electrode according to claim 1, wherein the redox compound is a polymer. 3. The enzyme electrode according to claim 1, wherein the redox compound is fixed to the current collector through a chemical bond. 4 At least an oxidoreductase and a coenzyme of this enzyme,
An enzyme electrode comprising a redox compound serving as an electron carrier of the oxidoreductase and an electron current collector, the enzyme, coenzyme, and redox compound being integrally immobilized with the current collector. 5. The enzyme electrode according to claim 4, wherein the redox compound is a polymer. 6. The enzyme electrode according to claim 4, wherein the redox compound is fixed to the current collector through a chemical bond.
JP52117069A 1977-09-28 1977-09-28 enzyme electrode Expired JPS5912135B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52117069A JPS5912135B2 (en) 1977-09-28 1977-09-28 enzyme electrode
US05/946,527 US4224125A (en) 1977-09-28 1978-09-26 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52117069A JPS5912135B2 (en) 1977-09-28 1977-09-28 enzyme electrode

Publications (2)

Publication Number Publication Date
JPS5450396A JPS5450396A (en) 1979-04-20
JPS5912135B2 true JPS5912135B2 (en) 1984-03-21

Family

ID=14702641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52117069A Expired JPS5912135B2 (en) 1977-09-28 1977-09-28 enzyme electrode

Country Status (2)

Country Link
US (1) US4224125A (en)
JP (1) JPS5912135B2 (en)

