JPS59118339A - Multi-spindle cooling device - Google Patents
Multi-spindle cooling deviceInfo
- Publication number
- JPS59118339A JPS59118339A JP23171982A JP23171982A JPS59118339A JP S59118339 A JPS59118339 A JP S59118339A JP 23171982 A JP23171982 A JP 23171982A JP 23171982 A JP23171982 A JP 23171982A JP S59118339 A JPS59118339 A JP S59118339A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- heat
- hollow chamber
- vapor
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
- B23Q11/127—Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.
従来この種の装置としては第1図及び第2図に示すもの
かあつtコ。これら各図において、<1)、(11)は
工作機械の第1.第2の主軸装置であり、スパンPの間
隔で配置されている。(2)、(ハ)は主軸、(3L(
31)は軸受、(4Lt4υは軸受台、(5L f51
+はプーリ、(6)はベッドである。Conventional devices of this type include those shown in FIGS. 1 and 2. In each of these figures, <1) and (11) are the first . This is a second spindle device and is arranged at intervals of span P. (2), (c) is the main axis, (3L(
31) is a bearing, (4Lt4υ is a bearing stand, (5L f51
+ is a pulley, and (6) is a bed.
次に動作について説明する。図示しない駆動用電動機に
よりVベルトを介してプーリ(5) (5υに伝えられ
た回転力によって主軸(2)、C!l)を回転させる。Next, the operation will be explained. A driving electric motor (not shown) rotates the main shaft (2), C!l by the rotational force transmitted to the pulley (5) (5υ) via the V-belt.
この時、主軸(2)lGiυと軸受台(4)、←υとの
間に位置する軸受(3)、 11)は主軸(2L6!υ
が円滑に回転することを助ける目的をもっているが、回
転とともに軸受(3)、 (31!は摩擦により発熱し
温度上昇する。軸受f:”) + (:t+)に生じた
熱量は軸受台(4L (41)に伝わり、ベッド(6)
および周囲空気へ伝熱して放熱する。この際に軸受台(
4L +4])は温度上昇し、各部は熱膨張による種々
の熱変形・歪を生じる。このため主軸(2)。At this time, the bearings (3), 11) located between the main shaft (2) lGiυ and the bearing stand (4), ←υ are connected to the main shaft (2L6!υ
The purpose is to help the bearings (3) and (31!) rotate smoothly, but as they rotate, the bearings (3) and (31!) generate heat due to friction and rise in temperature. Transferred to 4L (41), bed (6)
and radiates heat by transferring it to the surrounding air. At this time, the bearing stand (
4L +4]) increases in temperature, and various parts undergo various thermal deformations and strains due to thermal expansion. For this reason, the main axis (2).
+2])の位置が変動し、被加工物を機械加工するとき
に加工精度が凹下するという欠点があった。さらに、相
互間の主軸(2)・シj)の位置の変動に差を生じると
同時に複数の加工を行なう際に相互の加工精度に差を生
じるという欠点があった。+2]) position fluctuates, and the machining accuracy decreases when machining the workpiece. Further, there is a drawback that there is a difference in the positional fluctuations of the main shafts (2) and shij) between them, and at the same time there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、第1.第2の主軸装置に有効
に且つ平均的に冷却することができる多軸冷却装置を提
供することを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.
以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第8図は機能系統を示すブロック図、第4
図は断面側面図であり、これら各図において、(7L
ff1lは軸受台(4)+(団の内部に形成された環状
の中空室、(8)は放熱装置であり、冷却ファン(9)
により冷却されている。QO,(101)は中空室(7
)、συで気化する作動液体の蒸気をそれぞれ放熱装置
(8目こ案内すると共に例えばベローズ等の伸縮可能な
フレキシブル部(xoa) 、 (Ioia)を有する
第1、第2の蒸気管、(イ)、 (121)は放熱装置
(8)で凝縮液化する作動液体を第1、第2の蒸気管(
1(!、 (101)を通じて軸受台(4)、t4υの
中空室(7)、 (71+にそれぞれ案内すると共に例
えばベローズ等の伸縮可能なフレキシブル部(12a)
、(121a)を有する第1.第2の液管である。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 8 is a block diagram showing the functional system.
