JPS59118344A - Multi-spindle cooling device - Google Patents

Multi-spindle cooling device

Info

Publication number
JPS59118344A
JPS59118344A JP23172482A JP23172482A JPS59118344A JP S59118344 A JPS59118344 A JP S59118344A JP 23172482 A JP23172482 A JP 23172482A JP 23172482 A JP23172482 A JP 23172482A JP S59118344 A JPS59118344 A JP S59118344A
Authority
JP
Japan
Prior art keywords
vapor
pipe
bearing
heat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23172482A
Other languages
Japanese (ja)
Other versions
JPS6214385B2 (en
Inventor
Hitoshi Inoue
均 井上
Kenji Kataoka
片岡 憲二
Hisaaki Yamakage
久明 山蔭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23172482A priority Critical patent/JPS59118344A/en
Publication of JPS59118344A publication Critical patent/JPS59118344A/en
Publication of JPS6214385B2 publication Critical patent/JPS6214385B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To cool main spindle devices effectively and evenly by a method wherein operating liquid is flowed through vapor pipes, liquid pipes and communicating pipes to transport the quantity of heat of bearings from the hollow chambers thereof to heat radiating devices. CONSTITUTION:The quantity of heat of the bearings 3, 31, which received the heat in bearing stands 4, 41, is deprived as the latent heat of evaporation when it heats the operating liquid, such as Flon or the like, in the hollow chambers 7, 71 and vaporizes it. The vapor of the vaporized Flon or the like moves to the heat radiating devices 8, 81 through vapor pipes 10, 101 by utilizing the vapor pressure of itself and is cooled by cooling fans 9, 91. The condensed operating liquid returns into the hollow chambers 7, 71 of the bearing stands 4, 41 through the liquid pipes 12, 121 by utilizing the gravity thereof. A part of the vapor of the operating liquid passing through the vapor pipe 10 inflows into the heat radiating device 81 through the first communicating pipe 13 while the condensed and liquified operating liquid inflows into the hollow chamber 71 of the bearing stand 41 through the liquid pipe 121. On the other hand, a part of the vapor of the operating liquid passing through the vapor pipe 101 inflows into the hollow chamber 7 of the bearing stand 4 through the second communicating pipe 131, the heat radiating device 8 and the liquid pipe 12.

Description

【発明の詳細な説明】 この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.

従来この種の装置としては第1図及び第2図に示すもの
があった。これら各図において、(1)、(0)は工作
機械の第1.第2の主軸装置であり、ス/fンPの間隔
で配置されている。(2)、C?])は主軸、(3)、
0])は軸受、(4)、C4υは軸受台、(5)、(5
わはプーリ、(6)はベッドである。
Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, (1) and (0) are the first parts of the machine tool. This is a second spindle device and is arranged at intervals of S/f P. (2), C? ]) is the main axis, (3),
0]) is the bearing, (4), C4υ is the bearing stand, (5), (5
Wa is the pulley and (6) is the bed.

次に動作について説明する。図示しない駆動用電動機に
よりVベルトを介してプーリ(5)、(!5υに伝えら
れた回転力によって主軸(2)、■υを回転させる。
Next, the operation will be explained. The main shaft (2), ■υ is rotated by the rotational force transmitted to the pulley (5), (!5υ) via a V-belt by a driving electric motor (not shown).

この時、主軸(2)、■υと軸受台(4)、Ql)との
間に位置する軸受(3)、eυは主軸(2)、121)
が円滑に回転することを助ける目的をもっているが、回
転とともに軸受(3)、01)は摩擦により発熱し温度
上昇する。軸受(3)、0υに生じた熱量は軸受台(4
)、Gl])に伝わり、ベッド(6)および周囲空気へ
伝熱して放熱する。この際に軸受台(4)、Ql)は温
度上昇し、各部は熱膨張による種々の熱変形・歪を生じ
る。このため主軸(2)。
At this time, the bearing (3), eυ located between the main shaft (2), ■υ and the bearing stand (4), Ql) is the main shaft (2), 121).
The purpose is to help the bearings (3), 01) rotate smoothly, but as they rotate, the bearings (3), 01) generate heat due to friction and their temperature rises. The amount of heat generated in the bearing (3), 0υ is transferred to the bearing stand (4
), Gl]), and is transferred to the bed (6) and the surrounding air to radiate heat. At this time, the temperature of the bearing stand (4), Ql) increases, and various parts undergo various thermal deformations and strains due to thermal expansion. For this reason, the main axis (2).