Families Citing this family (324)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584982B2 (en) * 1978-10-31 1983-01-28 松下電器産業株式会社 enzyme electrode
JPS5643555A (en) * 1979-09-17 1981-04-22 Omron Tateisi Electronics Co Continuous measuring device of blood component
US4363634A (en) * 1980-07-18 1982-12-14 Akzona Incorporated Glass support coated with synthetic polymer for bioprocess
US4357142A (en) * 1980-07-18 1982-11-02 Akzona Incorporated Glass support coated with synthetic polymer for bioprocess
US4404066A (en) * 1980-08-25 1983-09-13 The Yellow Springs Instrument Company Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme
US4356074A (en) * 1980-08-25 1982-10-26 The Yellow Springs Instrument Company, Inc. Substrate specific galactose oxidase enzyme electrodes
JPS5798853A (en) * 1980-12-12 1982-06-19 Matsushita Electric Ind Co Ltd Enzyme electrode
DE3279215D1 (en) * 1981-04-08 1988-12-15 Jagfeldt Hans Electrode for the electrochemical regeneration of co-enzyme, a method of making said electrode, and the use thereof
DE3174037D1 (en) * 1981-05-14 1986-04-17 Kopo Konepohja Oy Feeding means for feeding solid fuel from a storage silo or equivalent into a solid fuel heating boiler
DE3129988A1 (en) * 1981-07-29 1983-02-17 Siemens AG, 1000 Berlin und 8000 München "METHOD AND DEVICE FOR DETERMINING UREA"
EP0078636B2 (en) * 1981-10-23 1997-04-02 MediSense, Inc. Sensor for components of a liquid mixture
JPS58153154A (en) * 1982-03-09 1983-09-12 Ajinomoto Co Inc Qualified electrode
CA1219040A (en) * 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
CA1226036A (en) * 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US5509410A (en) * 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1223638A (en) * 1983-05-05 1987-06-30 Graham Davis Assay systems utilising more than one enzyme
US5682884A (en) * 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
CA1218704A (en) * 1983-05-05 1987-03-03 Graham Davis Assay systems using more than one enzyme
GB8312262D0 (en) * 1983-05-05 1983-06-08 Genetics Int Inc Analytical equipment
JPS6085359A (en) * 1983-10-14 1985-05-14 Matsushita Electric Works Ltd Substance quantification
JPS60100757A (en) * 1983-11-08 1985-06-04 Hitachi Ltd Oxygen electrode
US4488557A (en) * 1984-03-02 1984-12-18 Engel Rolf R Topical agent for transcutaneous measurement of partial pressure of oxygen
DK8601218A (en) * 1984-07-18 1986-03-17
US4732153A (en) * 1984-07-18 1988-03-22 Michael Phillips Transdermal dosimeter
US4820399A (en) * 1984-08-31 1989-04-11 Shimadzu Corporation Enzyme electrodes
US5171689A (en) * 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
US4717673A (en) * 1984-11-23 1988-01-05 Massachusetts Institute Of Technology Microelectrochemical devices
US4605626A (en) * 1985-05-01 1986-08-12 Rohrback Technology Corporation Electrochemical system with rotating electrode/sparger assembly
GB8512796D0 (en) * 1985-05-21 1985-06-26 Bellhouse Brian John Testing liquids
US4686190A (en) * 1986-02-19 1987-08-11 The Research Foundation Of State University Of New York Device useful for growing and/or testing biological materials
IL78034A (en) * 1986-03-04 1991-08-16 Univ Ramot Biosensors comprising antibodies bonded to glassy carbon electrode for immunoassays
CA1248586A (en) * 1986-03-19 1989-01-10 Anthony P.F. Turner Mediators for bioelectrochemical cells
EP0242326A3 (en) * 1986-04-15 1990-04-18 Pharmatronic AG Device for studying the diffusion of a substance and method for the operation of the device
DK556488A (en) * 1987-10-05 1989-04-06 Arden Medical Systems Inc FEATURES FOR MEASUREMENT OF ENZYMY HYDROGEN DERIVATIVE / DEHYDROGEN DERIVATIVE CHEMICAL COMPONENTS IN Aqueous SOLUTIONS
US5091299A (en) * 1987-11-13 1992-02-25 Turner Anthony P F An enzyme electrode for use in organic solvents
JPH01140054A (en) * 1987-11-26 1989-06-01 Nec Corp Glucose sensor
JP2633281B2 (en) * 1988-02-10 1997-07-23 日本電気株式会社 Electrochemical sensor and manufacturing method thereof
USRE36268E (en) * 1988-03-15 1999-08-17 Boehringer Mannheim Corporation Method and apparatus for amperometric diagnostic analysis
FR2630546B1 (en) * 1988-04-20 1993-07-30 Centre Nat Rech Scient ENZYMATIC ELECTRODE AND ITS PREPARATION METHOD
US5206145A (en) * 1988-05-19 1993-04-27 Thorn Emi Plc Method of measuring the concentration of a substance in a sample solution
GR880100664A (en) * 1988-10-05 1994-03-31 Arden Medical Systems Inc Sensor for measurement of enzyme hydrogenetable/dehydrogenetable chemical species in aqueous solutions
US5242793A (en) * 1989-03-08 1993-09-07 Kanzaki Paper Manufacturing Co., Ltd. Selective permeable membrane and electrode using the same
US5089112A (en) * 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US5236567A (en) * 1989-05-31 1993-08-17 Nakano Vinegar Co., Ltd. Enzyme sensor
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5431160A (en) * 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5264104A (en) * 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5262035A (en) * 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5264105A (en) * 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5196340A (en) * 1989-08-04 1993-03-23 Nec Corporation Enzyme electrode containing an enzyme and a coenzyme immobilized in separate layers of a membrane
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
EP0505494B1 (en) * 1989-12-15 1995-07-12 Boehringer Mannheim Corporation Redox mediator reagent and biosensor