The figures are cross-sectional side views, and in each of these figures, (7L
ff1l is a bearing stand (4) + (an annular hollow chamber formed inside the group, (8) is a heat dissipation device, and a cooling fan (9)
It is cooled by QO, (101) is a hollow chamber (7
), first and second steam pipes (i.e. ), (121) transfers the working liquid that is condensed and liquefied in the heat dissipation device (8) to the first and second steam pipes (
1 (!, (101) to the bearing stand (4), t4υ hollow chamber (7), (71+), respectively, and an expandable and contractible flexible part (12a) such as a bellows etc.
, (121a). This is the second liquid pipe.
尚、中空室(7)、συおよび放熱装置(8)、第1.
第2の蒸気管QO,(101) 、第1.第2の液管(
2)、 (121)の内部を真空減圧後、アンモニア、
フロン等の作動液体がその内部に所定量封入される。In addition, the hollow chamber (7), συ and the heat dissipation device (8), the first.
2nd steam pipe QO, (101), 1st. Second liquid pipe (
2) After vacuum depressurizing the inside of (121), ammonia,
A predetermined amount of working fluid such as fluorocarbon is sealed inside.
次に動作について説明する。軸受台(4)、 (411
で受熱した軸受(3)、 (311の熱量は中空室(7
)、σ1)内のフロン等の作動液体を加熱して気化させ
る際に蒸発潜熱として奪われ、気化したフロン等の蒸気
は自身の蒸気圧を利用して第1.第2の蒸気管Q(1,
(101)を経て放熱装置(8)へ移動し、冷却ファン
(9)により周囲空気により冷やされる。このとき、フ
ロン等の蒸気は凝縮して液体に戻るが、凝縮潜熱を周囲
空気に放出し、軸受(3)、 Hの熱量を周囲空気へ放
熱する。凝縮した作動液体は第1.第2の液管@。Next, the operation will be explained. Bearing stand (4), (411
The heat of the bearing (3), (311) received by the hollow chamber (7
), σ1) When heating and vaporizing the working liquid such as fluorocarbon, it is taken away as latent heat of vaporization, and the vapor of the vaporized fluorocarbon uses its own vapor pressure to return to the first . Second steam pipe Q(1,
(101) to the heat dissipation device (8), where it is cooled by the surrounding air by the cooling fan (9). At this time, vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released to the surrounding air, and the amount of heat from the bearings (3) and H is radiated to the surrounding air. The condensed working liquid is the first. Second liquid pipe @.
t121)を経て重力を利用して第1.第2の蒸気管0
0゜(101)を経て軸受台(4) 、 +4]1の中
空室(7L (711へ戻る。t121) and the first one using gravity. Second steam pipe 0
After passing through 0° (101), return to the bearing stand (4), +4]1 hollow chamber (7L (711).
このような動作をくり返し行なうことにより、軸受8(
4) r t411の熱量を放熱装置(8)に熱輸送し
て効率よく冷却するようにしている。By repeating this operation, the bearing 8 (
4) The amount of heat of r t411 is transported to the heat dissipation device (8) for efficient cooling.
ところで、軸受台(4)が他方の軸受台(41)に比べ
温度上昇(熱量)が大きくなると、軸受台(4)の中空
室(7)内の作動液体は気化する際に軸受台(411の
中空室(7+)内の作動液体に比べより大きな蒸気量・
蒸気圧・蒸気温度となる。従って、より大きな蒸気量と
なる分だけ蒸発潜熱を大きく奪い、より大きく冷却し、
軸受台(4)の温度上昇が軸受台(411より大きくな
るのを抑制するように働く。そして、軸受台(4)の中
空室(7)内にて気化した温度の高い蒸気は第1の蒸気
管00を経て放熱装置(8)へ移動して凝縮化する。一
方、軸受台(41)は軸受台(4)に比べ温度上昇が小
さく、軸受台(4紛の中空室(71)内の作動液体は軸
受台(4)の中空室(7)内の作動液体に比べ気化する
際の蒸気量・蒸気圧・蒸気温度が低い。従って、軸受台
@υの中空室συ内にて気化した温度の低い蒸気は第2
の蒸気管(101)を経て放熱装置(8)へ移動して凝
縮液化する。By the way, when the temperature rise (calorific value) of the bearing pedestal (4) becomes larger than that of the other bearing pedestal (41), the working liquid in the hollow chamber (7) of the bearing pedestal (4) vaporizes, causing the bearing pedestal (411) to increase in temperature. A larger amount of vapor than the working liquid in the hollow chamber (7+)
Steam pressure and steam temperature. Therefore, as the amount of steam increases, more latent heat of vaporization is taken away, and more cooling is achieved.