Qυの位置が変動し、被加工物を機械加工するときに加
工精度が低下するという欠点があった。さらに、相互間
の主軸(2)、@υの位置の変動に差を生じると同時に
複数の加工を行なう際に相互の加工精度に差を生じると
いう欠点があった。
There was a drawback that the position of Qυ fluctuated and the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback that there is a difference in the fluctuation of the position of the main axis (2) and @υ between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.

この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、第1.第2の主軸装置を有効
に且つ平均的に冷却することができる多軸冷却装置を提
供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.

以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第8図は機能系統を示すブロック図、第4
図は断面側面図であり、これら各図において、(7)、
(7])は軸受台(4)、−の内部に形成された環状の
中空室、(8)、6υは放熱装置であり、冷却ファン(
9J、91)により冷却されている。QC)、(101
)は中空室(7)、(ハ)と放熱装置(8)、eυをそ
れぞれ連通する蒸気管、(6)、  (121)は中空
室(7)、(ハ)と放熱装置(8)、f8υをそれぞれ
連通する液管である。α■は蒸気管αOと放熱装置6]
)とを連通ずる第1の連通管、(181)は蒸気管(1
01)と放熱装置(8)とを連通ずる第2の連通管であ
る。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 8 is a block diagram showing the functional system.
The figures are cross-sectional side views, and in each of these figures, (7),
(7]) is an annular hollow chamber formed inside the bearing stand (4), (8), 6υ is a heat dissipation device, and a cooling fan (
9J, 91). QC), (101
) are the steam pipes that communicate the hollow chambers (7), (c) with the heat radiating device (8) and eυ, respectively, (6), (121) are the hollow chambers (7), (c) with the heat radiating device (8), These are liquid pipes that communicate with f8υ. α■ is steam pipe αO and heat dissipation device 6]
), the first communication pipe (181) communicates with the steam pipe (1
01) and the heat dissipation device (8).

尚、中空室(7)、(71)および放熱装置(8)、G
31)、蒸気管GO,(101)、液管(2)、  (
121)の内部を真空減圧後、アンモニア、フロン等の
作動液体がその内部に所定量封入される。
In addition, the hollow chambers (7), (71) and the heat dissipation device (8), G
31), Steam pipe GO, (101), Liquid pipe (2), (
121), a predetermined amount of a working liquid such as ammonia or chlorofluorocarbon is sealed therein.

