JPS6346377B2 - - Google Patents

Info

Publication number
JPS6346377B2
JPS6346377B2 JP55145156A JP14515680A JPS6346377B2 JP S6346377 B2 JPS6346377 B2 JP S6346377B2 JP 55145156 A JP55145156 A JP 55145156A JP 14515680 A JP14515680 A JP 14515680A JP S6346377 B2 JPS6346377 B2 JP S6346377B2
Authority
JP
Japan
Prior art keywords
electrode
enzyme
tcnq
oxidase
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55145156A
Other languages
Japanese (ja)
Other versions
JPS5769668A (en
Inventor
Akihiro Imai
Shiro Nankai
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55145156A priority Critical patent/JPS5769668A/en
Publication of JPS5769668A publication Critical patent/JPS5769668A/en
Publication of JPS6346377B2 publication Critical patent/JPS6346377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な電子伝達体を有する酵素電極
に関する。 酵素は、特定物質(基質)に対してある一定反
応のみを起こさせる基質特異性および反応特異性
をもつことが知られている。このような酵素の生
化学的反応を電気化学的反応に関連させると対象
物質の有無の検知や、酵素を固定化した電極と対
極との組み合わせによる電池の構成等に応用でき
る。 生体内におけるエネルギー変換には、酸化還元
酵素が主に関与している。一般に酸化還元によつ
て基質の酸化還元を行う場合、電子伝達体を必要
とする。例えば、酵素としてグルコースオキシダ
ーゼ(以下、GODで表す)を用い、グリコース
の酸化反応を行わせる場合には、以下の反応式に
示すように酸素O2が電子伝達体、特に電子受容
体としての働きをしている。 グルコース+O2GOD ――――→ グルコノラクトン+
H2O2 この酸素のように電子伝達体として知られてい
るレドツクス化合物としては、メチレンブルー、
2,6―ジクロロインドフエノール、インジゴジ
サルホネート、フエノサフラニン、フエナジンメ
トサルフエート、フエリシアン化カリ、ベンゾキ
ノン、クロラニル等がある。 本発明は、この電子伝達体として特性の優れた
新規な化合物、すなわち7,7,8,8―テトラ
シアノキノジメタン(以下、TCNQで表す)を
見出したものである。TCNQの構造式は次の通
りである。
The present invention relates to an enzyme electrode having a novel electron carrier. Enzymes are known to have substrate specificity and reaction specificity that cause only certain reactions to occur with respect to specific substances (substrates). When the biochemical reaction of such an enzyme is related to an electrochemical reaction, it can be applied to detecting the presence or absence of a target substance, and to construct a battery by combining an electrode with an immobilized enzyme and a counter electrode. Redox enzymes are mainly involved in energy conversion in living organisms. Generally, when redoxing a substrate by redox, an electron carrier is required. For example, when performing a glycose oxidation reaction using glucose oxidase (hereinafter referred to as GOD) as an enzyme, oxygen O 2 acts as an electron carrier, especially an electron acceptor, as shown in the reaction formula below. doing. Glucose + O 2 GOD ――――→ Gluconolactone +
H 2 O 2 Redox compounds known as electron carriers like oxygen include methylene blue,
Examples include 2,6-dichloroindophenol, indigo disulfonate, phenosafranin, phenazine methosulfate, potassium ferricyanide, benzoquinone, and chloranil. The present invention has discovered a novel compound with excellent properties as an electron carrier, namely 7,7,8,8-tetracyanoquinodimethane (hereinafter referred to as TCNQ). The structural formula of TCNQ is as follows.

