JPH0565728B2 - - Google Patents
Info
- Publication number
- JPH0565728B2 JPH0565728B2 JP57077959A JP7795982A JPH0565728B2 JP H0565728 B2 JPH0565728 B2 JP H0565728B2 JP 57077959 A JP57077959 A JP 57077959A JP 7795982 A JP7795982 A JP 7795982A JP H0565728 B2 JPH0565728 B2 JP H0565728B2
- Authority
- JP
- Japan
- Prior art keywords
- pipes
- cooling device
- bearing
- heat
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 24
- 230000017525 heat dissipation Effects 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 3
- 239000003570 air Substances 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸
受を冷却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device for cooling bearings such as a plurality of main shafts of a machine tool, for example.
従来この種の装置としては第1図及び第2図に
示すものがあつた。これら各図において、1,1
1は工作機械の第1、第2の主軸装置であり、図
示しない移動調整装置により任意のスパンPの間
隔で配置されている。2,21は主軸、3,31
は主軸2,21を支承する軸受、4,41は軸受
3,31を支持する軸受台、5,51はプーリ、
6はベツドである。 Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, 1, 1
Reference numeral 1 designates first and second spindle devices of the machine tool, which are arranged at an interval of an arbitrary span P by a movement adjustment device (not shown). 2, 21 are main shafts, 3, 31
are bearings that support the main shafts 2 and 21, 4 and 41 are bearing stands that support the bearings 3 and 31, and 5 and 51 are pulleys;
6 is bed.
次に動作について説明する。図示しない駆動用
電動機によりVベルトを介してプーリ5,51に
伝えられた回転力によつて主軸2,21を回転さ
せる。この時、主軸2,21と軸受台4,41と
の間に位置する軸受3,31は主軸2,21が円
滑に回転することを助ける目的をもつているが、
回転とともに軸受3,31は摩擦により発熱し温
度上昇する。軸受3,31に生じた熱量は軸受台
4,41に伝わり、ベツド6および周囲空気へ伝
熱して放熱する。この際に軸受台4,41は温度
上昇し、各部は熱膨脹による種々の熱変形・歪を
生じる。このため主軸2,21の位置が変動し、
被加工物を機械加工するときに加工精度が低下す
るという欠点があつた。さらに、相互間の主軸
2,21の位置の変動に差を生じると同時に複数
の加工を行なう際に相互の加工精度に差を生じる
という欠点があつた。 Next, the operation will be explained. The main shafts 2, 21 are rotated by the rotational force transmitted to the pulleys 5, 51 via the V-belt by a driving electric motor (not shown). At this time, the bearings 3, 31 located between the main shafts 2, 21 and the bearing stands 4, 41 have the purpose of helping the main shafts 2, 21 rotate smoothly.
As the bearings 3 and 31 rotate, they generate heat due to friction and their temperature increases. The amount of heat generated in the bearings 3, 31 is transmitted to the bearing stands 4, 41, and is transferred to the bed 6 and the surrounding air to radiate heat. At this time, the temperature of the bearing stands 4 and 41 increases, and various thermal deformations and strains occur in each part due to thermal expansion. For this reason, the positions of the main shafts 2 and 21 fluctuate,
There was a drawback that the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback that there is a difference in the positional fluctuations of the main shafts 2 and 21 between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除
去するためになされたものであり、第1、第2の
主軸装置を有効に且つ平均的に冷却することがで
きる多軸冷却装置を提供することを目的としてい
る。 This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and an object of the present invention is to provide a multi-shaft cooling device that can effectively and evenly cool the first and second main shaft devices. It is an object.
