JPS6218311B2 - - Google Patents
Info
- Publication number
- JPS6218311B2 JPS6218311B2 JP9056482A JP9056482A JPS6218311B2 JP S6218311 B2 JPS6218311 B2 JP S6218311B2 JP 9056482 A JP9056482 A JP 9056482A JP 9056482 A JP9056482 A JP 9056482A JP S6218311 B2 JPS6218311 B2 JP S6218311B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- liquid
- heat
- hollow chamber
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 29
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 15
- 230000017525 heat dissipation Effects 0.000 claims description 8
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000003754 machining Methods 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/14—Methods or arrangements for maintaining a constant temperature in parts of machine tools
- B23Q11/141—Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸
受部を冷却する多軸冷却装置に関し、特に複数の
主軸のお互いの位置関係を可変な構造にした多軸
冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools the bearings of, for example, a plurality of main shafts of a machine tool, and particularly relates to a multi-shaft cooling device that has a structure in which the mutual positional relationship of a plurality of main shafts is variable. It is something.
従来この種の装置としては第1図及び第2図に
示すものがあつた。これら各図において、1,1
1は工作機械の第1、第2の主軸装置であり、図
示しない移動調整装置により任意のスパンPの間
隔で配置されている。2,21は主軸、3,31
は軸受、4,41は軸受台、5,51はプーリ、
6はベツドである。 Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, 1, 1
Reference numeral 1 designates first and second spindle devices of the machine tool, which are arranged at an interval of an arbitrary span P by a movement adjustment device (not shown). 2, 21 are main shafts, 3, 31
is a bearing, 4, 41 is a bearing stand, 5, 51 is a pulley,
6 is bet.
次の動作について説明する。図示しない駆動用
電動機によりVベルトを介してプーリ5,51に
伝えられた回転力によつて主軸2,21を回転さ
せる。この時、主軸2,21と軸受台4,41と
の間に位置する軸受3,31は主軸2,21が円
滑に回転することを助ける目的をもつているが、
回転とともに軸受3,31は摩擦により発熱し温
度上昇する。軸受3,31に生じた熱量は軸受台
4,41に伝わり、ベツド6および周囲空気へ伝
熱して放熱する。この際に軸受台4,41は温度
上昇し、各部は熱膨張による種々の熱変形・歪を
生じる。このため主軸2,21の位置が変動し、
被加工物を機械加工するときに加工精度が低下す
るという欠点があつた。さらに、相互間の主軸
2,21の位置の変動に差を生じると同時に複数
の加工を行なう際に相互の加工精度に差を生じる
という欠点があつた。 The following operation will be explained. The main shafts 2, 21 are rotated by the rotational force transmitted to the pulleys 5, 51 via the V-belt by a driving electric motor (not shown). At this time, the bearings 3, 31 located between the main shafts 2, 21 and the bearing stands 4, 41 have the purpose of helping the main shafts 2, 21 rotate smoothly.
As the bearings 3 and 31 rotate, they generate heat due to friction and their temperature increases. The amount of heat generated in the bearings 3, 31 is transmitted to the bearing stands 4, 41, and is transferred to the bed 6 and the surrounding air to radiate heat. At this time, the temperature of the bearing stands 4, 41 increases, and various thermal deformations and strains occur in each part due to thermal expansion. For this reason, the positions of the main shafts 2 and 21 fluctuate,
There was a drawback that the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback that there is a difference in the fluctuation of the positions of the main shafts 2 and 21 between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除
去するためになされたものであり、第1、第2の
主軸装置を有効に且つ平均的に冷却することがで
きる多軸冷却装置を提供することを目的としてい
る。 This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and an object of the present invention is to provide a multi-shaft cooling device that can effectively and evenly cool the first and second main shaft devices. It is an object.
以下、この発明の一実施例を第3図及び第4図
に基づいて説明する。第3図は機能系統を示すブ
ロツク図、第4図は断面側面図であり、これら各
図において、7,71は軸受台4,41の内部に
形成された環状の中空室、8,81は放熱装置で
あり、冷却フアン9,91により冷却されてい
る。10,101は中空室7,71と放熱装置8
1,8をそれぞれ連通する蒸気管であり、例えば
ベローズ等の伸縮可能なフレキシブル部10a,
101aを有している。12,121は中空室
7,71と放熱装置8,81をそれぞれ連通する
液管である。 An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 is a block diagram showing the functional system, and FIG. 4 is a cross-sectional side view. In each of these figures, 7 and 71 are annular hollow chambers formed inside the bearing stands 4 and 41, and 8 and 81 are annular hollow chambers formed inside the bearing stands 4 and 41. It is a heat dissipation device and is cooled by cooling fans 9 and 91. 10, 101 are hollow chambers 7, 71 and heat dissipation device 8
1 and 8, and includes extensible and contractible flexible parts 10a, such as bellows, etc.
