JPS59118352A - Multi-spindle cooling device - Google Patents

Multi-spindle cooling device

Info

Publication number
JPS59118352A
JPS59118352A JP23173282A JP23173282A JPS59118352A JP S59118352 A JPS59118352 A JP S59118352A JP 23173282 A JP23173282 A JP 23173282A JP 23173282 A JP23173282 A JP 23173282A JP S59118352 A JPS59118352 A JP S59118352A
Authority
JP
Japan
Prior art keywords
bearing
heat
liquid
hollow chamber
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23173282A
Other languages
Japanese (ja)
Other versions
JPS6216779B2 (en
Inventor
Hitoshi Inoue
均 井上
Kenji Kataoka
片岡 憲二
Hisaaki Yamakage
久明 山蔭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23173282A priority Critical patent/JPS59118352A/en
Publication of JPS59118352A publication Critical patent/JPS59118352A/en
Publication of JPS6216779B2 publication Critical patent/JPS6216779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To cool main spindle devices effectively and evenly by a method wherein operating liquid is flowed through vapor pipes, liquid pipes and a communicating pipe to transport the quantity of heat of bearings from the hollow chambers thereof to heat radiating devices. CONSTITUTION:The quantity of heat of the bearings 3, 31, which received the heat in bearing stands 4, 41, is deprived as the latent heat of evaporation when it heats the operating liquid, such as Flon or the like, in the hollow chambers 7, 71 and vaporizes it. The vapor of the vaporized Flon or the like moves to the heat radiating devices 81, 8 through the vapor pipes 10, 101 and is cooled by cooling fans 9, 91. The condensed operating liquid returns into the hollow chambers 7, 71 of the bearing stands 4, 41 from the liquid pipes 12, 121 through the vapor pipes 10, 101. The liquid pipes 12, 121 are mutually communicated by the communicating pipe 13.

Description

【発明の詳細な説明】 この発明に例えば工作機械の複数の主軸等の軸受部全冷
却する多軸冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that completely cools the bearings of, for example, a plurality of main shafts of a machine tool.

従来この種の装置としては第1図及び第2図に示すもの
がめった。これら各図において、(1)、α刀に工作機
械の第1、第2の主軸装置であり、スパンPの間隔で配
置されている。(21、e21) U主軸、+31゜0
ηに軸受、14)、(ロ)に軸受台、+51 、 (5
1)にプーリ、(6)にベッドである。
Conventionally, as this type of apparatus, the ones shown in FIGS. 1 and 2 have been rare. In each of these figures, (1) is the first and second spindle devices of the machine tool, which are arranged at an interval of span P. (21, e21) U main axis, +31°0
η is bearing, 14), (b) is bearing stand, +51, (5
1) is the pulley, and (6) is the bed.

次に動作について説明する。図示しない駆動用電動機に
よ!llvペル)k介してブー1月51.(51)に伝
えられた回転力によって主軸+21.al)’に回転て
せる0この時−主軸(2j、CDと軸受台(4j、(6
)との間に位置する軸受+a+、0ηは主M[21,&
1)が円滑に回転すること?助ける目的をもっているが
、回転とともに軸受(a+、0])rc摩擦により発熱
し温度上昇するa軸受137.eυに生じた熱量に軸受
台(4j、倒に伝わり、ベッド(6)および周囲空気へ
伝熱して放熱する。この際に軸受台(4)、αυは温度
上昇し、各部は熱膨張による種々の熱変形・歪を生じる
。このため主軸L2+ 、 (21)の位置が変動し、
被加工物?機械加工するときに加工精度が低下するとい
う欠点がめった。
Next, the operation will be explained. By a driving electric motor (not shown)! llv per) k via boo january 51. (51) due to the rotational force transmitted to the main shaft +21. al)' 0 At this time - main shaft (2j, CD and bearing stand (4j, (6
) is the bearing +a+, 0η located between the main M[21, &
1) Does it rotate smoothly? The a bearing 137. has the purpose of helping, but as it rotates, the bearing (a+, 0]) generates heat due to rc friction and its temperature rises. The amount of heat generated at eυ is transmitted to the bearing pedestal (4j), and is transferred to the bed (6) and the surrounding air to radiate heat.At this time, the temperature of the bearing pedestal (4) and αυ increases, and various parts due to thermal expansion thermal deformation and distortion occurs.As a result, the position of the main axis L2+ (21) changes,
Workpiece? The drawback was that machining accuracy decreased during machining.

