JPS59121190A - Apparatus for preparation of ribbon crystal of silicon - Google Patents
Apparatus for preparation of ribbon crystal of siliconInfo
- Publication number
- JPS59121190A JPS59121190A JP23282082A JP23282082A JPS59121190A JP S59121190 A JPS59121190 A JP S59121190A JP 23282082 A JP23282082 A JP 23282082A JP 23282082 A JP23282082 A JP 23282082A JP S59121190 A JPS59121190 A JP S59121190A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- band
- shaped silicon
- crucible
- structures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/34—Edge-defined film-fed crystal-growth using dies or slits
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、帯状シリコン結晶製造装置の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a band-shaped silicon crystal manufacturing apparatus.
近時、結晶成長技術の1つとして帯状シリコン結晶の成
長方法が注目されている。この帯状シリコン結晶は薄板
状であるため、チョクラルスキー法で得られたインゴッ
ト状のシリコン結晶とは異なシ、その得られた形状のま
まで半導体太陽電池用基板として用いられる。したがっ
て、例えばチョクラルスキー法で得られたシリコン結晶
を太陽電池用基板として用いるよりも安価になると言う
大きな特長?有する。Recently, a method for growing band-shaped silicon crystals has been attracting attention as one of the crystal growth techniques. Since this band-shaped silicon crystal is in the form of a thin plate, it is different from the ingot-shaped silicon crystal obtained by the Czochralski method, and can be used as a substrate for semiconductor solar cells in its obtained shape. Therefore, for example, the big advantage is that it is cheaper than using silicon crystals obtained by the Czochralski method as a substrate for solar cells. have
第1図は従来の帯状シリコン結晶製造装置を示す概略構
成図である。図中11はルツボであシ、このIV)de
11内にはシリコン融液12が収容されている。シリ
コン融液12中にはゝキャビラリダイ13の一端が浸漬
されている。このダイ13は、シリコン融液12をリボ
ン形状に規定するもので、毛細管現象により融液12を
その先端まで上昇させる力がある。帯状シリコン結晶引
上げに際しては、ダイ13゛の上端の融液12に種結晶
(図示せず)を接触させ該結晶を引上げると、融液12
がダイ13の先端より持ち上げられて固体化し帯状結晶
14となる。すなわち、融液12と結晶14との境界で
ある固液界面15はダイ13の先端より上方に位置する
ことになり、これにより帯状シリコン結晶の連続成長が
可能となる。FIG. 1 is a schematic diagram showing a conventional belt-shaped silicon crystal manufacturing apparatus. 11 in the figure is a crucible, this IV) de
A silicon melt 12 is contained within the silicon melt 11 . One end of a cavity die 13 is immersed in the silicon melt 12. This die 13 defines the silicon melt 12 in a ribbon shape, and has the power to raise the melt 12 to its tip due to capillary action. When pulling a band-shaped silicon crystal, a seed crystal (not shown) is brought into contact with the melt 12 at the upper end of the die 13 and the crystal is pulled up.
is lifted from the tip of the die 13 and solidified to become a band-shaped crystal 14. That is, the solid-liquid interface 15, which is the boundary between the melt 12 and the crystal 14, is located above the tip of the die 13, which allows continuous growth of band-shaped silicon crystals.
ところで、上記装置を用い帯状シリコン結晶全引上げよ
うとする際第1の欠点は、ダイと固液界面との接触の危
険である。すなわち、温度変動等の理由で固液界面が低
下した場合には、両者が接触し、帯状シリコン結晶14
がダイ13に固着する。この欠点を回避すべく固液界面
をキ方に設定すると別の危険が存在する。すなわち、上
方すぎる固液界面はダイの結晶形状規定能力を受けなく
なり、通常は帯状結晶は引上げるに従いその横幅を狭ク
シ、ついには切れてしまう。これが第2の欠点である。By the way, the first drawback when attempting to pull up the entire band-shaped silicon crystal using the above-mentioned apparatus is the danger of contact between the die and the solid-liquid interface. That is, when the solid-liquid interface is lowered due to temperature fluctuations, the two come into contact and the band-shaped silicon crystal 14
is fixed to the die 13. If the solid-liquid interface is set in the opposite direction in order to avoid this drawback, another danger exists. That is, a solid-liquid interface that is too high is no longer affected by the crystal shape defining ability of the die, and normally as the band-shaped crystal is pulled up, its width narrows and eventually breaks. This is the second drawback.
