JPS59118346A - Multi-spindle cooling device - Google Patents
Multi-spindle cooling deviceInfo
- Publication number
- JPS59118346A JPS59118346A JP23172682A JP23172682A JPS59118346A JP S59118346 A JPS59118346 A JP S59118346A JP 23172682 A JP23172682 A JP 23172682A JP 23172682 A JP23172682 A JP 23172682A JP S59118346 A JPS59118346 A JP S59118346A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- liquid
- hollow chamber
- heat
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
- B23Q11/127—Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.
従来この種の装置としては第1図及び第2図をこ示すも
のがあった。これら各図において、(1)、αpは工作
機械の第1.第2の主軸装置であり、ス/sOンPの間
隔で配置されている。(2)、@υは主軸、(3)、0
1)は軸受、(4)、Qυは軸受台、(5)、(51)
はプーリ、(6)はベッドである。Conventionally, there have been devices of this type shown in FIGS. 1 and 2. In each of these figures, (1), αp is the first point of the machine tool. This is a second spindle device and is arranged at an interval of S/sONP. (2), @υ is the principal axis, (3), 0
1) is the bearing, (4), Qυ is the bearing stand, (5), (51)
is a pulley, and (6) is a bed.
次に動作について説明する。図示しない駆動用電動機に
より■ベルトを介してプーリ(5)、Gυに伝えられた
回転力によって主軸(2)、eυを回転させる。Next, the operation will be explained. A driving electric motor (not shown) rotates the main shaft (2) and eυ by the rotational force transmitted to the pulley (5) and Gυ via the belt.
この時、主軸(,2) 、 (21)と軸受台(4)、
θ◇との間に位置する軸受(3)、C31)は主軸(2
)、■υが円滑に回転することを助ける目的をもってい
るが、回転とともに軸受(3)、<31)は摩擦により
発熱し温度上昇する。軸受(3)、C(υに生じた熱量
は軸受台(4)、(41)に伝わり、ベッド(6)およ
び周囲空気へ伝熱して放熱する。この際に軸受台(4)
、■は温度上昇し、各部は熱膨張による種々の熱変形・
歪を生じる。このため主軸(2)。At this time, the main shaft (,2), (21) and the bearing stand (4),
The bearing (3), C31) located between θ◇ is connected to the main shaft (2
) and ■υ to rotate smoothly, but as the bearings (3) and <31) rotate, they generate heat due to friction and their temperature rises. The amount of heat generated in the bearing (3), C(υ) is transmitted to the bearing pedestal (4), (41), and is transferred to the bed (6) and the surrounding air, where it radiates heat.
, ■ The temperature rises, and each part undergoes various thermal deformations and changes due to thermal expansion.
Causes distortion. For this reason, the main axis (2).
■υの位置が変動し、被加工物を機械加工するときに加
工精度が低下するという欠点があった。さらに、相互間
の主軸(2)、■υの位置の変動に差を生じると同時に
複数の加工を行なう際に相互の加工精度に差を生じると
いう欠点があった。■There was a drawback that the position of υ fluctuated and the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback that there is a difference in the positional fluctuations of the main axis (2) and ■υ between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、第1.第2の主軸装置を有効
に且つ平均的に冷却することができる多軸冷却装置を提
供することを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.
以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第8図は機能系統を示すブロック図、第4
図は断面側面図であり、これら各図において、(7)、
(7])は軸受台(4)、(/41)の内部に形成され
た環状の中空室、(8)、6υは放熱装置であり、冷却
ファン(9)、(9])により冷却されている。α0゜
(101)は中空室(7)、(ハ)と放熱装置(s)、
t81)をそれぞれ連通ずる蒸気管、(1秒、 (1
21)は中空室(7) 、 (7])と放熱装置(s)
、$1)をそれぞれ連通する液管である。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 8 is a block diagram showing the functional system.
The figures are cross-sectional side views, and in each of these figures, (7),
(7]) is an annular hollow chamber formed inside the bearing stand (4), (/41), (8), 6υ is a heat dissipation device, which is cooled by cooling fans (9), (9]). ing. α0゜(101) is the hollow chamber (7), (c) and the heat dissipation device (s),
t81), respectively, (1 second, (1
21) is a hollow chamber (7), (7]) and a heat dissipation device (s)
, $1), respectively.
α埠は液管(6)と中空室συとを連通ずる第1の連通
管、(131)は液管(121)と中空室(7)とを連
通ずる第2の連通室である。α Pit is a first communication pipe that communicates between the liquid pipe (6) and the hollow chamber συ, and (131) is a second communication chamber that communicates between the liquid pipe (121) and the hollow chamber (7).