以下、この発明の一実施例を第8図及び第4図
に基づいて説明する。第8図は機能系統を示すブ
ロツク図、第4図は断面側面図であり、これら各
図において、7,71は軸受3,31と軸受台
4,41との間に形成された環状の中空室、8,
81は放熱装置であり、冷却フアン9,91によ
り冷却されている。10,11は中空室7と放熱
装置8を連通する一対の配管であり、それぞれ蒸
気管および液管の機能を果している。101,1
11中空室71と放熱装置81を連通する一対の
配管であり、それぞれ蒸気管および液管の機能を
果している。12は蒸気管10と101を連通す
ると共に例えばベローズ等の伸縮可能なフレキシ
ブル部12aを有する連通管、13は液管11と
111を連通すると共に例えばベローズ等の伸縮
可能なフレキシブル部13aを有する連通管であ
る。尚、中空室7,71および放熱装置8,8
1、蒸気管10,101、液管11,111の内
部を真空減圧後、アンモニア、フロン等の作動液
体がその内部に所定量封入される。 An embodiment of the present invention will be described below with reference to FIGS. 8 and 4. Fig. 8 is a block diagram showing the functional system, and Fig. 4 is a cross-sectional side view. Room, 8,
81 is a heat dissipation device, which is cooled by cooling fans 9 and 91. A pair of pipes 10 and 11 communicate the hollow chamber 7 and the heat radiating device 8, and serve as a steam pipe and a liquid pipe, respectively. 101,1
11 are a pair of pipes that communicate the hollow chamber 71 and the heat radiating device 81, and function as a steam pipe and a liquid pipe, respectively. 12 is a communication pipe that communicates the steam pipes 10 and 101 and has a flexible part 12a such as a bellows, and 13 is a communication pipe that communicates the liquid pipes 11 and 111 and has a flexible part 13a that can be extended and contracted such as a bellows. It's a tube. In addition, the hollow chambers 7, 71 and the heat dissipation devices 8, 8
1. After reducing the pressure inside the steam pipes 10, 101 and liquid pipes 11, 111, a predetermined amount of working liquid such as ammonia or fluorocarbon is sealed inside them.
次に動作について説明する。軸受台4,41で
受熱した軸受3,31の熱量は中空室7,71内
のフロン等の作動液体を加熱して気化させる際に
蒸発潜熱として奪われ、気化したフロン等の蒸気
は自身の蒸気圧を利用して蒸気管10,101を
経て放熱装置8,81へ移動し、冷却フアン9,
91により周囲空気により冷やされる。このと
き、フロン等の蒸気は凝縮して液体に戻るが、凝
縮潜熱を周囲空気に放出し、軸受3,31の熱量
を周囲空気へ放熱する。凝縮した作動液体は液管
11,111を経て重力を利用して中空室7,7
1へ戻る。このような動作をくり返し行なうこと
により軸受台4,41の熱量を放熱装置8,81
に熱輸送して効率よく冷却するようにしている。 Next, the operation will be explained. The heat of the bearings 3, 31 received by the bearing stands 4, 41 is taken away as latent heat of vaporization when the working liquid such as fluorocarbons in the hollow chambers 7, 71 is heated and vaporized, and the vapor of the vaporized fluorocarbons is Using the steam pressure, the steam is transferred through the steam pipes 10, 101 to the heat dissipation devices 8, 81, and the cooling fans 9,
91 to be cooled by ambient air. At this time, the vapor of fluorocarbon or the like is condensed and returned to liquid, but the latent heat of condensation is released to the surrounding air, and the amount of heat from the bearings 3 and 31 is radiated to the surrounding air. The condensed working liquid passes through the liquid pipes 11 and 111 and moves to the hollow chambers 7 and 7 using gravity.
Return to 1. By repeating these operations, the amount of heat in the bearing stands 4, 41 is reduced to the heat dissipation devices 8, 81.
The system transports heat to ensure efficient cooling.