次に動作について説明する。軸受台(4)、Qυで受熱
した軸受(3)、0ηの熱量は中空室(7)、(2)内
のフロン等の作動液体を加熱して気化させる際に蒸気潜
熱として奪われ、気化したフロン等の蒸気は自身の蒸気
圧を利用して蒸気管QO,Dot)を経て放熱装置(8
)lylυへ移動し、冷却ファン(9)、91)により
周囲空気により冷やされる。このとき、フロン等の蒸気
は凝縮して液体に戻るが、凝縮潜熱を周囲空気に放出し
、軸受(3)、01)の熱量を周囲空気へ放熱する。凝
縮した作動液体は液管(2)、  (121)を経て重
力を利用して軸受台(4)、G11)の中空室(7)、
nへ戻る。また、蒸気管α0を通る作動液体の蒸気の一
部は第1の連通管α■を経て放熱装置6])に流入し、
その放熱装置6υで凝縮液化した作動液体は液管(12
1)を経て軸受台(4])の中空室(7])に流入する
。一方、蒸気管(101)を通る作動液体の蒸気の一部
は第2の連通管(181)を経て放熱装置(8)に流入
し、その放熱装置(8)で凝縮液化した作動液体は液管
αのを経て軸受台(4)の中空室(7)に流入する。こ
のような動作をくり返し行なうことにより、軸受台(4
)、Ql)の熱量を放熱装置(8)、etυに熱輸送し
て効率よく冷却するようにしている。
Next, the operation will be explained. The heat of the bearing (3) and 0η received by the bearing stand (4) and Qυ is taken away as vapor latent heat when the working liquid such as fluorocarbon in the hollow chamber (7) and (2) is heated and vaporized. Steam such as fluorocarbons passes through the steam pipe (QO, Dot) using its own steam pressure and is sent to the heat dissipation device (8).
) and is cooled by the surrounding air by cooling fans (9), 91). At this time, the vapor of fluorocarbon or the like condenses and returns to liquid, but releases the latent heat of condensation to the surrounding air, and the amount of heat from the bearings (3, 01) is radiated to the surrounding air. The condensed working liquid passes through the liquid pipes (2) and (121), and uses gravity to flow into the hollow chamber (7) of the bearing stand (4) and G11.
Return to n. Further, a part of the vapor of the working liquid passing through the steam pipe α0 flows into the heat dissipation device 6 through the first communication pipe α■,
The working liquid condensed and liquefied in the heat dissipation device 6υ is transferred to the liquid pipe (12
1) and flows into the hollow chamber (7]) of the bearing stand (4]). On the other hand, a part of the vapor of the working liquid passing through the steam pipe (101) flows into the heat radiating device (8) via the second communicating pipe (181), and the working liquid condensed and liquefied in the heat radiating device (8) is liquefied. It flows into the hollow chamber (7) of the bearing base (4) through the pipe α. By repeating this operation, the bearing stand (4
), Ql) is transferred to the heat dissipation device (8) and etυ for efficient cooling.

ところで、軸受台(4)が他方の軸受台θυに比べ温度
上昇(熱量)が大きくなると、軸受台(4)の中空室(
7)内の作動液体の蒸気化の際の蒸気量・圧力・温度が
他方に比べ大きくなる。従って、より大きな蒸発潜熱を
奪い軸受台(4)をより大きく冷却するとともに、軸受
台(4)の中空室(7)より放熱装置(8)だけでなく
他方の放熱装置但υへも第1の連通管α1を経てより大
きい圧力・温度の蒸気が流入する。これにより、軸受台
(4)側からみると他方の放熱装置6])へ第1の連通
管a3を経て流入する分だけ放熱面積が増大し、冷却能
力が高くなる。又、放熱装置f3ηでは軸受台(4)の
中空室(7)より流入した温度の高い蒸気が軸受台0υ
の中空室(7υより流入した温度の低い蒸気と混合し、
結果として軸受台0υの中空室(ハ)より流入した蒸気
の温度が高くなる。従って、放熱装置O1l])で凝縮
液化した作動液体の温度も高くなり、その高くなった分
だけ軸受台Ql)の温度上昇全増大している。一方、軸
受台o])の中空室(ハ)より放熱装置6υだけでなく
他方の放熱装置(8)へも第2の連通管(181)を経
て温度の低い蒸気が流入し、放熱装置(8)では軸受台
(4)の中空室(7)より流入した温度の高い蒸気と混
合し、結果として軸受台(4)の中空室(7)より流入
した蒸気の温度が低くなる。従って、放熱装置(8)で
凝縮液化した作動液体の温度も低くなり、その低くなっ
た分だけ軸受台(4)の温度上昇を低減している。
By the way, when the temperature rise (calorific value) of the bearing stand (4) becomes larger than that of the other bearing stand θυ, the hollow chamber (of the bearing stand (4)
7) The amount of vapor, pressure, and temperature during vaporization of the working liquid in the above are larger than those in the other. Therefore, a larger amount of latent heat of vaporization is absorbed and the bearing pedestal (4) is cooled to a greater extent, and the first Steam with higher pressure and temperature flows in through the communication pipe α1. As a result, when viewed from the bearing stand (4) side, the heat radiation area increases by the amount that flows into the other heat radiation device 6) via the first communication pipe a3, and the cooling capacity increases. In addition, in the heat dissipation device f3η, high temperature steam flowing from the hollow chamber (7) of the bearing stand (4) flows into the bearing stand 0υ.
The hollow chamber (7υ) mixes with the low-temperature steam that flows in,
As a result, the temperature of the steam flowing into the hollow chamber (c) of the bearing stand 0υ becomes higher. Therefore, the temperature of the working fluid condensed and liquefied in the heat dissipation device O1l]) also increases, and the temperature rise of the bearing stand Ql) increases by the increased temperature. On the other hand, low-temperature steam flows not only into the heat radiating device 6υ but also into the other heat radiating device (8) from the hollow chamber (c) of the bearing stand o]) through the second communication pipe (181), and the steam flows into the heat radiating device ( In step 8), it mixes with the high-temperature steam that has flowed in from the hollow chamber (7) of the bearing pedestal (4), and as a result, the temperature of the steam that has flowed in from the hollow chamber (7) of the bearing pedestal (4) becomes lower. Therefore, the temperature of the working liquid condensed and liquefied in the heat dissipation device (8) is also lowered, and the temperature rise of the bearing stand (4) is reduced by the lowered temperature.

