JPS59119760A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS59119760A
JPS59119760A JP57226719A JP22671982A JPS59119760A JP S59119760 A JPS59119760 A JP S59119760A JP 57226719 A JP57226719 A JP 57226719A JP 22671982 A JP22671982 A JP 22671982A JP S59119760 A JPS59119760 A JP S59119760A
Authority
JP
Japan
Prior art keywords
electrode
film
photoelectric conversion
solid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57226719A
Other languages
Japanese (ja)
Inventor
「よし」田 興夫
Okio Yoshida
Nozomi Harada
望 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57226719A priority Critical patent/JPS59119760A/en
Publication of JPS59119760A publication Critical patent/JPS59119760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To simplify the process and contrive to improve the yield by a method wherein an electrode buried vertically in a photoelectric conversion film on the following insulation film and an electrode for external voltage at a fixed distance therefrom are provided through the insulation film in the upper part of an accumulation diode at a solid-state scanning part. CONSTITUTION:An n<+> layer 221 constituting a buried channel vertical CCD and an n<+> layer 222 constituting the accumulation diode are provided on a P type Si substrate 21, and poly Si layers 231 and 232 for transfer gate electrodes are provided above the n<+> layer 221. The photoelectric conversion film 25 is provided on the oxide film 24, and a window is opened through the films 25 and 24 by reactive ion etching by applying a resist mask, which window is made to reach the n<+> layer 222. Ni electrolytic plating is performed by impressing a voltage on the substrate, and the resist mask is removed by forming the vertical electrode 26. An opposed electrode 27 is formed at the fixed position away form the electrode 26. This constitution simplifies the complicated electrode construction in the lower part of a convertional element and then improves the yield. Further, the stepwise difference of the surface whereon the photoelectric conversion film is provided is improved, and the defect of an image due to pin holes is also prevented because of the use of transverse directional conduction.

Description

【発明の詳細な説明】 この発明は固体撮像素子に係シ、竹に、光電変換膜と電
荷転送素子等の固体のスイッチング走査素子とを組み合
わせた固体撮像素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state image sensor, and more particularly, to a solid-state image sensor that combines a photoelectric conversion film and a solid-state switching scanning element such as a charge transfer element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子は従来の撮像管とくらべて小型。 Solid-state image sensors are smaller than conventional image pickup tubes.

軽量,高信頼性のカメラが出来る利点があシ、残像が殆
んどない良質の画像を得る事が出来る。
It has the advantage of being a lightweight, highly reliable camera, and can obtain high-quality images with almost no afterimages.

しかしながら、従来の固体撮像素子は主としてSlウェ
ハ上に形成され、使用可能な感度波長領域が可視を中心
に限定される欠点、さらには、光電変換を行なうp−n
ホト・ダイオードの有効感光部と信号転送部の無効感光
部があ夛、感度の低下やモアレなどの偽信号が出やすい
などの撮像管には無い欠点が存在する。これらの欠点を
除く固体撮像素子として、従来の固体撮像素子をそのま
ま走査部として使用し、その上部に設けた光導電体膜に
て光電変換を行なう素子が提案されている。
However, conventional solid-state imaging devices are mainly formed on Sl wafers, and have the disadvantage that the usable sensitivity wavelength range is limited to the visible wavelength range.
They have drawbacks that are not found in image pickup tubes, such as the effective photosensitive area of the photodiode and the ineffective photosensitive area of the signal transfer section, resulting in decreased sensitivity and the tendency to generate false signals such as moiré. As a solid-state imaging device that eliminates these drawbacks, an element has been proposed that uses a conventional solid-state imaging device as it is as a scanning section and performs photoelectric conversion with a photoconductor film provided on top of the device.