さらに、相互間の主軸+2+ 、 @1rの位置の変動
に差を生じると同時に複数の加工上行なう際に相互の加
工精度に差?生じるという欠点がめった。
Furthermore, there is a difference in the fluctuation of the position of the spindle +2+ and @1r between them, and at the same time there is a difference in the machining accuracy when performing multiple machining operations. The drawback is that it rarely occurs.

この発明に上記のような従来のものの欠点?除去するた
めになされfCものであり、第1、第2の主軸装置上有
効に且つ平均的に冷却することができる多軸冷却装置を
提供することを目的としているO 以下、この発明の一実施例を第8図及び第4図に基づい
て説明する。第3図は機能系統?示すブロック図、第4
図に断面側面図でるり、これら各図において、+7+ 
s (71)に軸受台tn、Q1)の内部に形成された
環状の中空室、(81、(81)に放熱装置であり、冷
却ファン(91、(91)により冷却されている。
Is there a drawback to this invention over the conventional ones mentioned above? The purpose of this invention is to provide a multi-shaft cooling device that can effectively and evenly cool the first and second main shaft devices. An example will be explained based on FIGS. 8 and 4. Is diagram 3 a functional system? Block diagram shown, No. 4
The figure shows a cross-sectional side view, and in each of these figures, +7+
s (71) is an annular hollow chamber formed inside the bearing stand tn, Q1), (81, (81) is a heat dissipation device, and is cooled by cooling fans (91, (91)).

(10)に中空室(7)と放熱装置(81)と?連通す
る第1の蒸気管、(101)に中空室(71)と放熱装
置(8)と全連通する第2の蒸気管、■は放熱装置(8
)と第1の蒸気管(lO)とt連通する第1の液管、(
121)は放熱装置(81)と第2の蒸気管(101)
とを連通する第2の液管、N3に第1の液管@と第2の
液管(121)を連通する連通管である。
(10) with hollow chamber (7) and heat dissipation device (81)? The first steam pipe (101) communicates with the hollow chamber (71) and the heat radiator (8), and the second steam pipe (101) communicates with the heat radiator (8).
) and a first liquid pipe communicating with the first steam pipe (lO), (
121) is a heat dissipation device (81) and a second steam pipe (101)
N3 is a communication pipe that communicates the first liquid pipe @ and the second liquid pipe (121).

尚、中空室t7+、(71)および放熱装置t8) 、
 (81)、第1、第2の蒸気管t101 、 (10
1) 、第1、第2の液管□、 (121)、連通管0
の内部を真空減圧後、アンモニア、フロン等の作動液体
がその内部に所定量封入される。
In addition, the hollow chamber t7+, (71) and the heat dissipation device t8),
(81), first and second steam pipes t101, (10
1) , first and second liquid pipes □, (121), communication pipe 0
After reducing the pressure inside the chamber, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is sealed inside.

次に動作について説明する。軸受台(4)、ゆで受熱し
た軸受t3++0υの熱量に中を呈t7+、(71)内
のフロン等の作動液体全加熱して気化させる際に蒸発潜
熱として奪われ、気化したフロン等の蒸気は自身の蒸気
圧を利用して第1の蒸気g110+’に経て放熱装置(
81〕へ、第2の蒸気管(101) ’に経て放熱装置
(81へそれぞれ移動し、冷却ファン+91 、 (9
1)により周囲空気によりNやされる。このとき、フロ
ン等の蒸気に凝縮して液体に戻るが、凝縮潜熱?周囲空
気に放出し、軸受+a++(+υの熱量全周囲空気へ放
熱する。凝縮した作動液体は第1、第2の液管口、 (
121)から第1、第2の蒸気管+101 、 (10
1)を経て重力を利用して軸受台n+、(41)の中空
室+71. (71)へ戻る。このような動作?くり返
し行なうことによp、軸受台[41,Gl′])の熱量
全放熱装置(81) 、 +81に熱輸送して効率よく
冷却するようにしている。
Next, the operation will be explained. Bearing stand (4), when the working liquid such as fluorocarbons in (71) is fully heated and vaporized, it is taken away as the latent heat of evaporation, and the vapor of vaporized fluorocarbons, etc. Using its own steam pressure, the first steam g110+' is passed through the heat dissipation device (
81] and the second steam pipe (101)' to the heat dissipation device (81), and the cooling fans +91 and (9
1), N is removed by the surrounding air. At this time, the chlorofluorocarbons etc. condense into vapor and return to liquid, but what about the latent heat of condensation? The entire heat of the bearing +a++(+υ) is radiated to the surrounding air.The condensed working liquid is transferred to the first and second liquid pipe ports, (
121) to the first and second steam pipes +101, (10
1), the bearing stand n+, the hollow chamber of (41) +71. Return to (71). Behavior like this? By repeating this process, all of the heat of the bearing stand [41, Gl']) is transported to the heat dissipation device (81), +81 for efficient cooling.