このような動作をくり返し行なうことにより、両軸受台
(4)、(6)の何れか一方の発熱量・温度上昇が増大
しはじめると、両軸受台(4)、師の温度上昇差を小さ
く抑えるように働き、両軸受台(4)、Ql)が平均的
に有効に冷却される。従って、工作機械においては軸受
部の熱変形・歪を最少限に抑えることができ、加工精度
を向上させることができる。
By repeating these operations, if the heat generation amount or temperature rise of either the bearing stands (4) or (6) begins to increase, the difference in temperature rise between the bearing stands (4) and (6) will be reduced. It works to suppress the cooling, and both bearing stands (4), Ql) are effectively cooled evenly. Therefore, in the machine tool, thermal deformation and distortion of the bearing portion can be suppressed to a minimum, and machining accuracy can be improved.

なお、上記実施例では冷却ファン(9)、aυを用いた
場合にらいて述べたが、冷却ファン(9)、0])を用
いず自然風冷してもよく、あるいは冷却源として冷却風
以外の冷却水・油などを用いても同様な効果が得られる
In addition, although the above embodiment describes the case where the cooling fan (9), aυ is used, natural air cooling may be used without using the cooling fan (9), 0), or cooling air may be used as the cooling source. Similar effects can be obtained by using other cooling water, oil, etc.

また、上記実施例では中空室(7)、(ハ)が軸受台(
4)。
In addition, in the above embodiment, the hollow chambers (7) and (c) are
4).

01)にそれぞれ設けられた場合について述べたが、中
空室(7)、(71)を軸受(3)、0υ、あるいは軸
受(3)、01)ト軸受台(4) ’、(9)との間に
設けるように−してもよい。
01), but the hollow chambers (7) and (71) can be used as bearings (3), 0υ, or bearings (3), 01) and bearing stands (4)', (9). It may be provided between the two.

ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上記実施例と同様な効果を
奏する。
Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the above embodiment can be obtained.

この発明は以上説明した通り、軸受部内部に形成され且
つ作動液体が封入される環状の中空室と、蒸気管と液管
により構成される配管により中空室と連通される放熱装
置とをそれぞれ有する第1゜第2の主軸装置、第1の主
軸装置の蒸気管と第2の主軸装置の放熱装置とを連通す
る第1の連通管、第2の主軸装置の蒸気管と第1の主軸
装置の放熱装置とを連通ずる第2の連通管を設け、軸受
部の熱量を中空室から放熱装置に熱輸送するようにした
ことにより、軸受部の熱量を速やかに奪い効率よく且つ
平均的に冷却できるので、軸受部の熱変形・歪を最少限
に抑制し工作機械等の加工精度を向上できるという実用
上極めて大きな効果がある。
As explained above, the present invention includes an annular hollow chamber formed inside the bearing portion and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. 1゜Second main shaft device, first communication pipe that communicates the steam pipe of the first main shaft device and the heat dissipation device of the second main shaft device, the steam pipe of the second main shaft device and the first main shaft device By providing a second communication pipe that communicates with the heat dissipation device and transporting the heat of the bearing from the hollow chamber to the heat dissipation device, the heat of the bearing is quickly removed and cooled efficiently and evenly. As a result, thermal deformation and distortion of the bearing portion can be minimized and the machining accuracy of machine tools can be improved, which is extremely effective in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の多軸冷却装置を示す断面側面
図、第8図及び第4図はこの発明の一実施例による多軸
冷却装置を示すブロック図及び断面側面図である。 図において、(1)、Qυは第1.第2の主軸装置、(
4)、Qυは軸受台、(7)、(7])は中空室、(8
) 、 @])は放熱装置、00.(6)並びに(10
1)、 (121)は配管、α■。 (181)は第1.第2の連通管である。 尚、図中同一符号は同−又は相当部分を示す。 代理人  葛 野 信 − 第114 第2図 第3図 1
1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 8 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, (1), Qυ is the first. Second spindle device, (
4), Qυ is the bearing stand, (7), (7]) is the hollow chamber, (8
), @]) is a heat dissipation device, 00. (6) and (10
1), (121) is piping, α■. (181) is the first. This is the second communication pipe. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - No. 114 Figure 2 Figure 3 1