第1図は光導電体膜と電荷転送素子を組み合わせたイン
タライン転送形の固体撮像素子のー画素の断面図である
。P形Si基板1ノに埋め込みチャネル垂直CCDを構
成するn+層121 と蓄積ダイオードを構成するn+
層122が形成される。n”N12.の上には、転送用
ダート電極となる2層のIすSi電極13g、132 
 がある。蓄積ダイオードの部分では熱酸化膜を含む第
一酸化膜14にエツチングを行ない蓄積ダイオードのn
+層122部が露出するように形成した後、例えばAt
などの第一電極15を所定の形状に形成する。この後に
、第二酸化膜16を形成し、さらにこの膜にエツチング
を行ない、第一電極15の一部を露出させ、これにAt
などの第二電極17を所定の形状に形成する。この上部
にa−8tなどの光導電体膜18をスパッタリングやグ
ロー放電で形成し、さらに透明導電膜19を形成して走
査部と光電変換部を有する固体撮像素子を得る。
FIG. 1 is a cross-sectional view of a pixel of an interline transfer type solid-state image sensor that combines a photoconductor film and a charge transfer element. An n+ layer 121 forming a channel vertical CCD buried in a P-type Si substrate 1 and an n+ layer 121 forming a storage diode.
Layer 122 is formed. On top of the n''N12., there are two layers of ISi electrodes 13g and 132 which will become dart electrodes for transfer.
There is. In the storage diode part, the first oxide film 14 including the thermal oxide film is etched to reduce the n of the storage diode.
After forming the + layer 122 portion to be exposed, for example, At
The first electrode 15 is formed into a predetermined shape. After this, a second oxide film 16 is formed, and this film is further etched to expose a part of the first electrode 15.
The second electrode 17 is formed into a predetermined shape. A photoconductor film 18 such as A-8T is formed on top of this by sputtering or glow discharge, and a transparent conductive film 19 is further formed to obtain a solid-state image sensor having a scanning section and a photoelectric conversion section.

なお、第一、第二電極の材料をそれぞれポリSt 、モ
リブデンとした他、はぼ同様の構成とした例が特開昭5
7−32183号公報に記載されている。
In addition, an example in which the first and second electrodes were made of polySt and molybdenum, respectively, and had a similar structure was disclosed in JP-A-5
It is described in Publication No. 7-32183.

このような固体撮像素子においては、従来ならば蓄積ダ
イオードの部分のみが一画素として有効に働くだけであ
ったのに対して、少くとも第二電極17の部分が一画素
として有効な光電変換を行なうので感度が増加する利点
が生じる。
In such a solid-state image sensor, whereas conventionally only the storage diode part effectively worked as one pixel, at least the second electrode 17 performs effective photoelectric conversion as one pixel. This has the advantage of increased sensitivity.

本来、第一電極15上に光導電体膜19を形成しても良
いのであるが、これでは酸化膜14やポリSt電極13
1,132の厚みによる表面の凹凸段差が2〜4μm程
度あるためとエツチング部では急峻な部分が形成されて
いるために、光導電体膜がこれら段差によシネ連続とな
シ、画像の欠陥や極端な場合には感度が得られず出画不
良となってしまう。これを防ぐために図示するように第
二電極を用いて、段差を解消しつつ、なるべく平滑な面
に光導電膜を形成する手段がとられている。
Originally, the photoconductor film 19 could be formed on the first electrode 15, but in this case, the oxide film 14 and the polySt electrode 13
Because the surface unevenness level difference due to the thickness of 1,132 mm is about 2 to 4 μm, and the etching part has steep parts, the photoconductor film is not continuous with these level differences, resulting in image defects. In extreme cases, sensitivity may not be obtained and image output may be poor. In order to prevent this, as shown in the figure, a second electrode is used to form a photoconductive film on a surface as smooth as possible while eliminating the step difference.

しかし、この構成であっても表面の段差は完全には解決
できず、画像欠陥が出やすい。また製造工程も複雑であ
シ、パクーニングのずれによる不良の危険性もある。
However, even with this configuration, the level difference on the surface cannot be completely resolved, and image defects are likely to occur. In addition, the manufacturing process is complicated, and there is a risk of defects due to misalignment of parquet.

なお、光導電体膜の電極構成にはこれまで種種の提案が
あり、本発明者のうち一人はすでに特開昭56−891
74号公報に示すように相対向すべき電極を同一平面上
に設ける構造又は光導ている。しかしこの素子において
も、電極をどう取シ出すかは問題である。
There have been various proposals for the electrode structure of the photoconductor film, and one of the present inventors has already proposed the structure of the electrode in JP-A-56-891.
As shown in Japanese Patent No. 74, there is a structure in which electrodes to be opposed to each other are provided on the same plane or light is guided. However, even in this element, there is a problem in how to take out the electrodes.