ところで、軸受台+41が他方の軸受台■に比べ温度上
昇(熱量)が大きくなると、軸受台(4)の中空室(7
)内の作動液体の蒸気化の際の蒸気量・蒸気圧・蒸気温
度が他方に比べ大きくなる。従って、より大きな蒸発潜
熱?奪5A軸受台+41をより大きく冷却し、軸受台(
4)の温度上昇が他方の軸受台■より大きくなるの?抑
制するように働く。そして、軸受台(4)の中空室(7
)内にて気化した温度の高い蒸気に第1の蒸気管t10
1 g経て放熱装置(81〕へ移動し、放熱装置(81
) Kて凝縮した作動液体に放熱装置t8) Kて凝縮
する作動液体に比べ温度が高く、N2の液管(121)
から第2の蒸気管(101)k経て軸受台(6)の中空
室(71) K流入する。従って、軸受台(6)におい
てに作動液体の温度が高い分だけ暖められ温度上昇が増
大し、両軸受台(4)、(6)の温度上昇差が小さく抑
えられる。また、軸受台(6)は軸受台(4)に比べ温
度上昇が小さく、軸受台(ロ)の中空室(71)内の作
動液体に棚受台(4)の中空室(7)内の作動液体に比
べ気化する際の蒸気蓋・蒸気圧・蒸気温度が低い。従っ
て、第2の蒸気管(101) 、放熱装置(8)、第1
の液管■から第1の蒸気管+101 ’i経てより低い
温度の作動液体が流入する。その結果、軸受台(4)に
おいてに作動液体の温度の低い分だけ冷やされ温度上昇
が減少し、両軸受台(4j、卯の温度上昇差が小はく抑
えられる。このような動作がくり返されると、だんだん
軸受台(剖の中壁Q7)内の作動液体の量が少なくなり
軸受台(財)の中空室(71)内の作動液体の量が多く
なるが、連通管(至)により放熱装置(81)から第2
の蒸気管(101) i経て軸受台(ロ)の中空室(7
1)内に戻る作動液体の一部t−軸受台(4)の中を呈
(7)に戻すことができ、両作動液体の量を所定量にす
るよ、うに働いている。
By the way, when the temperature rise (calorific value) of bearing stand +41 becomes larger than that of the other bearing stand (■), the hollow chamber (7) of bearing stand (4)
) The amount of vapor, vapor pressure, and vapor temperature during vaporization of the working liquid in one area are larger than those in the other. Hence the larger latent heat of vaporization? The 5A bearing stand +41 is cooled more and the bearing stand (
Will the temperature rise of 4) be larger than that of the other bearing stand ■? Works to suppress. The hollow chamber (7) of the bearing stand (4)
) to the high temperature steam vaporized in the first steam pipe t10.
1 g, move to the heat dissipation device (81), and then move to the heat dissipation device (81).
) A heat dissipation device for the working liquid condensed by heating.
The steam flows from the second steam pipe (101)k into the hollow chamber (71)K of the bearing stand (6). Therefore, the working fluid in the bearing pedestal (6) is warmed by the higher temperature, increasing the temperature rise, and the difference in temperature rise between the two bearing pedestals (4) and (6) is suppressed to a small value. In addition, the temperature rise of the bearing stand (6) is smaller than that of the bearing stand (4), and the working liquid in the hollow chamber (71) of the bearing stand (B) flows into the hollow chamber (7) of the shelf holder (4). The vapor cap, vapor pressure, and vapor temperature during vaporization are lower than that of the working liquid. Therefore, the second steam pipe (101), the heat dissipation device (8), the first
A lower temperature working liquid flows from the liquid pipe ① through the first steam pipe +101'i. As a result, the working fluid in the bearing pedestal (4) is cooled by the lower temperature, reducing the temperature rise, and the difference in temperature rise between the two bearing pedestals (4j, rabbit) is kept small. When it is returned, the amount of working fluid in the bearing pedestal (inner wall Q7) gradually decreases and the amount of working fluid in the hollow chamber (71) of the bearing pedestal increases. from the heat dissipation device (81) to the second
Steam pipe (101) i through the hollow chamber (7) of the bearing stand (b)
1) A portion of the working fluid that returns into the bearing pedestal (4) can be returned to the reservoir (7), serving to maintain a predetermined amount of both working fluids.