Claims (4)

【特許請求の範囲】[Claims] (1)軸受部内部に形成され、且つ作動液体が封入され
る環状の中空室と、蒸気管と液管により構成される配管
により上記中空室と連通される放熱装置とをそれぞれ有
する第1.第2の主軸装置、上記第1の主軸装置の蒸気
管と上記第2の主軸装置の放熱装置とを連通ずる第1の
連通管、上記第2の主軸装置の蒸気管と上記第1の主軸
装置の放熱装置とを連通ずる第2の連通管を備えたこと
を特徴とする多軸冷却装置
(1) A first component having an annular hollow chamber formed inside the bearing portion and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. a second main shaft device; a first communication pipe that communicates the steam pipe of the first main shaft device with the heat dissipation device of the second main shaft device; a steam pipe of the second main shaft device and the first main shaft; A multi-axis cooling device characterized by comprising a second communication pipe that communicates with a heat dissipation device of the device.
(2)中空室は軸受台に形成されたことを特徴とする特
許請求の範囲第1項記載の多軸冷却装置。
(2) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing stand.
(3)中空室は軸受に形成されたことを特徴とする特許
請求の範囲第1項記載の多軸冷却装置。
(3) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing.
(4)中空室は軸受台と軸受との間に形成されたことを
特徴とする特許請求の範囲第1項記載の多軸冷却装置。
(4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing stand and the bearing.
JP23172482A 1982-12-24 1982-12-24 Multi-spindle cooling device Granted JPS59118344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23172482A JPS59118344A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23172482A JPS59118344A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Publications (2)

Publication Number Publication Date
JPS59118344A true JPS59118344A (en) 1984-07-09
JPS6214385B2 JPS6214385B2 (en) 1987-04-02

Family

ID=16928026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23172482A Granted JPS59118344A (en) 1982-12-24 1982-12-24 Multi-spindle cooling device

Country Status (1)

Country Link
JP (1) JPS59118344A (en)

Also Published As

Publication number Publication date
JPS6214385B2 (en) 1987-04-02

Similar Documents

Publication Publication Date Title
JPS59118344A (en) Multi-spindle cooling device
JPS6233453B2 (en)
JPS59118345A (en) Multi-spindle cooling device
JPS59118346A (en) Multi-spindle cooling device
JPS59118349A (en) Multi-spindle cooling device
JPS6218308B2 (en)
JPS59118338A (en) Multi-spindle cooling device
JPS59118362A (en) Multi-spindle cooling device
JPS58193929A (en) Multispindle cooler
JPS59118350A (en) Multi-spindle cooling device
JPS6216776B2 (en)
JPS6216785B2 (en)
JPS6216777B2 (en)
JPS6218309B2 (en)
JPS6216779B2 (en)
JPS59118336A (en) Multi-spindle cooling device
JPS6214383B2 (en)
JPS59118339A (en) Multi-spindle cooling device
JPS6216783B2 (en)
JPS6214388B2 (en)
JPS59118337A (en) Multi-spindle cooling device
JPS59118333A (en) Multi-spindle cooler
JPS58206346A (en) Multispindle cooling system
JPS58193927A (en) Multispindle cooler
JPS59118330A (en) Multi-spindle cooler