DE3941554A1 (en) * 1989-12-16 1991-06-20 Draegerwerk Ag ELECTROCHEMICAL MEASURING CELL FOR DETECTING GAS COMPONENTS IN FLUID MEDIA
US5078854A (en) * 1990-01-22 1992-01-07 Mallinckrodt Sensor Systems, Inc. Polarographic chemical sensor with external reference electrode
DE4003194A1 (en) * 1990-02-03 1991-08-08 Boehringer Mannheim Gmbh Electrochemical determn. of analytes - using oxido-reductase and substance of being reduced, which is re-oxidised on the electrode
WO1991016630A1 (en) * 1990-04-12 1991-10-31 Optical Systems Development Partners Device and method for electroimmunoassay
JPH04278450A (en) 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5262305A (en) * 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
AUPM506894A0 (en) * 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
AUPN239395A0 (en) * 1995-04-12 1995-05-11 Memtec Limited Method of defining an electrode area
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN363995A0 (en) 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6638415B1 (en) 1995-11-16 2003-10-28 Lifescan, Inc. Antioxidant sensor
US6521110B1 (en) 1995-11-16 2003-02-18 Lifescan, Inc. Electrochemical cell
AUPN661995A0 (en) 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US6863801B2 (en) 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
US5904833A (en) * 1996-08-28 1999-05-18 Huber; Calvin O. Method and apparatus for measuring the content of dissolved carbon dioxide in an aqueous medium
US6632349B1 (en) * 1996-11-15 2003-10-14 Lifescan, Inc. Hemoglobin sensor
AU6157898A (en) 1997-02-06 1998-08-26 E. Heller & Company Small volume (in vitro) analyte sensor
AUPO855897A0 (en) 1997-08-13 1997-09-04 Usf Filtration And Separations Group Inc. Automatic analysing apparatus II
US6193865B1 (en) 1997-09-11 2001-02-27 Usf Filtration And Separations Group, Inc. Analytic cell
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
AU738325B2 (en) * 1997-12-22 2001-09-13 Roche Diagnostics Operations Inc. Meter
US7494816B2 (en) 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
US7407811B2 (en) 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
US7390667B2 (en) 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6475360B1 (en) 1998-03-12 2002-11-05 Lifescan, Inc. Heated electrochemical cell
US6878251B2 (en) * 1998-03-12 2005-04-12 Lifescan, Inc. Heated electrochemical cell
US6652734B1 (en) 1999-03-16 2003-11-25 Lifescan, Inc. Sensor with improved shelf life
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6500571B2 (en) * 1998-08-19 2002-12-31 Powerzyme, Inc. Enzymatic fuel cell
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
JP3267936B2 (en) * 1998-08-26 2002-03-25 松下電器産業株式会社 Biosensor
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6287451B1 (en) 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6193873B1 (en) 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
EP2322645A1 (en) 1999-06-18 2011-05-18 Abbott Diabetes Care Inc. Mass transport limited in vivo analyte sensor
GB9915181D0 (en) * 1999-06-29 1999-09-01 Drew Scient Ltd Amperometric sensor
US7045054B1 (en) * 1999-09-20 2006-05-16 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
US6596431B1 (en) * 2000-01-20 2003-07-22 Matsushita Electric Industrial Co., Ltd. Battery and method for generating an electric power
US6488827B1 (en) 2000-03-31 2002-12-03 Lifescan, Inc. Capillary flow control in a medical diagnostic device
US6908593B1 (en) 2000-03-31 2005-06-21 Lifescan, Inc. Capillary flow control in a fluidic diagnostic device
WO2001075438A2 (en) 2000-03-31 2001-10-11 Lifescan, Inc. Electrically-conductive patterns for monitoring the filling of medical devices
US6444115B1 (en) 2000-07-14 2002-09-03 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
RU2278612C2 (en) * 2000-07-14 2006-06-27 Лайфскен, Инк. Immune sensor
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6572745B2 (en) 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
US6730396B2 (en) * 2001-03-30 2004-05-04 The Tapemark Company Adhesive constructions; and, methods
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030113606A1 (en) * 2001-04-13 2003-06-19 Rosalyn Ritts Biocompatible membranes of block copolymers and fuel cells produced therewith
US20030031911A1 (en) * 2001-04-13 2003-02-13 Rosalyn Ritts Biocompatible membranes and fuel cells produced therewith
US20030049511A1 (en) * 2001-04-13 2003-03-13 Rosalyn Ritts Stabilized biocompatible membranes of block copolymers and fuel cells produced therewith
US20030087141A1 (en) * 2001-04-13 2003-05-08 Sun Hoi-Cheong Steve Dual membrane fuel cell
US6855243B2 (en) * 2001-04-27 2005-02-15 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers and methods for using the same
US7005273B2 (en) * 2001-05-16 2006-02-28 Therasense, Inc. Method for the determination of glycated hemoglobin
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
AU2002315177A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
DE60239132D1 (en) 2001-06-12 2011-03-24 Pelikan Technologies Inc APPARATUS FOR INCREASING THE SUCCESS RATE IN RESPECT OF BLOOD EXPLOITATION OBTAINED BY A FINGERSTICK
ATE485766T1 (en) 2001-06-12 2010-11-15 Pelikan Technologies Inc ELECTRICAL ACTUATING ELEMENT FOR A LANCET
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ATE494837T1 (en) 2001-06-12 2011-01-15 Pelikan Technologies Inc INTEGRATED SYSTEM FOR BLOOD SAMPLE ANALYSIS WITH MULTIPLE-USE SAMPLING MODULE