It works to suppress the temperature rise of the bearing pedestal (4) from becoming larger than that of the bearing pedestal (411).Then, the high temperature steam vaporized in the hollow chamber (7) of the bearing pedestal (4) is It moves to the heat dissipation device (8) through the steam pipe 00 and is condensed.On the other hand, the temperature rise in the bearing pedestal (41) is smaller than that in the bearing pedestal (4). The working liquid has a lower vapor volume, vapor pressure, and vapor temperature when vaporized than the working liquid in the hollow chamber (7) of the bearing stand (4).Therefore, it vaporizes in the hollow chamber συ of the bearing stand @υ. The lower temperature steam is the second
The steam passes through the steam pipe (101) to the heat dissipation device (8), where it is condensed and liquefied.
しかるに、温度の高い蒸気は凝縮液化した際の温度が高
く、温度の低い蒸気は凝縮液化した際の温度が低い。放
熱装置(8)においては温度の高い凝縮液化した作動液
体と温度の低い凝縮液化した作動液体とが混合して平均
化した温度の作動液体となる。この平均化された温度の
作動液体が第1゜第2の液管(6)、 (121)によ
り第1.第2の蒸気管(10゜(101)を経てそれぞ
れ軸受台(4) + 1++ (7)中空室(7)、
ffl+に戻る。即ち、軸受台(4ンの中空室(7)に
は低くなった温度の作動液体が戻り、その低くなった分
だけ冷やされて軸“受台(4)の温度上昇が減少し、軸
受台t411の中空室つりには高くなった温度の作動液
体が戻り、その高くなった分だけ暖められて軸受台(仙
の温度上昇が増大し、両軸受台(4) 、 t411の
温度上昇差が小さく抑えられる。このような動作をくり
返し行なうことにより、両軸受台(4) l tii+
の何れか一方の発熱量・温度上昇が増大しはじめると、
両軸受台(4)、(4IIの温度上昇差を小さく抑える
ように働き、両軸受台(4Lt4υが平均的に有効に冷
却される。従つ゛C1工作機械においては軸受部の熱変
形・歪を最少限に抑えることができ、加工精度を向上さ
せることができる。また、主軸(2)と主軸Qυとのス
パンPを蒸気IFH,(101)のフレキシブル部(1
0a) 。However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied. In the heat dissipation device (8), the high temperature condensed liquefied working liquid and the low temperature condensed liquefied working liquid are mixed to form a working liquid having an average temperature. The working liquid at this averaged temperature is transferred to the first and second liquid pipes (6) and (121). through the second steam pipe (10° (101), respectively bearing pedestal (4) + 1++ (7) hollow chamber (7),
Return to ffl+. In other words, the working fluid at a lower temperature returns to the hollow chamber (7) of the bearing pedestal (4), and is cooled by the lowered temperature, reducing the temperature rise of the shaft pedestal (4). The working fluid at a higher temperature returns to the hollow chamber of t411, and is warmed by the increased temperature, increasing the temperature rise of the bearing pedestal (4) and increasing the temperature rise difference between the two bearing pedestals (4) and t411. By repeating this operation, both bearing stands (4) can be kept small.
When the calorific value/temperature rise of either one starts to increase,
It works to suppress the difference in temperature rise between both bearing stands (4) and (4II), and both bearing stands (4Lt4υ) are effectively cooled on the average. It is possible to minimize the span P between the spindle (2) and the spindle Qυ, and the flexible part (101) of the
0a).
(101a)並びに液管(2)、 (121)のフレキ
シブル部(12a)。(101a) and the flexible part (12a) of the liquid pipe (2) and (121).
(121a)の伸縮範囲内で可変とすることができる。It can be made variable within the expansion/contraction range of (121a).