〔発明の目的〕[Purpose of the invention]

この発明は固体走査部と光電変換部とを接続する新しい
電極構成を有し、かつ、光電変換部において発生した信
号電荷が光電変換膜にほぼ平行な電界を受ける、いわゆ
る横方向伝導型となる電極構成をもつ固体撮像素子を提
供する事を目的とする。
This invention has a new electrode configuration that connects the solid-state scanning section and the photoelectric conversion section, and has a so-called lateral conduction type in which signal charges generated in the photoelectric conversion section are subjected to an electric field almost parallel to the photoelectric conversion film. The purpose of this invention is to provide a solid-state image sensor having an electrode configuration.

〔発明の概要」 この発明は、光電変換膜の電極構造として、固体走査部
の蓄積ダイオードの上部の絶縁膜を通してその上部の充
電変換膜にほぼ垂直に埋込まれた垂直電極を一方の電極
とすると共に、この電極から所定間隔離れた位置に光電
変換膜に外部電圧を印加する他方の電極を対向して形成
して横方向伝導型とした事を特徴とする。
[Summary of the Invention] This invention provides an electrode structure for a photoelectric conversion film in which one electrode is a vertical electrode that is embedded almost perpendicularly into a charging conversion film on the upper part of the storage diode in the solid-state scanning section through an insulating film on the upper part of the storage diode. At the same time, the other electrode for applying an external voltage to the photoelectric conversion film is formed at a position separated by a predetermined distance from this electrode to face the photoelectric conversion film, thereby making it a lateral conduction type.

〔発明の効果〕〔Effect of the invention〕

この発明によシ、従来の下部電極の複雑な電極構成を除
く事が出来、製造工程が簡単とな勺歩留よシが向上する
。さらに光電変換膜を設ける面の段差が改善され、光電
変換膜の質が向上し、また横方向伝導を用いるために膜
のピンホールによる画像欠陥を防止できる。また、限ら
れた材質の透明導電膜を必要とせず、材料選択に自由度
が大となる。
According to the present invention, the complicated electrode structure of the conventional lower electrode can be eliminated, the manufacturing process is simplified, and the yield rate is improved. Furthermore, the level difference on the surface on which the photoelectric conversion film is provided is improved, the quality of the photoelectric conversion film is improved, and since lateral conduction is used, image defects due to pinholes in the film can be prevented. Further, there is no need for a transparent conductive film made of a limited material, and there is greater freedom in material selection.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第2図は本発明の一実施例のインクライン転送形固体撮
鍬素子の一画素部分を示す断面図である。P形Si基板
21に垂iM CCDの埋込みチャネルを構成するn”
N22.および、蓄積ダイオードを構成するn+層22
2を設け、この上にポリSt電極231,232を設け
る基本構成は第1図と同じである。絶縁膜となる酸化膜
24はメルト法等にて凹凸段差を減少して平滑面を形成
し、この上にa−8tなどの光導電体膜25を全面に形
成している。そしてこの全面にレジスト膜を4伺し、ノ
リー二ング後、レジスト膜をブロック膜として、例えば
RIE (Reacjive Ion Etching
)法によシ光導電体膜25及び酸化膜24をエツチング
し、蓄積ダイオードのn+層222に届くコンタクト穴
を形成し、このコンタクト穴にSt基板にかけた印加電
圧によシ、例えばNiなとの電解メッキを行ない垂直電
極26を光導電体膜2.5の上面まで形成している。余
分なメッキはレジスト膜を剥離する事によシ取シ除く。
FIG. 2 is a sectional view showing one pixel portion of an incline transfer type solid-state sensor according to an embodiment of the present invention. n” constituting the embedded channel of the vertical iM CCD in the P-type Si substrate 21.
N22. and an n+ layer 22 constituting a storage diode
The basic structure of providing polyst electrodes 231 and 232 thereon is the same as that in FIG. The oxide film 24 serving as an insulating film is formed by a melting method or the like to reduce unevenness and level difference to form a smooth surface, and a photoconductor film 25 such as a-8t is formed on the entire surface. Then, a resist film is applied over the entire surface for four times, and after nodding, the resist film is used as a block film and, for example, RIE (Reacjive Ion Etching) is performed.
), the photoconductor film 25 and the oxide film 24 are etched to form a contact hole reaching the n+ layer 222 of the storage diode, and an applied voltage applied to the St substrate is applied to the contact hole to etch a layer of, for example, Ni. Electrolytic plating is performed to form a vertical electrode 26 up to the upper surface of the photoconductor film 2.5. Excess plating can be removed by peeling off the resist film.