上記第1及び第2の欠点は固液界面のダイ上方の高さ・
つまシメニスカス高さを制限するものでアリ、このメニ
スカス高さは帯状シリコン結晶の長手方向両端部におけ
る方がこれと直交する方間のそれよシ低い。例えば、前
記第1図におけるルツボ12内の融液面からダイ先端ま
でめ高さhDが2〔σ〕のとき厚さ0.5〔■〕の帯状
シリコン結晶を引上げようとする際には結晶両端部にお
けるメニスカス高さを0〜0.25[:m]と極めて低
くしなけ此ばならない。このため、前記温度変動等に起
因するダイへの結晶固着を確実に防止することはできず
、長時間に亘る安定した結晶成長は行い得なかった。The first and second drawbacks are the height above the die at the solid-liquid interface.
This is to limit the meniscus height, and the meniscus height is lower at both ends of the band-shaped silicon crystal in the longitudinal direction than at the ends orthogonal thereto. For example, when the height hD from the melt surface in the crucible 12 to the tip of the die in FIG. This must be achieved by making the meniscus height at both ends extremely low, 0 to 0.25 [:m]. For this reason, it was not possible to reliably prevent crystal sticking to the die due to the temperature fluctuations, etc., and stable crystal growth could not be performed for a long period of time.
本発明の目的は、帯状シリコン結晶の長手方向両端部に
おける固液界面とダイとの距離を大きくすることができ
、長時間安定した結晶成長を行い得る帯状シリコン結晶
製造装置を提供することにある。An object of the present invention is to provide an apparatus for producing a band-shaped silicon crystal that can increase the distance between the solid-liquid interface and the die at both ends in the longitudinal direction of the band-shaped silicon crystal, and can perform stable crystal growth for a long period of time. .
まず、発明の詳細な説明する前に無限に横幅の広い帯状
シリコン結晶のダイ高さとメニスカス高さとの関係の理
論考察についてふれる。無限に幅の広い帯状結晶は水平
方向長手方向に端部を持たず、その面部についてのみ考
察すればよい。第2図にシリコンについて計算した結果
を示す。図における曲線よシ下方がメニスカス高さとし
て許される範囲であシ、明らかにダイ高さの低い方がメ
ニスカス高さの許される範囲は広く、ダイ高さが零の場
合許される値は概略0〜8〔陥〕となる。First, before giving a detailed explanation of the invention, we will touch on the theoretical consideration of the relationship between the die height and the meniscus height of an infinitely wide band-shaped silicon crystal. An infinitely wide band-shaped crystal has no ends in the horizontal and longitudinal directions, and only its planes need to be considered. Figure 2 shows the results of calculations for silicon. The area below the curve in the figure is the allowable range for the meniscus height. Obviously, the lower the die height is, the wider the allowable range for the meniscus height is, and if the die height is zero, the allowable value is approximately 0. ~8 [fall].
同様の事柄は帯状結晶端部にも適用できて、グイ基さを
低くする方がメニスカス高さの許される範囲は広がる゛
。しかし、その程度は小さく、前記厚さ0.5[mm]
の帯状シリコン結晶の際の許される範囲は、ダイ高さが
零の場合においてもθ〜0.8[mm]となるにすぎな
い。The same thing can be applied to the edge of a band-shaped crystal, and the lower the stiffness, the wider the allowable range of meniscus height. However, the degree of this is small, and the thickness is 0.5 [mm]
The allowable range for band-shaped silicon crystals is only θ~0.8 [mm] even when the die height is zero.