101a. Reference numerals 12 and 121 are liquid pipes that communicate the hollow chambers 7 and 71 with the heat radiating devices 8 and 81, respectively.
尚、中空室7,71および放熱装置8,81、
蒸気管10,101、液管12,121の内部を
真空減圧後、アンモニア、フロン等の作動液体が
その内部に所定量封入される。 In addition, the hollow chambers 7, 71 and the heat dissipation devices 8, 81,
After reducing the pressure inside the steam pipes 10, 101 and liquid pipes 12, 121, a predetermined amount of a working liquid such as ammonia or fluorocarbon is sealed inside them.
次に動作について説明する。軸受台4,41で
受熱した軸受3,31の熱量は中空室7,71内
のフロン等の作動液体を加熱して気化させる際に
蒸発潜熱として奪われ、気化したフロン等の蒸気
は自身の蒸気圧を利用して蒸気管10を経て放熱
装置81へ、蒸気管101を経て放熱装置8へそ
れぞれ移動し、冷却フアン9,91により周囲空
気により冷やされる。このとき、フロン等の蒸気
は凝縮して液体に戻るが、凝縮潜熱を周囲空気に
放出し、軸受3,31の熱量を周囲空気へ放熱す
る。凝縮した作動液体は液管12,121を経て
重力を利用して軸受台4,41の中空室7,71
へ戻る。このような動作をくり返し行なうことに
より、軸受台4,41の熱量を放熱装置81,8
に熱輸送して効率よく冷却するようにしている。 Next, the operation will be explained. The heat of the bearings 3, 31 received by the bearing stands 4, 41 is taken away as latent heat of vaporization when the working liquid such as fluorocarbons in the hollow chambers 7, 71 is heated and vaporized, and the vapor of the vaporized fluorocarbons is Utilizing the steam pressure, the steam is moved through the steam pipe 10 to the heat radiating device 81 and through the steam pipe 101 to the heat radiating device 8, respectively, and is cooled by the surrounding air by the cooling fans 9, 91. At this time, the vapor of fluorocarbon or the like is condensed and returned to liquid, but the latent heat of condensation is released to the surrounding air, and the amount of heat from the bearings 3 and 31 is radiated to the surrounding air. The condensed working liquid passes through the liquid pipes 12 and 121 and is transferred to the hollow chambers 7 and 71 of the bearing stands 4 and 41 using gravity.
Return to By repeating these operations, the amount of heat in the bearing stands 4, 41 is reduced to the heat dissipation devices 81, 8.
The system transports heat to ensure efficient cooling.
ところで、軸受台4が他方の軸受台41に比べ
温度上昇(熱量)が大きくなると、軸受台4の中
空室7内の作動液体の蒸気化の際の蒸気量・蒸気
圧・蒸気温度が他方に比べ大きくなる。従つて、
より大きな蒸発潜熱を奪い軸受台4をより大きく
冷却し、軸受台4の温度上昇が他方の軸受台41
より大きくなるのを抑制するように働く。そし
て、軸受台4の中空室7内にて気化した温度の高
い蒸気は蒸気管10を経て放熱装置81へ移動
し、放熱装置81にて凝縮した作動液体は放熱装
置8にて凝縮する作動液体に比べ温度が高く、液
管121を経て軸受台41の中空室71に流入す
る。従つて、軸受台41においては作動液体の温
度が高い分だけ暖められ温度上昇が増大し、両軸
受台4,41の温度上昇差が小さく抑えられる。
また、軸受台41は軸受台4に比べ温度上昇が小
さく、軸受台41の中空室71内の作動液体は軸
受台4の中空室7内の作動液体に比べ気化する際
の蒸気量・蒸気圧・蒸気温度が低い。従つて、蒸
気管101、放熱装置8、液管12を経てより低
い温度の作動液体が流入する。その結果、軸受台
4においては作動液体の温度の低い分だけ冷やさ
れ温度上昇が減少し、両軸受台4,41の温度上
昇差が小さく抑えられる。このような動作をくり
返し行なうことにより、両軸受台4,41の何れ
か一方の発熱量・温度上昇が増大しはじめると、
両軸受台4,41の温度上昇差を小さく抑えるよ
うに働き、両軸受台4,41が平均的に有効に冷
却される。従つて、工作機械においては軸受部の
熱変形・歪を最少限に抑えることができ、加工精
度を向上させることができる。また、主軸2と主
軸21とのスパンPを蒸気管10,101のフレ
キシブル部10a,101aの伸縮範囲内で可変
とすることができる。 By the way, if the temperature rise (calorific value) of the bearing pedestal 4 is larger than that of the other bearing pedestal 41, the amount of vapor, vapor pressure, and vapor temperature during vaporization of the working liquid in the hollow chamber 7 of the bearing pedestal 4 will be higher than that of the other bearing pedestal 41. It becomes larger in comparison. Therefore,
A larger amount of latent heat of vaporization is taken away and the bearing pedestal 4 is cooled down to a greater extent, and the temperature rise of the bearing pedestal 4 is caused by the temperature rise of the other bearing pedestal 41.