尚、上記実施例では冷却ファン(9)を用いた場合につ
いて述べたが、冷却ファン(9)を用いず自然風冷して
もよく、あるいは冷却源として冷却風以外の冷却水・油
などを用いても同様の効果が得られる。In the above embodiment, a case was described in which a cooling fan (9) was used, but natural air cooling may be used without using a cooling fan (9), or cooling water, oil, etc. other than cooling air may be used as a cooling source. Similar effects can be obtained by using
また、上記実施例ではフレキシブル部(10a) +Q
oia)並びに(12a) 、(121a)をベローズ
で構成する場合について述べたが、ベローズ以外で伸縮
可能なフレキシブル部を構成するようにしてもよい。Moreover, in the above embodiment, the flexible part (10a) +Q
oia), (12a), and (121a) are constructed of bellows, but the flexible portion that can be expanded and contracted may be constructed of something other than the bellows.
また、上記実施例では中空室(7)、 ff1lが軸受
台(4)。Further, in the above embodiment, the hollow chamber (7) and ff1l are the bearing pedestals (4).
(41)にそれぞれ設けられた場合について述べたが、
中空室(7>、Vυを軸受(3) + c311あるい
は軸受(3)、 011と軸受台(4L t4]1との
間に設けるようにしてもよい。We have discussed the cases in which (41) is provided, but
The hollow chamber (7>, Vυ) may be provided between the bearing (3) + c311 or between the bearing (3), 011 and the bearing stand (4L t4) 1.
ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上記実施例と同様な効果を
奏する。Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通り、軸受台内部に形成され且
つ作動液体が封入される環状の中空室をそれぞれ有する
第1.第2の主軸装置、この第1゜第2の主軸装置の熱
量を放熱する放熱装置、第1゜第2の主軸装置の中空室
で気化する作動液体の蒸気を放熱装置にそれぞれ案内す
ると共に伸縮可能なフレキシブル部を有する第1.第2
の蒸気管、放熱装置で凝縮液化する作動液体を第1.第
2の蒸気管を通じて第1.第2の主軸装置の中空室にそ
れぞれ案内すると共に伸縮可能なフレキシブル部を有す
る第1.第2の液管を設け、軸受台の熱量を中空室から
放熱装置に熱輸送するようにしたことにより、軸受部の
熱量を速やかに奪い効率よく且つ平均的に冷却できるの
で、軸受部の熱変形・歪を最少源に抑制し工作機械等の
加工精度を向上できるという実用上極めて大きな効果が
σ)る。As described above, the present invention provides first and second shafts each having an annular hollow chamber formed inside the bearing pedestal and filled with a working fluid. A second main shaft device, a heat radiating device that radiates the heat of the first and second main shaft devices, and a second main shaft device that guides the vapor of the working liquid that is vaporized in the hollow chamber of the second main shaft device to the heat radiating device and expands and contracts. The first with a possible flexible part. Second
The working liquid, which is condensed and liquefied in the steam pipe and heat dissipation device, is transferred to the first. The first steam pipe passes through the second steam pipe. The first spindle has flexible parts that are respectively guided into the hollow chambers of the second spindle device and are extendable and retractable. By providing a second liquid pipe and transporting the heat of the bearing pedestal from the hollow chamber to the heat dissipation device, the heat of the bearing can be rapidly removed and cooled efficiently and evenly. It has an extremely large practical effect of suppressing deformation and distortion to a minimum and improving the machining accuracy of machine tools.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図及び正面図、第3図及び第4図はこの発明の一実施例
による多軸冷却装置を示すブロック図及び断面側面臼で
ある。
図において、(1) 、 Q])は$1.第2の主軸装
置、(41+ (411は軸受台、(7)! 11[+
は中空室、(8)は放熱装置、01、 (101,)は
第1.第2の蒸気管、(10a)、 (101a)はフ
レキシブル部、(2)、 (121)は第1.第2の液
管、(12a) −(121a)はフレキシブル部であ
る。
尚、図中同一符号は同−又は相当部分を示す。
代理人 葛 野 信 −
第1図
第2図
第3図
8
11
第4図1 and 2 are a cross-sectional side view and a front view showing a conventional multi-shaft cooling device, and FIG. 3 and 4 are a block diagram and a cross-sectional side mill showing a multi-shaft cooling device according to an embodiment of the present invention. It is. In the figure, (1), Q]) is $1. Second spindle device, (41+ (411 is bearing stand, (7)! 11[+