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US6875613B2 (en) 2001-06-12 2005-04-05 Lifescan, Inc. Biological fluid constituent sampling and measurement devices and methods
ES2335576T3 (en) 2001-06-12 2010-03-30 Pelikan Technologies Inc. APPARATUS AND BLOOD SAMPLING PROCEDURE.
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US20030036202A1 (en) 2001-08-01 2003-02-20 Maria Teodorcyzk Methods and devices for use in analyte concentration determination assays
US20030028125A1 (en) 2001-08-06 2003-02-06 Yuzhakov Vadim V. Physiological sample collection devices and methods of using the same
EP1442289A2 (en) 2001-10-10 2004-08-04 Lifescan, Inc. Electrochemical cell
US6939310B2 (en) 2001-10-10 2005-09-06 Lifescan, Inc. Devices for physiological fluid sampling and methods of using the same
US6797150B2 (en) * 2001-10-10 2004-09-28 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
US7344894B2 (en) 2001-10-16 2008-03-18 Agilent Technologies, Inc. Thermal regulation of fluidic samples within a diagnostic cartridge
US7018843B2 (en) * 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
US6689411B2 (en) 2001-11-28 2004-02-10 Lifescan, Inc. Solution striping system
US6749887B1 (en) * 2001-11-28 2004-06-15 Lifescan, Inc. Solution drying system
US6872358B2 (en) 2002-01-16 2005-03-29 Lifescan, Inc. Test strip dispenser
US20060134713A1 (en) * 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US20030180814A1 (en) * 2002-03-21 2003-09-25 Alastair Hodges Direct immunosensor assay
US20030186446A1 (en) 2002-04-02 2003-10-02 Jerry Pugh Test strip containers and methods of using the same
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7374544B2 (en) 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7582099B2 (en) 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
EP1501402A4 (en) 2002-04-19 2008-07-02 Pelikan Technologies Inc Device and method for variable speed lancet
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US6837976B2 (en) * 2002-04-19 2005-01-04 Nova Biomedical Corporation Disposable sensor with enhanced sample port inlet
US7524293B2 (en) 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7485128B2 (en) 2002-04-19 2009-02-03 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7141058B2 (en) 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7244265B2 (en) 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7563232B2 (en) 2002-04-19 2009-07-21 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7368190B2 (en) * 2002-05-02 2008-05-06 Abbott Diabetes Care Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US20030212344A1 (en) * 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US7343188B2 (en) * 2002-05-09 2008-03-11 Lifescan, Inc. Devices and methods for accessing and analyzing physiological fluid
US7291256B2 (en) * 2002-09-12 2007-11-06 Lifescan, Inc. Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
ES2440284T3 (en) * 2002-11-14 2014-01-28 Thermo Fisher Scientific Biosciences Inc. SiRNA directed to tp53
US7638228B2 (en) * 2002-11-27 2009-12-29 Saint Louis University Enzyme immobilization for use in biofuel cells and sensors
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP1578262A4 (en) 2002-12-31 2007-12-05 Therasense Inc Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
JP3830501B2 (en) * 2003-01-17 2006-10-04 株式会社ティーティーシー Affinity trap reactor and one-step purification process of angiostatin-like fragment from human plasma using the same
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
WO2004112602A1 (en) 2003-06-13 2004-12-29 Pelikan Technologies, Inc. Method and apparatus for a point of care device
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7604721B2 (en) 2003-06-20 2009-10-20 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7597793B2 (en) 2003-06-20 2009-10-06 Roche Operations Ltd. System and method for analyte measurement employing maximum dosing time delay
US7220034B2 (en) * 2003-07-11 2007-05-22 Rudolph Technologies, Inc. Fiber optic darkfield ring light
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US7238440B2 (en) 2003-10-03 2007-07-03 E. I. Du Pont De Nemours And Company Membrane free fuel cell
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit
US8859151B2 (en) * 2003-11-05 2014-10-14 St. Louis University Immobilized enzymes in biocathodes
US20050121826A1 (en) * 2003-12-03 2005-06-09 Kiamars Hajizadeh Multi-sensor device for motorized meter and methods thereof
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
BRPI0507376A (en) 2004-02-06 2007-07-10 Bayer Healthcare Llc oxidizable species as an internal reference for biosensors and method of use
GB2426826B (en) * 2004-02-23 2008-06-25 Joel S Douglas Strip electrode with conductive nano tube printing
TWI292041B (en) * 2004-03-03 2008-01-01 Apex Biotechnology Corp Method for reducing measuring bias in amperometric biosensors
EP1726059A4 (en) * 2004-03-15 2008-10-22 Univ St Louis Microfluidic biofuel cell
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US7556723B2 (en) 2004-06-18 2009-07-07 Roche Diagnostics Operations, Inc. Electrode design for biosensor
US8343074B2 (en) 2004-06-30 2013-01-01 Lifescan Scotland Limited Fluid handling devices
US20060002817A1 (en) 2004-06-30 2006-01-05 Sebastian Bohm Flow modulation devices
US20060000709A1 (en) 2004-06-30 2006-01-05 Sebastian Bohm Methods for modulation of flow in a flow pathway
US7109271B2 (en) * 2004-07-28 2006-09-19 Lifescan, Inc. Redox polymers for use in electrochemical-based sensors