以上で明らかなように、帯状シリコン結晶引上げの際、
メニスカス高さの許される範囲を拡大するには、水平方
向端部が笑質的に存在しないような引上げ方向をとれば
良いことがわかる。As is clear from the above, when pulling a band-shaped silicon crystal,
It can be seen that in order to expand the permissible range of the meniscus height, it is sufficient to adopt a pulling direction in which the horizontal end essentially does not exist.
第3図(a) 、 (b)は本発明と従来技術とを比較
するための模式図であり、以下この図を基にどのような
状況となれば帯状結晶の端部が芙質的に無くなるかにつ
いて説明する。第3図(a)は従来技術を示すもので、
固液界面31は略水平に設定されている。帯状シリコン
結晶32が同一な幅をもって引上げられて行くためには
、気体−液体界面である融液33表面の固液界面31に
接する部分34が結晶引き上げ方向と平行に設定されて
いる必要がある。そして、この条件を守るためにはメニ
スカス高さをあまシ高くできない。第3図(b)は本発
明を示すもので、固液界面31′は融液33′に対し上
に凹型に設定されている。帯状シリコン結晶32の端部
35′は融液33′によって取シ固まれるように設定せ
られ、その面部36′のみが露出している。帯状シリコ
ン結晶32′は融液の温度条件のみによって帯状に成型
される。このような条件下では帯状シリコン結晶端部よ
り外側にある融液33′は何隻結晶成長に寄与しない。Figures 3(a) and 3(b) are schematic diagrams for comparing the present invention and the prior art.Based on these diagrams, we will explain under what circumstances the ends of the band-shaped crystals will become fibrous. I will explain how it disappears. Figure 3(a) shows the prior art.
The solid-liquid interface 31 is set substantially horizontally. In order for the band-shaped silicon crystal 32 to be pulled up with the same width, the portion 34 of the surface of the melt 33, which is the gas-liquid interface, in contact with the solid-liquid interface 31 must be set parallel to the crystal pulling direction. . In order to maintain this condition, the meniscus height cannot be made too high. FIG. 3(b) shows the present invention, in which the solid-liquid interface 31' is set to be concave upward relative to the melt 33'. The end portion 35' of the band-shaped silicon crystal 32 is set to be fixed by the melt 33', and only the surface portion 36' thereof is exposed. The band-shaped silicon crystal 32' is formed into a band shape only by the temperature conditions of the melt. Under such conditions, some of the melt 33' outside the edge of the band-shaped silicon crystal does not contribute to crystal growth.
このため、帯状シリコン結晶端部における融液33′の
表面34′が帯状シリコン結晶に接触する方向は結晶引
き上方向に一致している必要がなく、それ故メニスカス
高さに関する問題は低減する。Therefore, the direction in which the surface 34' of the melt 33' at the edge of the band-shaped silicon crystal comes into contact with the band-shaped silicon crystal does not need to coincide with the upward direction of the crystal, and therefore problems regarding the meniscus height are reduced.
次に、第3図(b)に示すような上に凹の固液界面形状
全設定する上でのダイ形状について述べる。Next, the die shape for setting the solid-liquid interface shape of the upwardly concave shape as shown in FIG. 3(b) will be described.