【式】 TCNQが電子伝達体として働く酸化還元酵素
としては、フラヴインアデニンジヌクレオチド
(FAD)を有する酵素が有効であつた。例えば、
グルコースオキシダーゼ、キサンチンオキシダー
ゼ、アミノ酸オキシダーゼ、アルデヒドオキシダ
ーゼ、コレステロールオキシダーゼ、アルコール
オキシダーゼ等である。 レドツクス化合物は、TCNQを単体で用いて
もよいが、他のレドツクス化合物、例えばクロラ
ニル等と共存して用いてもよい。また、ゴム、高
分子等の種々のバインダー等ともちろん共存して
用いてもよいものである。 電子集電体とは、導電性材料である。例えば、
カーボン(グラフアイトを含む)、白金、金、銀、
イリジウム、パラジウム等の良導電材料、酸化ス
ズ、酸化インジムウ、酸化チタン等の半導体材料
がある。 以下、本発明を実施例により説明する。 実施例 1 TCNQとグラフアイト粉末を重量比で1:1
の割合に混合した後、プレス成形して厚さ約1mm
の円板状電極にした。この電極の片面にGODを
グルタルアルデヒドによる架橋法で固定化した。
このGOD固定化電極を第1図に示した測定系に
セツトした。 第1図において、1はアルゴンガスの導入口、
2は導出口、3は白金よりなる対極、4はガラス
の多孔体からなるセパレータ、5は酵素電極、6
は緩衝液、7は塩橋、8は飽和カロメル電極、9
はKClの飽和水溶液である。 GODを固定化した酵素電極5を飽和カロメル
電極8に対し+0.4Vの定電位に設定する。一方、
緩衝液を十分アルガスでハブリングした後、グル
コースを5×10-4モル/l注入したところ、第2
図に示すように、4μAのアノード電流増加が認め
られた。 実施例 2 実施例1と同様にTCNQとグラフアイト粉末
からプレス成形した平板電極を作製した。この電
極の片面にD―アミノ酸オキシダーゼをグルタル
アルデヒドで固定化した。この固定電極を第1図
に示した測定系に組み込んだ。固定化電極を飽和
カロメル電極に対し、+0.35Vの定電位に設定し
た。緩衝液を十分アルゴンガスでバブリング後、
D―a―アラニンを3×10-4モル/l注入したと
ころ、0.1μAのアノード電流増加が認められた。 以上の実施例では、基質濃度測定について述べ
たが、本発明による酵素電極は、例えば実施例1
に述べたグルコースオキシダーゼ固定化酵素電極
の場合、対極として酸素電極を用いると、グルコ
ースを燃料とする燃料電池を構成することができ
る。 また、レドツクス化合物として従来公知の化合
物の多くは水に溶解しやすいが、TCNQは水に
ほとんど溶解しない難溶性化合物である。従つ
て、特に、集電体、レドツクス化合物、酵素を一
体化した電極を構成した場合、TCNQは溶出し
にくいため長寿命、安定な酵素電極を作製するこ
とが可能である。 以上のように、本発明は、新規なレドツクス化
合物を用いることにより、有効に酵素機能を利用
できるものである。
[Formula] As an oxidoreductase in which TCNQ acts as an electron carrier, an enzyme containing flavin adenine dinucleotide (FAD) was effective. for example,
These include glucose oxidase, xanthine oxidase, amino acid oxidase, aldehyde oxidase, cholesterol oxidase, and alcohol oxidase. As for the redox compound, TCNQ may be used alone, but it may also be used in combination with other redox compounds such as chloranil. Furthermore, it may of course be used in combination with various binders such as rubber and polymers. An electron current collector is an electrically conductive material. for example,
Carbon (including graphite), platinum, gold, silver,
There are good conductive materials such as iridium and palladium, and semiconductor materials such as tin oxide, indium oxide, and titanium oxide. The present invention will be explained below using examples. Example 1 TCNQ and graphite powder in a weight ratio of 1:1
After mixing in the proportion of
It was made into a disc-shaped electrode. GOD was immobilized on one side of this electrode using a crosslinking method using glutaraldehyde.
This GOD-immobilized electrode was set in the measurement system shown in FIG. In Fig. 1, 1 is an argon gas inlet;
2 is an outlet, 3 is a counter electrode made of platinum, 4 is a separator made of a porous glass material, 5 is an enzyme electrode, 6
is a buffer solution, 7 is a salt bridge, 8 is a saturated calomel electrode, 9
is a saturated aqueous solution of KCl. The enzyme electrode 5 on which GOD is immobilized is set at a constant potential of +0.4 V with respect to the saturated calomel electrode 8. on the other hand,
After sufficiently hubbing the buffer solution with Argas, glucose was injected at 5 x 10 -4 mol/l.
As shown in the figure, an increase in anode current of 4 μA was observed. Example 2 In the same manner as in Example 1, a press-molded flat plate electrode was produced from TCNQ and graphite powder. D-amino acid oxidase was immobilized on one side of this electrode with glutaraldehyde. This fixed electrode was incorporated into the measurement system shown in FIG. The immobilized electrode was set at a constant potential of +0.35 V with respect to the saturated calomel electrode. After bubbling the buffer solution with argon gas,
When D-a-alanine was injected at 3×10 −4 mol/l, an increase in anode current of 0.1 μA was observed. In the above examples, substrate concentration measurement was described, but the enzyme electrode according to the present invention can be used, for example, in Example 1.
In the case of the glucose oxidase-immobilized enzyme electrode described in , if an oxygen electrode is used as the counter electrode, a fuel cell using glucose as fuel can be constructed. Additionally, many of the conventionally known redox compounds are easily soluble in water, but TCNQ is a sparingly soluble compound that hardly dissolves in water. Therefore, especially when an electrode is constructed in which a current collector, a redox compound, and an enzyme are integrated, it is possible to produce a long-life and stable enzyme electrode because TCNQ is difficult to elute. As described above, the present invention makes it possible to effectively utilize enzyme functions by using a novel redox compound.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酵素電極を用いた測定系の構成を示す
図、第2図はグリコース添加によるアノード電流
の変化を示す図である。
FIG. 1 is a diagram showing the configuration of a measurement system using an enzyme electrode, and FIG. 2 is a diagram showing changes in anode current due to glycose addition.