JP5307316B2 (en) * 2004-08-23 2013-10-02 ソニー株式会社 FUEL CELL, METHOD OF USING FUEL CELL, CATHODE ELECTRODE FOR FUEL CELL, ELECTRONIC DEVICE, ELECTRODE REACTION USE DEVICE, AND ELECTRODE REACTION USE DEVICE ELECTRODE
US7572356B2 (en) * 2004-08-31 2009-08-11 Lifescan Scotland Limited Electrochemical-based sensor with a redox polymer and redox enzyme entrapped by a dialysis membrane
US7351770B2 (en) * 2004-09-30 2008-04-01 Lifescan, Inc. Ionic hydrophilic high molecular weight redox polymers for use in enzymatic electrochemical-based sensors
JP5059413B2 (en) * 2004-11-26 2012-10-24 国立大学法人東京工業大学 Bio battery
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
WO2006090873A1 (en) * 2005-02-25 2006-08-31 Ultizyme International Ltd. Fuel cell-type enzyme sensor
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
GB0509919D0 (en) * 2005-05-16 2005-06-22 Ralph Ellerker 1795 Ltd Improvements to door closure system
EP1913374B1 (en) * 2005-07-20 2019-01-09 Ascensia Diabetes Care Holdings AG Method for signalling the user to add additional sample to a test strip, method for measuring the temperature of a sample and methods for determining the concentration of an analyte based on gated amperometry
JPWO2007037228A1 (en) * 2005-09-28 2009-04-09 株式会社荏原製作所 Bioelectric power generation anode and power generation method and apparatus using the same
KR101477948B1 (en) 2005-09-30 2014-12-30 바이엘 헬스케어 엘엘씨 Gated voltammetry analysis duration determination
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
KR20080080105A (en) * 2005-11-02 2008-09-02 세인트 루이스 유니버시티 Direct electron transfer using enzymes in bioanodes, biocathodes, and biofuel cells
EP1946397A4 (en) * 2005-11-02 2009-12-02 Univ St Louis Enzymes immobilized in hydrophobically modified polysaccharides
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US7364886B2 (en) * 2006-02-28 2008-04-29 University Of Washington Chemical sensor enhanced by direct coupling of redox enzyme to conductive surface
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8529751B2 (en) * 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US20080071158A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US20090305089A1 (en) * 2006-07-14 2009-12-10 Akermin, Inc. Organelles in bioanodes, biocathodes, and biofuel cells
WO2008058165A2 (en) * 2006-11-06 2008-05-15 Akermin, Inc. Bioanode and biocathode stack assemblies
US20080138663A1 (en) * 2006-12-12 2008-06-12 Canon Kabushiki Kaisha Microbial electrode and fuel cell and sensor using the same
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US9044178B2 (en) 2007-08-30 2015-06-02 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing
US8702932B2 (en) 2007-08-30 2014-04-22 Pepex Biomedical, Inc. Electrochemical sensor and method for manufacturing
US11307201B2 (en) * 2007-09-17 2022-04-19 Red Ivory Llc Self-actuating signal producing detection devices and methods
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
JP5405916B2 (en) * 2008-06-24 2014-02-05 パナソニック株式会社 Biosensor, method for manufacturing the same, and detection system including the same
ES2334486B1 (en) * 2008-07-11 2010-12-30 Biolan Microbiosensores, S.L. BIOSENSOR SUPPORT.
EP2329255A4 (en) 2008-08-27 2014-04-09 Edwards Lifesciences Corp Analyte sensor
JP2010102870A (en) * 2008-10-22 2010-05-06 Sony Corp Power generation method
US9445755B2 (en) 2008-11-14 2016-09-20 Pepex Biomedical, Llc Electrochemical sensor module
US8951377B2 (en) 2008-11-14 2015-02-10 Pepex Biomedical, Inc. Manufacturing electrochemical sensor module
US8506740B2 (en) 2008-11-14 2013-08-13 Pepex Biomedical, Llc Manufacturing electrochemical sensor module
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
EP2394323B1 (en) 2009-02-04 2017-05-24 Ben-gurion University Of The Negev Research And Development Authority Systems and methods for bio-electricity production
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
EP4245220A3 (en) 2010-03-24 2023-12-20 Abbott Diabetes Care, Inc. Medical device inserters
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
WO2012162151A2 (en) 2011-05-20 2012-11-29 Pepex Biomedical, Inc. Manufacturing electrochemical sensor modules
TWI427291B (en) 2011-07-06 2014-02-21 Bionime Corp Method for operating a measurement of a sample on an electrochemical test strip
WO2013070794A2 (en) 2011-11-07 2013-05-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods
CA3182961A1 (en) 2011-12-11 2013-06-20 Abbott Diabetes Care Inc Analyte sensor devices, connections, and methods
US20130284609A1 (en) * 2012-04-30 2013-10-31 Lifescan Scotland Limited Enzymatic electrochemical-based sensors with nad polymeric coenzyme
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2925229A4 (en) 2012-12-03 2017-01-25 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
EP3152559B1 (en) 2014-06-04 2020-12-02 Pepex Biomedical, Inc. Electrochemical sensors made using advanced printing technology
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
EP3294134B1 (en) 2015-05-14 2020-07-08 Abbott Diabetes Care Inc. Inserter system for a compact medical device and corresponding method
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor
CN114981271A (en) * 2019-12-26 2022-08-30 爱-森新株式会社 Novel organic electron transfer mediator and device comprising same
CN115710272B (en) * 2022-11-22 2024-03-26 上海交通大学 Vinyl-containing isoalloxazine derivative for enzyme biosensor and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837187A (en) * 1971-09-09 1973-06-01 Hoffmann La Roche