is the hollow chamber, (8) is the heat dissipation device, 01, (101,) is the first. The second steam pipe, (10a) and (101a) are flexible parts, and the first steam pipe (2) and (121) are flexible parts. The second liquid pipes (12a) to (121a) are flexible parts. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3 Figure 8 11 Figure 4
Claims (4)
環状の中空室をそれぞれ有する第1.第2の主軸装置、
上記第1.第2の主軸装置の熱量を放熱する放熱装置、
上記第1.第2の主軸装置の中空室で気化する作動液体
の蒸気を上記放熱装置にそれぞれ案内すると共に伸縮可
能なフレキシブル部を有する第1.第2の蒸気管、上記
放熱装置で凝縮液化する作動液体を上記第1.第2の蒸
気管を通じて上記第1.第2の主軸装置の中空室にそれ
ぞれ案内すると共に伸縮可能なフレキシブル部を有する
第1.第2の液管を備えたことを特徴とする多軸冷却装
置。(1) The first bearing part has an annular hollow chamber formed inside the bearing part and in which the working liquid is sealed. a second spindle device;
Above 1. a heat radiating device that radiates heat from the second spindle device;
Above 1. The first main shaft device has a flexible portion that guides the vapor of the working liquid vaporized in the hollow chamber of the second main shaft device to the heat radiating device, and has an expandable and contractible flexible portion. A second steam pipe transfers the working liquid to be condensed and liquefied in the heat dissipation device to the first steam pipe. The first steam pipe is passed through the second steam pipe. The first spindle has flexible parts that are respectively guided into the hollow chambers of the second spindle device and are extendable and retractable. A multi-axis cooling device comprising a second liquid pipe.
許請求の範囲第1項記載の多軸冷却装置。(2) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing stand.
請求の範囲第1項記載の多軸冷却装置。(3) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing.
特徴とする特許請求の範囲第1項記載の多軸冷却装置。 り5)フレキシブル部はベローズで構成されたことを特
徴とする特許請求の範囲第1項ないし第4項の何れかに
記載の多軸冷却装置。(4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing and the bearing stand. 5) The multi-axis cooling device according to any one of claims 1 to 4, wherein the flexible portion is constructed of a bellows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23171982A JPS59118339A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23171982A JPS59118339A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59118339A true JPS59118339A (en) | 1984-07-09 |
Family
ID=16927943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23171982A Pending JPS59118339A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59118339A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604523A (en) * | 1983-01-15 | 1986-08-05 | Cambridge Instruments Limited | Scannable-beam microscopes and image stores therefor |
-
1982
- 1982-12-24 JP JP23171982A patent/JPS59118339A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604523A (en) * | 1983-01-15 | 1986-08-05 | Cambridge Instruments Limited | Scannable-beam microscopes and image stores therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59118339A (en) | Multi-spindle cooling device | |
JPS6214381B2 (en) | ||
JPS6216788B2 (en) | ||
JPS59118362A (en) | Multi-spindle cooling device | |
JPS58206351A (en) | Multiple spindle cooling device | |
JPS6216776B2 (en) | ||
JPS6214386B2 (en) | ||
JPH0565729B2 (en) | ||
JPS6214388B2 (en) | ||
JPS59118332A (en) | Multi-spindle cooler | |
JPS59118328A (en) | Multi-spindle cooler | |
JPS59118355A (en) | Multi-spindle cooling device | |
JPH0565728B2 (en) | ||
JPS59118333A (en) | Multi-spindle cooler | |
JPS59118349A (en) | Multi-spindle cooling device | |
JPS6363768B2 (en) | ||
JPS6214387B2 (en) | ||
JPS6214384B2 (en) | ||
JPS6216786B2 (en) | ||
JPS59118344A (en) | Multi-spindle cooling device | |
JPS6216780B2 (en) | ||
JPS6216784B2 (en) | ||
JPS59118338A (en) | Multi-spindle cooling device | |
JPS59118337A (en) | Multi-spindle cooling device | |
JPS6218310B2 (en) |