シリコンを例にとるとダイ高さを零としたときには前述
した如く帯状シリコン結晶の面部ではメニスカス高さは
約8〔−〕であるのに対し、帯状シリコン結晶の端部で
は0.8[+mn)、Lか融液金持ち上げることはでき
゛ず、前記第1図に示した形状のグイ?用いた場合には
、第3図(b’)に示す如き固液界面を形成することは
できない。そこで本発明者等は第4図に示す如く帯状シ
リコン結晶41の固液界面?上昇させるものとして、帯
状結晶長手方向端部外側に高さの高いダイ43を設置す
る構成を考えた。この構成では、ダイ43の側面44と
帯状シリコン結晶端部42との間の毛細管現象により融
液の上昇をはかることができ、これによp前記第3図(
b)に示す上方に凹の固液界面を形成することが可能と
なった。Taking silicon as an example, when the die height is set to zero, the meniscus height at the face of a band-shaped silicon crystal is approximately 8 [-], as described above, whereas at the end of the band-shaped silicon crystal, the meniscus height is 0.8 [+mn]. ), it is not possible to lift the molten gold, and the shape shown in Figure 1 above cannot be lifted. When used, it is not possible to form a solid-liquid interface as shown in FIG. 3(b'). Therefore, the present inventors investigated the solid-liquid interface of the band-shaped silicon crystal 41 as shown in FIG. In order to raise the belt-shaped crystal, a configuration was considered in which a high die 43 was installed outside the end in the longitudinal direction of the band-shaped crystal. With this configuration, the melt can rise due to capillary action between the side surface 44 of the die 43 and the end portion 42 of the band-shaped silicon crystal.
It became possible to form an upwardly concave solid-liquid interface as shown in b).
本発明はこのような点に着目し、ルツボ内に収容された
シリコン融液に種子結晶を接触させ、この種子結晶を引
き上げることにより帯状シリコン結晶を成長せしめる帯
状シリコン結晶製造装置において、成長すべき帯状シリ
コン結晶の長手方向両端部の外側に、該端部と対向する
よう一対の構造物全前記ルツボ内のシリコン融液中から
上方に突出してそれぞれ設けると共に、これらの構造物
を加熱する加熱機構を設け、結晶成長に際して帯状シリ
コン結晶の長手方向の固液界面を上方に凹に設定し、か
つ固液界面の最上端を結晶引き上げ方向と略平行に設定
するようにしたものである。The present invention focuses on these points, and provides an apparatus for producing band-shaped silicon crystals that grows band-shaped silicon crystals by bringing a seed crystal into contact with a silicon melt contained in a crucible and pulling up the seed crystal. A pair of structures are provided on the outside of both ends in the longitudinal direction of the band-shaped silicon crystal so as to face the ends and protrude upward from the silicon melt in the crucible, and a heating mechanism that heats these structures. The solid-liquid interface in the longitudinal direction of the band-shaped silicon crystal is set concave upward during crystal growth, and the uppermost end of the solid-liquid interface is set substantially parallel to the crystal pulling direction.
本発明によれば、固液界面とダイ(構造物)との距離を
大きくすることができる。このため。According to the present invention, the distance between the solid-liquid interface and the die (structure) can be increased. For this reason.
温度変化に起因するダイへの結晶固着を低減することが
でき、したがって結晶成長?長時間安定に行い得る等の
効果金臭する。Can crystal sticking to the die due to temperature changes be reduced and thus crystal growth? Effects such as being able to perform stably for a long time and giving off a metallic odor.
実施例
第5図は本発明の一実施例に係る帯状シ1】コン結晶製
造装置を示す概略構成図である。図中51は長方形のカ
ーボンルツボであり、とのルツボ51にはその両端の一
部金他の周辺部より高くして構造物52a、52bが設
けられている。ルツボ51を加熱するヒータは(図示せ
ず)。Embodiment FIG. 5 is a schematic configuration diagram showing an apparatus for producing a strip-shaped silicon crystal according to an embodiment of the present invention. In the figure, reference numeral 51 denotes a rectangular carbon crucible, and structures 52a and 52b are provided at both ends of the crucible 51 so as to be higher than the gold and other peripheral parts. A heater (not shown) heats the crucible 51.