垂直電極26の上面は光導電膜25の上面と同一面が望
ましいが、段差があっても大きな問題は無い。そして垂
直電極26から一定距離はなれた位置に対向電極27を
形成している。なお、対向電極27は垂直電極26よル
先に形成しても良い。
Although the upper surface of the vertical electrode 26 is preferably flush with the upper surface of the photoconductive film 25, there is no major problem even if there is a difference in level. A counter electrode 27 is formed at a position separated from the vertical electrode 26 by a certain distance. Note that the counter electrode 27 may be formed beyond the vertical electrode 26.

本実施例の固体撮像素子は従来の第1図のような素子の
複雑な電極構成を必要とせず、蓄積ダイオード部から上
部へ電極を取シ出すため構成は極めて簡単である。電極
は垂直電極26と対向電極27が平面的に配置されてい
る。
The solid-state imaging device of this embodiment does not require the complicated electrode structure of the conventional device shown in FIG. 1, and has an extremely simple structure because the electrodes are taken out from the storage diode section to the top. The electrodes include a vertical electrode 26 and a counter electrode 27 arranged in a plane.

第3図はこの固体撮像素子の上部から見た電極配置を示
す。光導電体膜25に対して各画素領域毎に垂直電極2
6があシ、これの周囲に対向電極27が全画素に共通に
格子状に形成されている。なお、垂直電極の形状は図の
四角のみならず、円でも多角形でも良く、また周囲の対
向電極は四角の格子のみならず、六角形や六角形でも良
く、あるいは単なる縞状でも良い。いずれにしても光導
電体膜にて生成した電荷が膜を横方向に走行する。なお
、膜厚方向の一部では電荷が斜め方向に走行する事があ
るが、これらを含めて全体として横方向伝導であると定
義しておく。
FIG. 3 shows the electrode arrangement seen from the top of this solid-state imaging device. A vertical electrode 2 is provided for each pixel region with respect to the photoconductor film 25.
6, around which a counter electrode 27 is formed in a grid pattern common to all pixels. Note that the shape of the vertical electrode is not limited to the square shown in the figure, but may be circular or polygonal, and the surrounding counter electrode may be not only a square lattice, but may also be hexagonal, hexagonal, or simply striped. In either case, charges generated in the photoconductor film travel laterally across the film. Note that in some parts of the film thickness direction, charges may travel diagonally, but this is defined as lateral conduction as a whole including these.

この実施例によれば、光導電体膜の上下方向に電極が対
向しないので、膜の形成中にとシこまれた欠陥、例えば
スゲラッシュやゴミなどによる膜の上下方向での電気的
短絡の不良はなくなる。また第2図の実施例においては
光導電体膜を形成する時点で形成面が全面一様に酸化膜
となっている。このため基板表面材料の差異による光導
電膜の物理的性質、例えばアトヒジョンの差や化学組成
への影響が出ないので光導電体膜が均一性よく形成され
、画質が向上する利点がある。また、蒸着のみならず、
CvD(ChemicalVapour Deposi
tion )法やMBB (Mo1ecular Be
amEpitaxy )法などで基板と光導電膜の材料
の格子間隔の不整合によシ、形成初期には無定形層ある
いは周期性の少ない層、あるいはまた多結晶層となシ、
適当な膜厚の部分から所定の単結晶の光導電体膜となる
ような場合にも、第2図の構成であれば、所定の光導電
体膜の部分に電気的な接触が得られる利点がある。即ち
光入射が上面からあるので、上部の周期性のよい光導電
体膜中で光吸収が行なわれ、下部の無秩序な膜は光電変
換に無関係にできる。
According to this embodiment, since the electrodes do not face each other in the vertical direction of the photoconductor film, there is no risk of electrical short circuits in the vertical direction of the film due to defects introduced during film formation, such as sedge rush or dust. Defects will disappear. Further, in the embodiment shown in FIG. 2, the entire surface on which the photoconductor film is formed is uniformly an oxide film. Therefore, there is no effect on the physical properties of the photoconductive film, such as differences in adhesions or chemical composition, due to differences in substrate surface materials, so that the photoconductor film can be formed with good uniformity, which has the advantage of improving image quality. In addition to vapor deposition,
CvD (Chemical Vapor Deposit)
tion) Law and MBB (Mo1ecular Be
amEpitaxy) method, etc., due to the mismatch in the lattice spacing between the substrate and the photoconductive film material, an amorphous layer, a layer with little periodicity, or a polycrystalline layer may be formed in the initial stage of formation.
Even in the case where a predetermined single crystal photoconductor film is formed from a portion of an appropriate film thickness, the advantage of the configuration shown in FIG. 2 is that electrical contact can be made to the predetermined portion of the photoconductor film. There is. That is, since light is incident from the top surface, light is absorbed in the photoconductor film with good periodicity in the upper part, and the disordered film in the lower part can be left unrelated to photoelectric conversion.