ところで、軸受台4が他方の軸受台41に比べ
温度上昇(熱量)が大きくなると、軸受台4側の
中空室7内の作動液体が蒸発する際の蒸気量・圧
力・温度が他方に比べて大きくなる。従つて、よ
り多量の蒸発潜熱を奪い軸受台4をより強く冷却
するとともに、軸受台4側の中空室7より放熱装
置8だけでなく他方の放熱装置側81へも連通管
12を経てより高い圧力・温度の蒸気が流入す
る。これにより、軸受台4側からみると他方の放
熱装置81へ連通管12を経て流入する分だけ放
熱面積が増大し、冷却能力が高くなる。又、放熱
装置81では軸受台4側の中空室7より流入した
温度の高い蒸気が軸受台41側の中空室71より
流入した温度の低い蒸気と混合し、結果として軸
受台41側の中空室71より流入した蒸気の温度
が高くなる。放熱装置8,81で凝縮して液体に
戻つた作動流体は液管11,111を経て中空室
7,71へ戻る。放熱装置81で凝縮した作動液
体は他方に比べてより低い温度となつているが、
液管11と111を連通する連通管13により、
放熱装置8で凝縮した作動液体と混合して温度が
平均化されて作動液体が中空室7,71へ戻る。 By the way, if the temperature rise (heat amount) of the bearing pedestal 4 is larger than that of the other bearing pedestal 41, the amount of vapor, pressure, and temperature when the working liquid in the hollow chamber 7 on the bearing pedestal 4 side evaporates will be higher than that of the other bearing pedestal 41. growing. Therefore, a larger amount of latent heat of vaporization is absorbed to cool down the bearing pedestal 4 more strongly. Steam with high pressure and temperature flows in. As a result, when viewed from the bearing stand 4 side, the heat radiation area increases by the amount that flows into the other heat radiation device 81 via the communication pipe 12, and the cooling capacity increases. In addition, in the heat dissipation device 81, the high temperature steam flowing in from the hollow chamber 7 on the bearing stand 4 side mixes with the low temperature steam flowing in from the hollow chamber 71 on the bearing stand 41 side, and as a result, the hollow chamber on the bearing stand 41 side mixes with the low temperature steam flowing in from the hollow chamber 71 on the bearing stand 41 side. 71, the temperature of the steam flowing in becomes higher. The working fluid condensed and returned to liquid in the heat radiating devices 8, 81 returns to the hollow chambers 7, 71 via liquid pipes 11, 111. Although the working liquid condensed in the heat dissipation device 81 has a lower temperature than the other one,
Through the communication pipe 13 that communicates the liquid pipes 11 and 111,
The working liquid is mixed with the condensed working liquid in the heat dissipation device 8, the temperature is averaged, and the working liquid returns to the hollow chambers 7, 71.
このように連通管12,13を設けたことによ
り、両者の発熱量、温度上昇に差が生じると、温
度上昇の高い方の放熱・冷却能力が増大して温度
上昇を抑制し、温度上昇差を小さく抑えることが
できると共に、温度上昇の低い方の作動液体の温
度を持ち上げ且つ放熱面積を減少し温度上昇を若
干高め、温度上昇差を小さく抑えることができ
る。その結果、軸受部の熱変形・歪を最少限に抑
えることができ、工作機械の加工精度を向上でき
る。また、主軸2と主軸21とのスパンPを連通
管12,13のフレキシブル部12a,13aの
伸縮範囲内で可変とすることができる。 By providing the communication pipes 12 and 13 in this way, if there is a difference in the amount of heat generated or temperature rise between the two, the heat dissipation and cooling capacity of the one with a higher temperature increase will increase, suppressing the temperature rise, and reducing the temperature rise difference. In addition, it is possible to raise the temperature of the working fluid with a lower temperature rise, reduce the heat radiation area, slightly increase the temperature rise, and suppress the difference in temperature rise to a small value. As a result, thermal deformation and distortion of the bearing portion can be suppressed to a minimum, and the machining accuracy of the machine tool can be improved. Further, the span P between the main shaft 2 and the main shaft 21 can be made variable within the range of expansion and contraction of the flexible portions 12a and 13a of the communication pipes 12 and 13.
尚、上記実施例では連通管12により蒸気管1
0と101を連通し、連通管13により液管11
と111を連通する場合について述べたが、蒸気
管10と101、又は液管11と111の何れか
一方を連通するように連通管12又は13を設け
てもよい。 In the above embodiment, the steam pipe 1 is connected to the steam pipe 1 by the communication pipe 12.
0 and 101 are connected, and the liquid pipe 11 is connected by the communication pipe 13.
Although the case has been described in which the steam pipes 10 and 101 or the liquid pipes 11 and 111 are communicated with each other, the communication pipe 12 or 13 may be provided to communicate with either the steam pipes 10 and 101 or the liquid pipes 11 and 111.