はルツボ51の底面53と、構造物52a、、52bの
外側側面54h、54bとに設置される。そして、これ
らの全てはアルコゝンガスを充満させた金属容器(図示
せず)の中に収納されている。are installed on the bottom surface 53 of the crucible 51 and the outer side surfaces 54h, 54b of the structures 52a, 52b. All of these are housed in a metal container (not shown) filled with alcone gas.
金属容器の上方には帯状シリコン結晶を上方に引き上げ
る駆動機構(図示せず)があり、この駆動機構を通じて
金属容器外に帯状シリコン結晶を取り出せる構造となっ
ている。There is a drive mechanism (not shown) above the metal container that pulls up the band-shaped silicon crystal, and the structure is such that the band-shaped silicon crystal can be taken out of the metal container through this drive mechanism.
このような構成で、ルツボ51内にシリコン融液を入れ
ヒ、−夕に通電するとシリコン融液は高温にて融液とな
る。融液面の位置を図中点線58で示す。この状態で帯
状の種結晶55を図示された位置関係を保ちながらルツ
ボ51内の融液中に挿入する。図中種結晶55の両端部
力λら下方に延びる点線56は種結晶55が融液中に挿
入される方向を示し、点線57は下降した種結晶55の
下端を示す。種結晶55を融液になじませた後、引き上
げると帯状シリコン融液が得られる。このとき、固液界
面が前記第3図(b)に示す如く設定されるので、固液
界面と構造物54h、54bとの距離全比較的大きくす
ることができる。したがって、温度変化に起因する結晶
引き上げの失敗tl−極めて少なくすることができる。With such a configuration, when a silicon melt is placed in the crucible 51 and electricity is applied in the evening, the silicon melt becomes a melt at a high temperature. The position of the melt surface is indicated by a dotted line 58 in the figure. In this state, the band-shaped seed crystal 55 is inserted into the melt in the crucible 51 while maintaining the illustrated positional relationship. In the figure, a dotted line 56 extending downward from the force λ at both ends of the seed crystal 55 indicates the direction in which the seed crystal 55 is inserted into the melt, and a dotted line 57 indicates the lower end of the seed crystal 55 that has descended. After the seed crystal 55 is adapted to the melt, it is pulled up to obtain a band-shaped silicon melt. At this time, since the solid-liquid interface is set as shown in FIG. 3(b), the total distance between the solid-liquid interface and the structures 54h and 54b can be made relatively large. Therefore, crystal pulling failures caused by temperature changes can be extremely reduced.
実際には、従来ヒータ設定温度の告u御を±1〔℃〕で
制御しないと帯状結晶引き上げが失敗したのに対し、本
装置では±5〔℃〕の溜0御でも失敗なく引き上げるこ
とが可能・′cおりた。In fact, conventionally, pulling the band-shaped crystal failed unless the heater setting temperature was controlled within ±1 [°C], but with this device, it was possible to pull up the crystal without failure even when the heater setting temperature was controlled at ±5 [°C]. Possible.
また、本実施例で引き上げられた帯状シリコン結晶は、
その理由は不明であるが、帯状シリコン結晶端部を出発
点とする結晶粒界は第1図の従来装置で得た結晶による
ものより少なかった。In addition, the band-shaped silicon crystal pulled in this example was
Although the reason for this is unclear, the number of grain boundaries starting from the edge of the band-shaped silicon crystal was smaller than that of the crystal obtained with the conventional apparatus shown in FIG.
さらに、第1図の装置で得た帯状シリコン結晶に比しシ
リコンカーバイド粒の取υ込まれる数もはるかに小さい
ものであった。Furthermore, the number of silicon carbide grains incorporated was much smaller than in the band-shaped silicon crystal obtained with the apparatus shown in FIG.