Claims (1)

【特許請求の範囲】[Claims] 1 フラヴインアデニンジヌクレオチド(FAD)
を有する酸化還元酵素と、この酵素の電子伝達体
となるレドツクス化合物と、電子集電体からな
り、前記レドツクス化合物として少なくとも7,
7,8,8―テトラシアノキノジメタンを含有す
ることを特徴とする酵素電極。
1 Flavin adenine dinucleotide (FAD)
an oxidoreductase with
An enzyme electrode characterized by containing 7,8,8-tetracyanoquinodimethane.
JP55145156A 1980-10-16 1980-10-16 Enzyme electrode Granted JPS5769668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55145156A JPS5769668A (en) 1980-10-16 1980-10-16 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55145156A JPS5769668A (en) 1980-10-16 1980-10-16 Enzyme electrode

Publications (2)

Publication Number Publication Date
JPS5769668A JPS5769668A (en) 1982-04-28
JPS6346377B2 true JPS6346377B2 (en) 1988-09-14

Family

ID=15378714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55145156A Granted JPS5769668A (en) 1980-10-16 1980-10-16 Enzyme electrode

Country Status (1)

Country Link
JP (1) JPS5769668A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2168815A (en) * 1984-11-13 1986-06-25 Genetics Int Inc Bioelectrochemical assay electrode
FR2835655B1 (en) * 2002-02-07 2004-03-12 Commissariat Energie Atomique FUEL CELL USING ENZYMES AS CATALYSTS OF CATHODIC AND / OR ANODIC REACTIONS
GB0500289D0 (en) * 2005-01-07 2005-02-16 Imp College Innovations Ltd Electrodes

Also Published As

Publication number Publication date
JPS5769668A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Chi et al. Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition
Scheller et al. Second generation biosensors
US6740215B1 (en) Biosensor
Yon Hin et al. Catalytic oxidation of reduced nicotinamide adenine dinucleotide at hexacyanoferrate-modified nickel electrodes
US5264092A (en) Redox polymer modified electrode for the electrochemical regeneration of coenzyme
US7485212B2 (en) Self-powered biosensor
EP1308720A1 (en) Biosensor
Tian et al. Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material
Chi et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes at Methylene Green-modified electrodes and fabrication of amperometric alcohol biosensors
Saleh et al. Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell
JPS5912135B2 (en) enzyme electrode
Malinauskas et al. Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase
Kulys et al. Study of the new electron transfer mediators in glucose oxidase catalysis
Tkáč et al. Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane
JPS5816698B2 (en) Enzyme electrode and its manufacturing method
Kulys et al. Biocatalysis and electrocatalysis at carbon paste electrodes doped by diaphorase‐methylene green and diaphorase‐meldola blue
FI92221B (en) Amperometric method for quantitative determination of 1,4-dihydronic nicotinamide adenine dinucleotide (NADH) in solution
Schubert et al. Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification
Sakuta et al. Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells
Tzang et al. Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH
Somasundrum et al. Amperometric NADH determination via both direct and mediated electron transfer by NADH oxidase from Thermus aquaticus YT-1
Tatsuma et al. Enzyme monolayer-and bilayer-modified electrodes with diaphorase and dehydrogenases
Kulys Amperometric enzyme electrodes in analytical chemistry
JPS6346377B2 (en)