なお、形成する光導電体膜が下地に影響されない場合に
は、電極の形成方法に種々の変形ができる。例えば、第
2図において垂直電極を、酸化膜24を形成した時点で
この酸化膜24の上面までメッキ等によ多形成し、この
後に光導電体膜25を全面に形成してこの光導電体膜に
゛同様に垂直電極を形成して、先に出来ている酸化膜中
の垂直電極と接続しても良い。
Note that if the photoconductor film to be formed is not affected by the underlying material, various modifications can be made to the method of forming the electrode. For example, in FIG. 2, when the oxide film 24 is formed, a vertical electrode is formed by plating or the like up to the upper surface of the oxide film 24, and then a photoconductor film 25 is formed on the entire surface of the photoconductor. Similarly, vertical electrodes may be formed on the film and connected to the vertical electrodes in the previously formed oxide film.

第4図は他の実施例であり、対向電極27を光導電体膜
25を形成する前にあらかじめ酸化膜24上に形成して
おく例である。本実施例では、入射光からすると対向電
極27が影とならず有効感度面積が増加する利点がある
FIG. 4 shows another embodiment, in which a counter electrode 27 is formed on the oxide film 24 before forming the photoconductor film 25. This embodiment has the advantage that the counter electrode 27 does not cast a shadow when viewed from the incident light, and the effective sensitive area increases.

第5図は対向電極271,272を光導電体膜25の上
下に形成した例である。
FIG. 5 shows an example in which counter electrodes 271 and 272 are formed above and below the photoconductor film 25.

また第6図は対向電極27を垂直電極26と同じくコン
タクト穴にメッキ等によ多形成した素子の例である。蓄
積ダイオード上部の光導電体膜25に穴明け[2て垂直
電極26を形成する時に同じように穴明けができるので
両電極を同じプロセスで形成できる利点がある。第5図
等よシもむしろ完全な横方向伝導形となる事は明らかで
ある。
Further, FIG. 6 shows an example of an element in which the counter electrode 27 is formed in the contact hole by plating or the like in the same way as the vertical electrode 26. A hole is made in the photoconductor film 25 above the storage diode [2] Since the hole can be made in the same way when forming the vertical electrode 26, there is an advantage that both electrodes can be formed in the same process. It is clear that the structure shown in Fig. 5 is also of a completely transverse conduction type.

その他車発明は、以下に述べるように種々変実施例 酸化膜の平滑化はメルト法のみならず、例えば段差のあ
る酸化膜上にレジストを塗付して四部に多量にレジスト
が溜まるようにしておき、かつ、レジスト膜と酸化膜と
のエツチング速度がほぼ同じようになるよう材料やエツ
チング条件を選択してRIE法によシエッチング面が酸
化膜上で平滑面となるまでエツチングしても良い。
Other car inventions include various modifications as described below. Smoothing of the oxide film is not limited to the melt method; for example, a resist is applied to the oxide film with steps so that a large amount of resist accumulates on the four parts. The material and etching conditions may be selected so that the etching speed of the resist film and the oxide film are approximately the same, and etching may be performed by the RIE method until the etched surface becomes a smooth surface on the oxide film. .

実施例の如く、酸化膜上を平滑にするとその後の光導電
体膜の形成や・やターニングが極めて容易になる利点が
あるが、光導電体膜やレジスト膜が段差に影響される事
が少ない場合には無理に平滑化を行なう必要は無い。縦
方向では必要ではあるが、本発明のような横方向伝導型
では特に平滑化は必要では無く平滑化を行わなければ工
程の短縮が可能である。
As in the example, smoothing the oxide film has the advantage of making subsequent formation of the photoconductor film and/or turning extremely easy, but the photoconductor film and resist film are less affected by steps. In such cases, there is no need to force smoothing. Although it is necessary in the vertical direction, smoothing is not particularly necessary in a transversely conductive type as in the present invention, and the process can be shortened without smoothing.