なお、本発明は上述した実施例に限定されるものではな
い。前記帯状シリコン結晶端部をその融液でおおうには
、帯状シリコン結晶の面部よシも高く融液を上昇させる
手段として帯状シリコン結晶端部の外側に設置された構
造物と、その構造物に接する融液を常に融解状態に保つ
ために構造物を加熱しておく手段が構成されれば良い。Note that the present invention is not limited to the embodiments described above. In order to cover the edge of the band-shaped silicon crystal with the melt, a structure is installed outside the edge of the band-shaped silicon crystal as a means for raising the melt higher than the surface of the band-shaped silicon crystal, and a structure is installed on the outside of the edge of the band-shaped silicon crystal. It is only necessary to provide means for heating the structure in order to keep the melt in contact with it always in a molten state.
この際、構造物は帯状結晶の面部固液界面よシ高い位置
を保つことが必要である。このような要請を満足する構
造物であれば、先の実施例の形状に何ら限定されるもの
ではない。At this time, it is necessary to maintain the structure at a position higher than the surface solid-liquid interface of the band-shaped crystal. As long as the structure satisfies such requirements, it is not limited to the shape of the previous embodiment.
例えば、第6図に示す如くシリコン融液の上昇をうなが
すように両端部内壁面に凹部を設けたものであってもよ
い。この場合、固液界面は更に上昇し、引上操作中のヒ
ータ設定温度精度は±7〔℃〕まで幅を広げることがで
きた。また、構造物の加熱手段も抵抗加熱の他、高周波
加熱、光加熱或いは超音波加熱等であってもよい。その
他、本発明の要旨を逸脱しない範囲で、種々変形して実
施することができる・For example, as shown in FIG. 6, recesses may be provided on the inner wall surfaces of both ends to encourage the rise of the silicon melt. In this case, the solid-liquid interface further rose, and the accuracy of the heater setting temperature during the pulling operation could be widened to ±7 [°C]. Furthermore, the heating means for the structure may be high frequency heating, optical heating, ultrasonic heating, or the like in addition to resistance heating. In addition, various modifications can be made without departing from the gist of the present invention.
【図面の簡単な説明】
第1図は従来の帯状シリコン結晶製造装置をまず概略構
成図、第2図は無限に幅の広い帯状結晶のメニスカス高
さとダイ高さとの関係全売す特性図、第3図(a) 、
(b)及び第4図はそれぞれ本発明の詳細な説明する
ための模式図、第5図は本発明の一実施例を示す概略構
成図、第6図は変形例を示す要部構成図である。
37 、31’・・・固液界面、32 、32’・・・
帯状シリコン結晶、33.34’・・・シリコン融液、
41・・・帯状シリコン結晶、42・・・結晶端部、4
3・・・ダイ(構造物)、44・・・ダイ側面、51・
・・ルツボ、52a、52b・・・構造物、55・・・
種結晶。[Brief explanation of the drawings] Fig. 1 is a schematic diagram of a conventional band-shaped silicon crystal production device, and Fig. 2 is a characteristic diagram of the relationship between the meniscus height and die height of an infinitely wide band-shaped crystal. Figure 3(a),
(b) and FIG. 4 are schematic diagrams for explaining the present invention in detail, FIG. 5 is a schematic diagram showing an embodiment of the present invention, and FIG. 6 is a diagram showing a main part configuration of a modified example. be. 37, 31'... solid-liquid interface, 32, 32'...
Band-shaped silicon crystal, 33.34'... silicon melt,
41... Band-shaped silicon crystal, 42... Crystal end, 4
3... Die (structure), 44... Die side surface, 51...
... Crucible, 52a, 52b... Structure, 55...
Seed crystal.