尚、中空室(7)、(2)および放熱装置(8)、Q3
υ、蒸気管θす、 (101)、液管α2. (1
21)の内部を真空減圧後、アンモニア、フロン等の作
動液体がその内部に所定量封入される。In addition, the hollow chambers (7), (2) and the heat dissipation device (8), Q3
υ, steam pipe θS, (101), liquid pipe α2. (1
After reducing the pressure inside 21), a predetermined amount of working liquid such as ammonia or fluorocarbon is sealed inside.
次に動作について説明する。軸受台(4)、(41)で
受熱した軸受<3)、eυの熱量は中空室(7)、(7
υ内のフロン等の作動液体を加熱して気化させる際に蒸
気潜熱として奪われ、気化したフロン等の蒸気は自身の
蒸気圧を利用して蒸気管Q(11,(101)を経て放
熱装置(8) 、 Bl)へ移動し、冷却ファン(9)
、aυにより周囲空気により冷やされる。このとき、フ
ロン等の蒸気は凝縮して液体に戻るが、凝縮潜熱を周囲
空気に放出し、軸受(3)、0υの熱量を周囲空気へ放
熱する。凝縮した作動液体は液管(6)、 (121
)を経て重力を利用して軸受台(4)、(41)の中空
室(7)、(71)へ戻る。また、液管(6)を通る作
動液体の一部は第1の連通管(13を経て軸受台0])
の中空室(ハ)に流入し、液管(121)を通る作動液
体の一部は第2の連通管(131)を経て軸受台(4)
の中空室(7)に流入する。このような動作をくり返し
行なうことにより、軸受台(4)、Q])の熱量を放熱
装置(8)、el)に熱輸送して効率よく冷却するよう
にしている。Next, the operation will be explained. The amount of heat received by the bearings <3) and eυ in the bearing stands (4) and (41) is
When the working liquid such as Freon in υ is heated and vaporized, it is taken away as vapor latent heat, and the vapor of the vaporized Freon, etc. uses its own vapor pressure to pass through the steam pipes Q (11, (101)) to the heat dissipation device. (8), move to Bl) and install the cooling fan (9)
, aυ by the surrounding air. At this time, the vapor of fluorocarbon or the like condenses and returns to liquid, but releases the latent heat of condensation to the surrounding air, and the bearing (3) radiates a heat amount of 0υ to the surrounding air. The condensed working liquid is transferred to liquid pipes (6), (121
) and return to the hollow chambers (7) and (71) of the bearing stands (4) and (41) using gravity. In addition, a part of the working liquid passing through the liquid pipe (6) is transferred to the first communication pipe (via 13 to the bearing base 0).
A part of the working liquid that flows into the hollow chamber (c) and passes through the liquid pipe (121) passes through the second communication pipe (131) to the bearing stand (4).
into the hollow chamber (7). By repeating such operations, the amount of heat in the bearing stand (4), Q]) is transported to the heat dissipation device (8), el) for efficient cooling.
ところで、軸受台(4)が他方の軸受台(41)に比べ
温度上昇(熱量)が大きくなると、軸受台(4)の中空
室(7)内の作動液体の蒸気化の際の蒸気量・圧力温度
が他方に比べ大きくなる。従って、より大きな蒸発潜熱
を奪い軸受台(4)をより大きく冷却し、軸受台(4)
の温度上昇を他方の軸受台Ql)−より大きくなるのを
抑制するように働く。そして、軸受台(4)の中空室(
7)内にて気化した圧力・温度の高い蒸気は蒸気管00
を経て放熱装置(8)へ移動し、放熱装置(8)にて凝
縮液化した作動液体は放熱装置t81)にて凝縮する作
動液体に比べ温度が高く、液管θ9を経て軸受台(4)
の中空室(7)に流入し、また、液管(121)を通る
温度の低い作動液体の一部が第2の連通管(181)を
経て軸受台(4)の中空室(7)に流入し、軸受台(4
)の中空室(7)内の作動液体の温度を低くして軸受台
(4)の温度上昇を低減している。一方、軸受台0〃の
中空室(7])には放熱装置侶υにて凝縮液化した温度
の低い作動液体が液管(121)を経て流入し、また、
液管(2)を通る温度の高い作動液体の一部が第1の連
通管(13を経て流入し、軸受台(9)の中空室n内の
作動液体の温度を高めてその分tごけ軸受台0])の温
度上昇を増大している。その結果、軸受台(4)におい
ては作動液体の温度の低い分だけ冷やされ温度上昇が減
少し、軸受台(!4υにおいては作動液体の温度が高い
分だけ暖められ温度上昇が増大し、両軸受台(4)、(
4ηの温度上昇が小さく抑えられる。By the way, if the temperature rise (calorific value) of the bearing pedestal (4) is larger than that of the other bearing pedestal (41), the amount of vapor during vaporization of the working liquid in the hollow chamber (7) of the bearing pedestal (4) will decrease. The pressure and temperature are higher than the other. Therefore, more latent heat of vaporization is taken away and the bearing pedestal (4) is cooled more.