光導電体膜中に垂直に埋込まれる電極は光導電体膜よシ
先にレジスト膜の穴明は部分に予め形成し、レジストを
除去した後に、突出した形状のままで光導電体膜を形成
しても良い。この場合にも、垂直電極の上部には光導電
膜が形成されるが、対向電極との間には横方向伝導が活
かされている。
For electrodes to be vertically buried in the photoconductor film, holes in the resist film are formed in advance in the photoconductor film, and after the resist is removed, the photoconductor film is left in the protruding shape. It may be formed. In this case as well, a photoconductive film is formed above the vertical electrode, but lateral conduction is utilized between it and the counter electrode.

絶縁膜として5IO2などの酸化膜を主として例示した
がN 513N4膜やそれらの複合層でも良い。
Although an oxide film such as 5IO2 is mainly used as an example of the insulating film, an N513N4 film or a composite layer thereof may also be used.

光電変換部の材料としてa−8tO例を述べたが、これ
に限らず、撮像管用の光電変換材料として用いられてい
るSb2S3.5e−As −Te 、 CdSeやC
dZnTeが使える事は明らかであシ、InSbやPb
5nTθ、 CdMgTeなとの赤外用光電材料も使え
る。さらに、光導電体膜のみならす、光起電力膜も使え
る。
Although a-8tO has been described as an example of the material for the photoelectric conversion section, the material is not limited to this, and examples include Sb2S3.5e-As-Te, CdSe, and C, which are used as photoelectric conversion materials for image pickup tubes.
It is clear that dZnTe can be used, but InSb and Pb
Infrared photoelectric materials such as 5nTθ and CdMgTe can also be used. Furthermore, in addition to photoconductor films, photovoltaic films can also be used.

垂直電極の形成方法は実施例にて述べた方法のみならず
無電界メッキ、イオン・ブレーティングを用いる事がで
き、コンタクト穴が広い場合にはハンダや導電ペースト
による充てんも可能である。またCVD法によシ充てん
しても良い。
The vertical electrodes can be formed not only by the method described in the embodiments but also by electroless plating or ion brating, and if the contact hole is wide, it is also possible to fill it with solder or conductive paste. Alternatively, the filling may be performed using the CVD method.

電極材料は実施例で述べた他にCu 、 Pb 、 A
4Zn、 Ti 、Mo 、Au、Ag、Pt、At−
8t 、 In。
In addition to those mentioned in the examples, electrode materials include Cu, Pb, and A.
4Zn, Ti, Mo, Au, Ag, Pt, At-
8t, In.

Snなど各種の材料が使える他に蒸着、スフ4ツタやC
VD法ではポリSi膜も使える事は明らかであるO 実施例においては固体撮像素子の走査読出し部としてイ
ンターライン転送形CCDの例を示したが、これに限ら
ず蓄積ダイオードを有するMOS形やCPD形にも適用
できる事は勿論である。
Various materials such as Sn can be used, as well as vapor deposition, Sufu 4 Tsuta and C.
It is clear that a poly-Si film can also be used in the VD method. In the example, an example of an interline transfer type CCD was shown as the scanning readout section of a solid-state image sensor, but the invention is not limited to this, and a MOS type with a storage diode or a CPD Of course, it can also be applied to shapes.