このような動作音くり返し行なうことにより、両軸受台
nr、(4’f)の何れか一方の発熱量・温度上昇が増
大しにしめると、両@受台(4)、(財)の温度上昇差
を小さく抑えるように働き、両軸受台(4)、的が平均
的に有効に冷却される。従って、工作機械においてμ軸
受部の熱変形・歪全最少限に抑えることができ、加工精
度?向上させることができる。
By repeating such operation noise, the heat generation amount and temperature rise of either of the bearing stands nr, (4'f) will increase, and the temperature of both the bearing stands (4) and (4'f) will increase. It works to keep the difference small, and both bearing stands (4) and targets are effectively cooled evenly. Therefore, it is possible to minimize the thermal deformation and distortion of the μ bearing in machine tools, improving machining accuracy. can be improved.

尚、上記実施例でに冷却ファン+9+ 、 (91) 
’i用いた場合について述べたが、冷却ファンt91 
、 (91) i用いず自然風却してもよく、あるいに
冷却源として冷却風以外の冷却水・油などを用いても同
様な効果が得られる。
In addition, in the above embodiment, the cooling fan +9+, (91)
'I mentioned the case where the cooling fan t91 is used.
, (91) Natural air cooling may be used without using i, or similar effects can be obtained by using cooling water, oil, etc. other than cooling air as a cooling source.

また、上記実施例でに中空室+71.(71)が軸受台
tu + Q])にそれぞれ設けられた場合について述
べ友が、中空室tel、 (71) k軸受(3)、(
ロ)、あるいに軸受+a+ 、 el)と軸受台+4+
、1.4つとの間に設けるようにしてもよい。
Further, in the above embodiment, the hollow chamber +71. (71) k bearings (3), (
b), or bearing +a+, el) and bearing stand +4+
, 1.4 may be provided.

ところで、上記説明でに主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明全適用し得ることができ、上記実施例と同様な効果を
奏する。
By the way, in the above description, the case where there are two spindle devices has been described, but the present invention can be fully applied to the case where there are three or more spindle devices, and the same effects as in the above embodiment can be achieved.

この発明に以上説明した通り、軸受部内部に形成され且
つ作動液体が封入される環状の中空室と、軸受部の熱量
を放熱する放熱装置とをそれセれ有するN1、第2の主
軸装置、第1の主軸装置の中空室と第2の主軸装置の放
熱装置と全連通する第1の蒸気管、第2の主軸装置の中
空室と第1の主軸装置の放熱装置と?連通する第2の蒸
気管、第1の主軸装置の放熱装置と第1の蒸気管と?連
通する第1の液管、第2の主軸装置の放熱装置と第2の
蒸気管とを連通する第2の液管、第1の液管と第2の液
管とt連通する連通管?設け、軸受部の熱量を中空室か
ら放熱装置に熱輸送するようにしたことにより、軸受部
の熱量全速やかに奪い効率よく且つ平均的に冷却できる
ので、軸受部の熱変形・歪全最少限に抑制し工作機械等
の加工精度?向上できるという実用上極めて大きな効果
がめる。
As described above, the present invention includes N1, a second main shaft device, each of which has an annular hollow chamber formed inside the bearing portion and in which a working liquid is sealed, and a heat radiating device that radiates heat of the bearing portion; A first steam pipe that fully communicates with the hollow chamber of the first spindle device and the heat radiator of the second spindle device, and the hollow chamber of the second spindle device and the heat radiator of the first spindle device? The second steam pipe, the heat dissipation device of the first spindle device, and the first steam pipe communicate with each other? A first liquid pipe that communicates with each other, a second liquid pipe that communicates with the heat dissipation device of the second spindle device and the second steam pipe, and a communication pipe that communicates with the first liquid pipe and the second liquid pipe? By providing heat in the bearing part and transporting the heat from the hollow chamber to the heat dissipation device, all the heat in the bearing part can be quickly removed and cooled efficiently and evenly, thereby minimizing thermal deformation and distortion of the bearing part. Is it possible to control the machining accuracy of machine tools? This can be seen as an extremely significant practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