It works to suppress the temperature rise of the other bearing stand from becoming larger than that of the other bearing stand Ql). Then, the hollow chamber of the bearing stand (4) (
7) Steam with high pressure and temperature vaporized in the steam pipe 00
The working liquid that is condensed and liquefied in the heat radiating device (8) has a higher temperature than the working liquid that condenses in the heat radiating device t81), and passes through the liquid pipe θ9 to the bearing stand (4).
A part of the low-temperature working liquid that flows into the hollow chamber (7) and passes through the liquid pipe (121) passes through the second communication pipe (181) and enters the hollow chamber (7) of the bearing stand (4). Inflow, bearing stand (4
) The temperature of the working fluid in the hollow chamber (7) is lowered to reduce the temperature rise of the bearing stand (4). On the other hand, low-temperature working liquid that has been condensed and liquefied in the heat dissipation device υ flows into the hollow chamber (7) of the bearing base 0 through the liquid pipe (121), and
A part of the high-temperature working liquid passing through the liquid pipe (2) flows through the first communication pipe (13), increases the temperature of the working liquid in the hollow chamber n of the bearing pedestal (9), and increases the temperature by that amount. This increases the temperature rise of the bearing stand 0]). As a result, the bearing pedestal (4) is cooled by the lower temperature of the working fluid, reducing the temperature rise, while the bearing pedestal (!4υ) is warmed by the higher temperature of the working fluid, increasing the temperature rise, and both Bearing stand (4), (
The temperature rise of 4η can be suppressed to a small level.
このような動作をくり返し行なうことにより、両輪受台
(rG、(4IJの何れが一方の発熱量・温度上昇が増
大しはじめると、両軸受台(4)、(41)の温度上昇
差を小さく抑えるように働き、両軸受台(4)、(41
)が平均的に有効に冷却される。従って、工作機械にお
いては軸受部の熱変形・歪を最小限に抑えることができ
、加工精度を向上させることができる。By repeating these operations, if either of the two wheel cradle (rG, (4IJ) starts to increase the heat generation amount/temperature rise of one of them, the difference in temperature rise between the two bearing pedestals (4) and (41) will be reduced. It works to suppress both bearing stands (4), (41
) are effectively cooled on average. Therefore, in the machine tool, thermal deformation and distortion of the bearing portion can be minimized, and machining accuracy can be improved.
なお、上記実施例では冷却ファン(9)、alυを用い
た場合について述べたが、冷却ファン(9)、Gυを用
いず自然風冷してもよく、あるいは冷却源とじて冷却風
以外の冷却水・油などを用いても同様な効果が得られる
。In the above embodiment, a case was described in which the cooling fan (9) and alυ were used, but natural air cooling may be used without using the cooling fan (9) and Gυ, or cooling other than cooling air may be used as the cooling source. A similar effect can be obtained using water, oil, etc.
また、上記実施例では中空室(7) 、 (71)が軸
受台(4)。Further, in the above embodiment, the hollow chambers (7) and (71) are the bearing stands (4).
Ql)にそれぞれ設けられた場合について述べたか、中
空室(7)、(71)を軸受(3)、43])、あるい
は軸受(3)、0υと軸受台(4) 、 Q])との間
に設けるようにしてもよい。The hollow chambers (7), (71) are connected to the bearings (3), 43]), or the bearings (3), 0υ and the bearing stand (4), Q]). It may be provided in between.
ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上記実施例と同様な効果を
奏する。Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通り、軸受部内部に形成され且
つ作動液体が封入される環状の中空室と、蒸気管と液管
により構成される配管により中空室と連通される放熱装
置とをそれぞれ有する第1゜第2の主軸装置、第1の主
軸装置の液管と第2の主軸装置の中空室とを連通ずる第
1の連通管、第2の主軸装置の液管と第1の主軸装置の
中空室とを連通ずる第2の連通管を設け、軸受部の熱量
を中空室から放熱装置に熱輸送するようにしたことによ
り、軸受部の熱量を速やかに奪い効率よく且つ平均的に
冷却できるので、軸受部の熱変形・歪を最少限に抑制し
工作機械等の加工精度を向上できるという実用上極めて
大きな効果がある。As explained above, the present invention includes an annular hollow chamber formed inside the bearing portion and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. 1゜Second spindle device, first communication pipe that communicates the liquid pipe of the first spindle device with the hollow chamber of the second spindle device, the liquid pipe of the second spindle device and the first spindle device By providing a second communication pipe that communicates with the hollow chamber and transporting the heat of the bearing section from the hollow chamber to the heat dissipation device, the heat of the bearing section is quickly removed and cooled efficiently and evenly. As a result, thermal deformation and distortion of the bearing portion can be minimized and the machining accuracy of machine tools can be improved, which is extremely effective in practical terms.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図、第3図及び第4図はこの発明の一実施例による多軸
冷却装置を示すブロック図及び断面側面図である。
図において、(1)、01)は第1.第2の主軸装置、
(41,(4υは軸受台、(7)、(7υは中空室、(
8)、61)は放熱装置、(+1.(19並びにtll
OL)、 (121)は配管、α■。
(181)は第1.第2の連通管である。
尚、図中同一符号は同−又は相当部分を示す。
代理人 葛 野 信 −
第1図
第2図
第3図1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, (1), 01) is the first. a second spindle device;
(41, (4υ is a bearing stand, (7), (7υ is a hollow chamber, (
8), 61) are heat dissipation devices, (+1.(19 and tll
OL), (121) is piping, α■. (181) is the first. This is the second communication pipe. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3
Claims (4)
る環状の中空室と、蒸気管と液管により構成される配管
により上記中空室と連通される放熱装置とをそれぞれ有
する第1.第2の主軸装置、上記第1の主軸装置の液管
と上記第2の主軸装置の中空室とを連通ずる第1の連通
管、上記第2の主軸装置の液管と上記第1の主軸装置の
中空室とを連通ずる第2の連通管を備えたことを特徴と
する多軸冷却装置。(1) A first component having an annular hollow chamber formed inside the bearing portion and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. a second main shaft device; a first communication pipe that communicates the liquid pipe of the first main shaft device with the hollow chamber of the second main shaft device; a liquid pipe of the second main shaft device and the first main shaft; A multi-axis cooling device characterized by comprising a second communication pipe that communicates with a hollow chamber of the device.
許請求の範囲第1項記載の多軸冷却装置。(2) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing stand.
請求の範囲第1項記載の多軸冷却装置。(3) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing.
とを特徴とする特許請求の範囲第1項記載の多軸冷却装
置。(4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing stand and the bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23172682A JPS59118346A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23172682A JPS59118346A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59118346A true JPS59118346A (en) | 1984-07-09 |
JPS6216775B2 JPS6216775B2 (en) | 1987-04-14 |
Family
ID=16928058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23172682A Granted JPS59118346A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59118346A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728838U (en) * | 1980-07-25 | 1982-02-15 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH553371A (en) * | 1972-12-20 | 1974-08-30 | Bbc Sulzer Turbomaschinen | HOLLOW BODY FOR HEATED GASES. |
-
1982
- 1982-12-24 JP JP23172682A patent/JPS59118346A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728838U (en) * | 1980-07-25 | 1982-02-15 |
Also Published As
Publication number | Publication date |
---|---|
JPS6216775B2 (en) | 1987-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59118346A (en) | Multi-spindle cooling device | |
JPS59118344A (en) | Multi-spindle cooling device | |
JPS6233453B2 (en) | ||
JPS6218308B2 (en) | ||
JPS59118336A (en) | Multi-spindle cooling device | |
JPS6218309B2 (en) | ||
JPS59118340A (en) | Multi-spindle cooling device | |
JPS59118345A (en) | Multi-spindle cooling device | |
JPS59118349A (en) | Multi-spindle cooling device | |
JPS59118350A (en) | Multi-spindle cooling device | |
JPS59118338A (en) | Multi-spindle cooling device | |
JPS59118354A (en) | Multi-spindle cooling device | |
JPS58193927A (en) | Multispindle cooler | |
JPS58206346A (en) | Multispindle cooling system | |
JPS59118348A (en) | Multi-spindle cooling device | |
JPS6214383B2 (en) | ||
JPS6216779B2 (en) | ||
JPS59118337A (en) | Multi-spindle cooling device | |
JPS6216785B2 (en) | ||
JPS59118362A (en) | Multi-spindle cooling device | |
JPS6216776B2 (en) | ||
JPS58193929A (en) | Multispindle cooler | |
JPS6216783B2 (en) | ||
JPS6216787B2 (en) | ||
JPS59118355A (en) | Multi-spindle cooling device |