Claims (2)
を接触させ、この種結晶を引き上けることによシ帯状シ
リコン結晶を成長せしめる帯状シリコン結晶製造装置に
おいて、成長すべき帯状シリコン結晶の長手方向両端部
の外側に、該端部と対向するよう前記ルツボ内のシリコ
ン融液中から上方に突出してそれぞれ設けられた一対の
構造物と、これらの構造物を加熱する手段とを具備し、
結晶成長に際して帯状シリコン結晶の長手方向の固液界
面を上方に凹に設定し、かつ固液界面の最上端を結晶引
き上げ方向と略平行に設定してなることを特徴とする帯
状シリコン結晶製造装置。(1) In a band-shaped silicon crystal production device that grows a band-shaped silicon crystal by bringing a seed crystal into contact with a silicon melt contained in a crucible and pulling up the seed crystal, the band-shaped silicon crystal to be grown is grown. A pair of structures are provided on the outside of both ends in the longitudinal direction so as to protrude upward from the silicon melt in the crucible so as to face the ends, and a means for heating these structures is provided. ,
A device for producing a band-shaped silicon crystal, characterized in that the solid-liquid interface in the longitudinal direction of the band-shaped silicon crystal is set concavely upward during crystal growth, and the uppermost end of the solid-liquid interface is set approximately parallel to the crystal pulling direction. .
のシリコン融液を加熱する加熱機構とは別の加熱機構に
よシ上記構造物を加熱するものであることを特徴とする
特許請求の範囲第1項記載の帯状シリコン結晶製造装置
。(2) The means for heating the structure heats the structure by a heating mechanism that is different from the heating mechanism that heats the silicon melt in the crucible. An apparatus for manufacturing band-shaped silicon crystals according to scope 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23282082A JPS59121190A (en) | 1982-12-25 | 1982-12-25 | Apparatus for preparation of ribbon crystal of silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23282082A JPS59121190A (en) | 1982-12-25 | 1982-12-25 | Apparatus for preparation of ribbon crystal of silicon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59121190A true JPS59121190A (en) | 1984-07-13 |
JPS618040B2 JPS618040B2 (en) | 1986-03-11 |
Family
ID=16945286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23282082A Granted JPS59121190A (en) | 1982-12-25 | 1982-12-25 | Apparatus for preparation of ribbon crystal of silicon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59121190A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0398863U (en) * | 1990-01-30 | 1991-10-15 |
-
1982
- 1982-12-25 JP JP23282082A patent/JPS59121190A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS618040B2 (en) | 1986-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4121965A (en) | Method of controlling defect orientation in silicon crystal ribbon growth | |
JP2008105896A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JPWO2014189008A1 (en) | Silicon carbide single crystal and method for producing the same | |
JPS59121190A (en) | Apparatus for preparation of ribbon crystal of silicon | |
TWI481750B (en) | Removing a sheet from the surface of a melt using elasticity and buoyancy | |
EP1538242A1 (en) | Heater for crystal formation, apparatus for forming crystal and method for forming crystal | |
JPS6047236B2 (en) | Band-shaped silicon crystal manufacturing equipment | |
JPS58135626A (en) | Manufacture of compound semiconductor single crystal and manufacturing device thereof | |
JPH04305087A (en) | Method and device for producing single crystal | |
JP4344021B2 (en) | Method for producing InP single crystal | |
JPS6111914B2 (en) | ||
JPH01317188A (en) | Production of single crystal of semiconductor and device therefor | |
JP3788077B2 (en) | Semiconductor crystal manufacturing method and manufacturing apparatus | |
JPH0154320B2 (en) | ||
JPS59182292A (en) | Production of silicon crystal band | |
JP2814796B2 (en) | Method and apparatus for producing single crystal | |
JP2757865B2 (en) | Method for producing group III-V compound semiconductor single crystal | |
JPS6350390A (en) | Method for growing single crystal | |
JP2017193469A (en) | After-heater and sapphire single crystal production apparatus | |
JPH09169592A (en) | Method for growing single crystal | |
JPS5950640B2 (en) | Manufacturing equipment for band-shaped silicon crystals | |
JPS59227797A (en) | Method for pulling up single crystal | |
JP2000327490A (en) | Method and apparatus for producing silicon crystal | |
JP2773441B2 (en) | Method for producing GaAs single crystal | |
JP2003342096A (en) | Method for producing compound semiconductor single crystal |