実施例では二次元センナについて述べたが、−次元セン
サにも適用できる。また光導電体膜での平面的な電極配
置は実施例のみならず、ジグザグ配置等でも良い事は明
らかである。
In the embodiment, a two-dimensional sensor has been described, but the present invention can also be applied to a -dimensional sensor. Furthermore, it is clear that the planar electrode arrangement on the photoconductor film is not limited to the embodiments, but may also be a zigzag arrangement or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電極構造からなる固体撮像素子の断面図
、第2図は本発明の固体撮像素子の一実施例を示す断面
図、第3図はその電極配置例を示す平面図、第4図#第
5図および第6図は本発明の固体撮像素子の他の実施例
を示す断面図である。 21 ・P形81基板、221  、2−22− n”
1L2−3.  、232−・・ポvsi’rtt極、
24・・平滑化酸化膜、25・・・光導電体膜、26・
・・垂直電極、27(271,272)・・・対向電極
。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 7 第3図 第4図
FIG. 1 is a sectional view of a solid-state imaging device having a conventional electrode structure, FIG. 2 is a sectional view showing an embodiment of the solid-state imaging device of the present invention, and FIG. 3 is a plan view showing an example of the electrode arrangement. FIG. 4 #FIGS. 5 and 6 are cross-sectional views showing other embodiments of the solid-state imaging device of the present invention. 21 ・P type 81 board, 221, 2-22-n”
1L2-3. , 232--po vsi'rtt pole,
24... Smoothing oxide film, 25... Photoconductor film, 26...
...Vertical electrode, 27 (271, 272)...Counter electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 7 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に、複数個配列される画素に対応して設けら
れる信号電荷を蓄積する蓄積ダイオードと、各蓄積ダイ
オードの信号電荷を読出す走査読出し部とが集積形成さ
れ、この上に絶縁膜を介して光電変換膜が積層されその
各画素領域毎に設けられる一方の電極がそれぞれ対応す
る前記蓄積ダイオードに接続されて光電変換部を構成す
る固体撮像素子において、前記一方の電極を前記絶縁膜
を通して光電変換膜中に垂直に埋込まれた垂直電極とし
、これから所定距離をおいて前記光電変換膜に外部電圧
を印加する他方の対向電極を配設したことを特徴とする
固体撮像素子。
Storage diodes that store signal charges provided corresponding to a plurality of pixels arranged in a semiconductor substrate, and a scanning readout section that reads out the signal charges of each storage diode are integrated and formed on the semiconductor substrate, with an insulating film interposed thereon. In a solid-state image sensor in which photoelectric conversion films are laminated and one electrode provided for each pixel region is connected to the corresponding storage diode to form a photoelectric conversion section, the one electrode is connected to the photoelectric conversion layer through the insulating film. 1. A solid-state image pickup device, comprising a vertical electrode vertically embedded in a conversion film, and a second counter electrode for applying an external voltage to the photoelectric conversion film arranged at a predetermined distance from the vertical electrode.
JP57226719A 1982-12-27 1982-12-27 Solid-state image pickup element Pending JPS59119760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226719A JPS59119760A (en) 1982-12-27 1982-12-27 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226719A JPS59119760A (en) 1982-12-27 1982-12-27 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS59119760A true JPS59119760A (en) 1984-07-11

Family

ID=16849552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226719A Pending JPS59119760A (en) 1982-12-27 1982-12-27 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS59119760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019024057A (en) * 2017-07-24 2019-02-14 日本放送協会 Solid state imaging element and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019024057A (en) * 2017-07-24 2019-02-14 日本放送協会 Solid state imaging element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0139366B1 (en) Method of manufacturing a soldi-state image pickup device
JPH07202159A (en) Solid-state image pickup device
JPS59119760A (en) Solid-state image pickup element
JPH0134509B2 (en)
JPH01295457A (en) Laminated type solid-state image sensing device and manufacture thereof
JPS5861663A (en) Manufacture of solid-state image pickup device
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JPH04207076A (en) Manufacture of solid-state image pickup device
US20210305306A1 (en) Pixel of a light sensor and method for manufacturing same
JPS6051376A (en) Solid-state image pickup device
JP2723854B2 (en) Solid-state imaging device and manufacturing method thereof
JPS6386474A (en) Solid-state image sensing device
JPS6153879A (en) Solid-state image pickup device and its manufacture
JPS6047574A (en) Solid-state image pickup device
JPS59202777A (en) Solid-state image pickup device and its manufacture
JPS59151575A (en) Solid-state image pickup element
JPH01291460A (en) Solid-stage image sensing device
JPS5927105B2 (en) Manufacturing method of semiconductor device for infrared imaging
JPS62193277A (en) Solid-state image pickup device
JPS59172764A (en) Solid-state image pickup device
JPH1126738A (en) Solid-state image sensing device and its manufacture
JPS59196667A (en) Solid-state image pickup device
JPH0394468A (en) Laminated type solid-state image sensing device
JPH03171770A (en) Solid state image sensing device
JPH0360156A (en) Solid-state image sensing device