また、上記実施例で連通管12,13のフレキ
シブル部12a,13aをベローズで構成する場
合について述べたが、ベローズ以外で伸縮可能に
構成すればよい。 Further, in the above embodiment, the flexible portions 12a, 13a of the communication pipes 12, 13 are configured with bellows, but they may be configured to be expandable and retractable using a device other than the bellows.
また、上記実施例では冷却フアン9,91を用
いた場合について述べたが、冷却フアン9,91
を用いず自然風冷してもよく、あるいは冷却源と
して冷却風以外の冷却水・油などを用いても同様
な効果が得られる。 Furthermore, although the above embodiment describes the case where the cooling fans 9, 91 are used, the cooling fans 9, 91
A similar effect can be obtained by performing natural air cooling without using cooling air, or by using cooling water, oil, etc. other than cooling air as a cooling source.
ところで、上記説明では主軸装置が2個の場合
について述べたが、8個以上の主軸装置の場合に
ついてもこの発明を適用し得ることができ、上記
実施例と同様な効果を奏する。 Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are eight or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通り、軸受と軸受台と
の間に形成され且つ作動液体が封入される環状の
中空室と、この中空室と一対の配管により連通さ
れる放熱装置とをそれぞれ有する第1、第2の主
軸装置、この第1の主軸装置の配管と第2の主軸
装置の配管とを連通する連通管を設け、軸受台の
熱量を中空室から放熱装置に熱輸送するようにし
たことにより、軸受台の熱量を速やかに奪い効率
よく且つ平均的に冷却できるので、軸受部の熱変
形・歪を最少源に抑制し工作機械等の加工精度を
向上できるという実用上極めて大きな効果があ
る。また、連通管に伸縮可能なフレキシブル部を
設けたことにより、そのフレキシブル部の伸縮範
囲内で、第1の主軸装置と第2の主軸装置の相互
位置関係を可変な構造とすることができる。 As described above, the present invention provides a first heat dissipation device that has an annular hollow chamber formed between a bearing and a bearing stand and in which a working liquid is sealed, and a heat dissipation device that communicates with the hollow chamber through a pair of pipes. , a second spindle device, and a communication pipe that communicates the piping of the first spindle device with the piping of the second spindle device is provided so that the amount of heat in the bearing stand is transported from the hollow chamber to the heat radiating device. This makes it possible to quickly remove heat from the bearing pedestal and cool it efficiently and evenly, which has an extremely large practical effect of suppressing thermal deformation and distortion of the bearing to a minimum and improving the machining accuracy of machine tools, etc. . Further, by providing the flexible part that can be expanded and contracted in the communication pipe, it is possible to have a structure in which the mutual positional relationship between the first spindle device and the second spindle device can be changed within the expansion and contraction range of the flexible portion.
第1図及び第2図は従来の多軸冷却装置を示す
断面側面図、第3図及び第4図はこの発明の一実
施例による多軸冷却装置を示すブロツク図及び断
面側面図である。
図において、1,11は第1、第2の主軸装
置、3,31は軸受、4,41は軸受台、7,7
1は中空室、8,81は放熱装置、10,11並
びに101,111は配管、12,13は連通
管、12a,13aはフレキシブル部である。
尚、図中同一符号は同一又は相当部分を示す。
1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, 1 and 11 are the first and second spindle devices, 3 and 31 are bearings, 4 and 41 are bearing stands, and 7 and 7
1 is a hollow chamber, 8, 81 are heat dissipation devices, 10, 11 and 101, 111 are piping, 12, 13 are communication pipes, and 12a, 13a are flexible parts.
Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
受台との間に形成され作動流体が封入される環状
の中空室と、この中空室と一対の配管により連通
される放熱装置とをそれぞれ有する第1および第
2の主軸装置、上記第1の主軸装置の配管と上記
第2の主軸装置の配管とを連通する連結管を備
え、上記軸受で発生する熱量を上記中空室から上
記放熱装置に輸送するようにしたことを特徴とす
る多軸冷却装置。 2 上記一対の配管の一方は蒸気管であり他方は
液管であることを特徴とする特許請求の範囲第1
項記載の多軸冷却装置。 3 上記連通管は上記蒸気管交互間および上記液
管相互間を連通することを特徴とする特許請求の
範囲第1項または第2項記載の多軸冷却装置。 4 上記連通管は上記蒸気管相互間または上記液
管相互間の何れか一方のみを連通するようにした
ことを特徴とする特許請求の範囲第1項または第
2項記載の多軸冷却装置。 5 上記連結管は伸縮可能なフレキシブル部を有
することを特徴とする特許請求の範囲第1項また
は第2項記載の多軸冷却装置。 6 上記フレキシブル部はベローズで構成されて
いることを特徴とする特許請求の範囲第5項記載
の多軸冷却装置。[Claims] 1. An annular hollow chamber formed between a bearing that supports the main shaft and a bearing stand that supports the bearing and in which a working fluid is sealed, and a heat dissipation device that communicates with this hollow chamber through a pair of piping. first and second spindle devices each having a device, a connecting pipe that communicates the piping of the first spindle device and the piping of the second spindle device, and the amount of heat generated in the bearing is transferred to the hollow chamber. A multi-axis cooling device characterized in that the cooling device is configured to transport the heat from the cooling device to the heat dissipation device. 2. Claim 1, wherein one of the pair of pipes is a steam pipe and the other is a liquid pipe.
Multi-axis cooling device as described in section. 3. The multi-axis cooling device according to claim 1 or 2, wherein the communication pipes communicate between the alternate steam pipes and between the liquid pipes. 4. The multi-axis cooling device according to claim 1 or 2, wherein the communication pipe communicates only between the steam pipes or between the liquid pipes. 5. The multi-axis cooling device according to claim 1 or 2, wherein the connecting pipe has a flexible part that can be expanded and contracted. 6. The multi-axis cooling device according to claim 5, wherein the flexible portion is constituted by a bellows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7795982A JPS58193928A (en) | 1982-05-07 | 1982-05-07 | Multispindle cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7795982A JPS58193928A (en) | 1982-05-07 | 1982-05-07 | Multispindle cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58193928A JPS58193928A (en) | 1983-11-11 |
JPH0565728B2 true JPH0565728B2 (en) | 1993-09-20 |
Family
ID=13648516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7795982A Granted JPS58193928A (en) | 1982-05-07 | 1982-05-07 | Multispindle cooler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58193928A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155449A (en) * | 1976-06-18 | 1977-12-23 | Chigira Jiyukuji | Cooling system and apparatus |
JPS5419609A (en) * | 1977-07-15 | 1979-02-14 | Hitachi Ltd | Recording circuit for video signal |
JPS5777961A (en) * | 1980-10-31 | 1982-05-15 | Yokogawa Hokushin Electric Corp | Data-processing device for process-gas chromatograph |
-
1982
- 1982-05-07 JP JP7795982A patent/JPS58193928A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155449A (en) * | 1976-06-18 | 1977-12-23 | Chigira Jiyukuji | Cooling system and apparatus |
JPS5419609A (en) * | 1977-07-15 | 1979-02-14 | Hitachi Ltd | Recording circuit for video signal |
JPS5777961A (en) * | 1980-10-31 | 1982-05-15 | Yokogawa Hokushin Electric Corp | Data-processing device for process-gas chromatograph |
Also Published As
Publication number | Publication date |
---|---|
JPS58193928A (en) | 1983-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0565728B2 (en) | ||
JPS58193930A (en) | Multispindle cooler | |
JPH0565729B2 (en) | ||
JPS6363768B2 (en) | ||
JPS6218310B2 (en) | ||
JPS6216788B2 (en) | ||
JPS6216776B2 (en) | ||
JPS6233453B2 (en) | ||
JPS6214384B2 (en) | ||
JPS6218311B2 (en) | ||
JPS58206351A (en) | Multiple spindle cooling device | |
JPS6214387B2 (en) | ||
JPS6214388B2 (en) | ||
JPS6216780B2 (en) | ||
JPS59118339A (en) | Multi-spindle cooling device | |
JPS6216782B2 (en) | ||
JPS6214386B2 (en) | ||
JPS6214381B2 (en) | ||
JPS6216774B2 (en) | ||
JPS6216786B2 (en) | ||
JPS6216784B2 (en) | ||
JPS6214385B2 (en) | ||
JPS6216783B2 (en) | ||
JPS6218309B2 (en) | ||
JPS6218308B2 (en) |