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539455A (en) * 1965-10-08 1970-11-10 Leland C Clark Jr Membrane polarographic electrode system and method with electrochemical compensation
US3542662A (en) * 1967-04-18 1970-11-24 Du Pont Enzyme electrode
DE1959169A1 (en) * 1968-11-25 1970-06-04 Nat Res Dev Insoluble enzymatic reactive material
US3770607A (en) * 1970-04-07 1973-11-06 Secretary Glucose determination apparatus
US3788950A (en) * 1970-08-05 1974-01-29 Du Pont Enzyme gel and use therefor
US3948745A (en) * 1973-06-11 1976-04-06 The United States Of America As Represented By The Department Of Health, Education And Welfare Enzyme electrode
IT1039756B (en) * 1975-07-10 1979-12-10 Snam Progetti PROCEDURE TO IMPROVE THE ACTIVITY OF OXIDOREDUCTASE ENZYMES ENCLOSED IN FILAMENT STRUCTURES
US3979274A (en) * 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4085009A (en) * 1976-07-28 1978-04-18 Technicon Instruments Corporation Methods for determination of enzyme reactions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837187A (en) * 1971-09-09 1973-06-01 Hoffmann La Roche

Also Published As

Publication number Publication date
JPS5450396A (en) 1979-04-20
US4224125A (en) 1980-09-23

Similar Documents

Publication Publication Date Title
JPS5912135B2 (en) enzyme electrode
US4321123A (en) Coenzyme immobilized electrode
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
US6740215B1 (en) Biosensor
EP1308720B1 (en) Biosensor
FI88515B (en) Enzyme electrode
EP0125137B1 (en) Measurement of enzyme-catalysed reactions
JP3242923B2 (en) Electrode and method for detecting hydrogen peroxide
US5264092A (en) Redox polymer modified electrode for the electrochemical regeneration of coenzyme
JP4839569B2 (en) Enzyme-immobilized electrode and manufacturing method thereof, electrode reaction utilization apparatus and manufacturing method thereof
Chi et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes at Methylene Green-modified electrodes and fabrication of amperometric alcohol biosensors
Lorenzo et al. Analytical strategies for amperometric biosensors based on chemically modified electrodes
Castañón et al. Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes
US20170191105A1 (en) Enzyme electrode
JPS6239900B2 (en)
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
Vaillancourt et al. Electrochemical and Enzymatic Studies of Electron Transfer Mediation by Ferrocene Derivatives with Nafion‐Glucose Oxidase Electrodes
Rondeau et al. The synergetic effect of redox mediators and peroxidase in a bienzymatic biosensor for glucose assays in FIA
CN115236158A (en) Glucose biosensor, MXene nanosheet and preparation method thereof
JP4000708B2 (en) Method for measuring substances using enzyme-immobilized electrode
JPH029303B2 (en)
Lobo et al. Flow‐injection analysis of ethanol with an alcohol dehydrogenase‐modified carbon past electrode
JPH0213842A (en) Oxygen electrode
JPS6346377B2 (en)
SU891774A1 (en) Method of producing enzymic electrodes sensible to metabolites