N1図及び第2図に従来の多軸冷却装置?示す断面側面
図、第3図及びN4図はこの発明の一実施例による多釉
冷却装置?示すブロック図及び断面側面図である。 図において、11+、C11lは第1.第2の主軸装置
、(4)、(財)に軸受台−(7] 、 (71)に中
空室、t8) 、 (81)に放熱装置、tlol、 
(101)に第1、第2の蒸気管、凹、(121)に第
1、第2、の液管、a3は連通管である0 尚、図中同一符号に同−又は相当部分?示す。 代理人 葛野信〜 第1図
Is the conventional multi-shaft cooling device in Figure N1 and Figure 2? The cross-sectional side view, FIG. 3, and FIG. N4 show a multi-glaze cooling device according to an embodiment of the present invention. FIG. 2 is a block diagram and a cross-sectional side view. In the figure, 11+ and C11l are the first. Second main spindle device, (4), bearing stand (7), (71) hollow chamber, t8), (81) heat dissipation device, tlol,
(101) is the first and second steam pipes, concave, (121) is the first and second liquid pipes, and a3 is a communicating pipe.0 In addition, are the same numbers in the drawing the same or corresponding parts? show. Agent Makoto Kuzuno ~ Figure 1

Claims (1)

【特許請求の範囲】 (1)@受部内部に形成され、且つ作動液体が封入され
る環状の中空室と、上記軸受部の熱量全放熱する放熱装
置と?それぞれ有する第1、第2の主軸装置、上記第1
の主軸装置の中を室と上記第2の主軸装置の放熱装置と
全連通する第1の蒸気管、上記第2の主軸装置の中空室
と上記第1の主軸装置の放熱装置とを連通する第2の蒸
気管、上記第1の主軸装置の放熱装置と上記第1の蒸気
管とを連通する第1の液管、上記第2の主@装置の放熱
装置と上記M2の蒸気管と全連通する第2の液管、上記
第1の液管と第2の液管と全連通する連通管?備えたこ
とt%徴とする多軸冷却装置。 +21  中空室に軸受台に形成されたこと全特徴とす
る特許請求の範囲第1項記載の多軸冷却装置。 (3)  中空室に軸受に形成されたことを特徴とする
特許請求の範囲第1項記載の多軸冷却装置。 (4)  中空室は軸受台と軸受との間に形成されたこ
とを特徴とする特許請求の範囲第1項記載の多軸冷却装
置。
[Scope of Claims] (1) @An annular hollow chamber formed inside the bearing portion and filled with a working liquid, and a heat radiating device that radiates all of the heat of the bearing portion? a first spindle device and a second spindle device each having the first spindle device,
a first steam pipe that fully communicates the interior of the spindle device with the heat radiating device of the second spindle device, and a hollow chamber of the second spindle device that communicates with the heat radiator of the first spindle device; a second steam pipe, a first liquid pipe that communicates the heat radiating device of the first main shaft device with the first steam pipe, a heat radiating device of the second main shaft device and the steam pipe of M2, A second liquid pipe that communicates with the first liquid pipe and a communication pipe that fully communicates with the second liquid pipe? A multi-shaft cooling device with t% characteristics. +21 The multi-shaft cooling device according to claim 1, characterized in that a bearing stand is formed in the hollow chamber. (3) The multi-shaft cooling device according to claim 1, characterized in that a bearing is formed in the hollow chamber. (4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing stand and the bearing.
JP23173282A 1982-12-24 1982-12-24 Multi-spindle cooling device Granted JPS59118352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23173282A JPS59118352A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23173282A JPS59118352A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Publications (2)

Publication Number Publication Date
JPS59118352A true JPS59118352A (en) 1984-07-09
JPS6216779B2 JPS6216779B2 (en) 1987-04-14

Family

ID=16928160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23173282A Granted JPS59118352A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Country Status (1)

Country Link
JP (1) JPS59118352A (en)

Also Published As

Publication number Publication date
JPS6216779B2 (en) 1987-04-14

Similar Documents

Publication Publication Date Title
JPS59118352A (en) Multi-spindle cooling device
JPS58193930A (en) Multispindle cooler
JPS6233453B2 (en)
JPS59118345A (en) Multi-spindle cooling device
JPS6218308B2 (en)
JPS59118358A (en) Multi-spindle cooling device
JPS58206346A (en) Multispindle cooling system
JPS6218309B2 (en)
JPS59118354A (en) Multi-spindle cooling device
JPS6216777B2 (en)
JPS59118344A (en) Multi-spindle cooling device
JPS59118362A (en) Multi-spindle cooling device
JPS6216787B2 (en)
JPS6216783B2 (en)
JPS6214380B2 (en)
JPS6216780B2 (en)
JPS6214388B2 (en)
JPS6214381B2 (en)
JPS6216788B2 (en)
JPS59118339A (en) Multi-spindle cooling device
JPS6214383B2 (en)
JPH0565729B2 (en)
JPS59118355A (en) Multi-spindle cooling device
JPS6216778B2 (en)
JPS59118350A (en) Multi-spindle cooling device