It works to prevent it from getting bigger. The high temperature steam vaporized in the hollow chamber 7 of the bearing stand 4 moves to the heat radiator 81 via the steam pipe 10, and the working liquid condensed in the heat radiator 81 is the working liquid condensed in the heat radiator 8. The temperature is higher than that of the liquid, and the liquid flows into the hollow chamber 71 of the bearing stand 41 through the liquid pipe 121. Therefore, the bearing pedestal 41 is warmed by the higher temperature of the working fluid, increasing the temperature rise, and the difference in temperature rise between the two bearing pedestals 4, 41 is kept small.
In addition, the temperature rise of the bearing pedestal 41 is smaller than that of the bearing pedestal 4, and the working liquid in the hollow chamber 71 of the bearing pedestal 41 has a vapor volume and vapor pressure when vaporized compared to the working liquid in the hollow chamber 7 of the bearing pedestal 4.・Steam temperature is low. Therefore, the lower temperature working liquid flows through the steam pipe 101, the heat radiating device 8, and the liquid pipe 12. As a result, the bearing pedestal 4 is cooled by the lower temperature of the working fluid, reducing the temperature rise, and the difference in temperature rise between the two bearing pedestals 4, 41 is kept small. By repeating such operations, if the heat generation amount and temperature rise of either of the bearing stands 4, 41 begins to increase,
It works to suppress the difference in temperature rise between the two bearing pedestals 4, 41 to a small level, and both the bearing pedestals 4, 41 are effectively cooled on the average. Therefore, in the machine tool, thermal deformation and distortion of the bearing portion can be minimized, and machining accuracy can be improved. Further, the span P between the main shaft 2 and the main shaft 21 can be made variable within the expansion/contraction range of the flexible portions 10a, 101a of the steam pipes 10, 101.
尚、上記実施例では冷却フアン9,91を用い
た場合について述べたが、冷却フアン9,91を
用いず自然風冷してもよく、あるいは冷却源とし
て冷却風以外の冷却水・油などを用いても同様な
効果が得られる。 Although the above embodiment describes the case where the cooling fans 9, 91 are used, natural air cooling may be used without using the cooling fans 9, 91, or cooling water, oil, etc. other than the cooling air may be used as the cooling source. A similar effect can be obtained by using
また、上記実施例ではフレキシブル部10a,
101aをベローズで構成する場合について述べ
たが、ベローズ以外で伸縮可能に構成するように
してもよい。 Further, in the above embodiment, the flexible portion 10a,
Although the case where 101a is configured with bellows has been described, it may be configured to be expandable and retractable by other than bellows.
また、上記実施例では蒸気管10,101を他
方の放熱装置81,8に結合する場合について述
べたが、これとは逆に液管12,121を他方の
放熱装置81,8に結合し、その液管12,12
1に伸縮可能なフレキシブル部を設けるようにし
てもよく、上記実施例と同様の効果が期待でき
る。 Further, in the above embodiment, the case was described in which the steam pipes 10, 101 were connected to the other heat radiating device 81, 8, but conversely, the liquid pipe 12, 121 was connected to the other heat radiating device 81, 8, The liquid pipes 12, 12
1 may be provided with a flexible part that can be expanded and contracted, and the same effects as in the above embodiment can be expected.
この発明は以上説明した通り、軸受台内部に形
成され且つ作動液体が封入される環状の中空室
と、蒸気管と液管により構成される配管により中
空室と連通される放熱装置とをそれぞれ有し、同
じ機械に装着される第1、第2の主軸装置を備
え、この第1の主軸装置並びに第2の主軸装置の
蒸気管又は液管の何れか一方を他方の放熱装置に
結合すると共に蒸気管又は液管の何れか一方に伸
縮可能なフレキシブル部を設け、軸受台の熱量を
中空室から放熱装置に熱輸送するようにしたこと
により、軸受台の熱量を速やかに奪い効率よく且
つ平均的に冷却できるので、軸受部の熱変形・歪
を最少限に抑制し工作機械等の加工精度を向上で
きるという実用上極めて大きな効果がある。 As explained above, this invention has an annular hollow chamber formed inside the bearing stand and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. A first main shaft device and a second main shaft device are installed on the same machine, and either one of the steam pipe or the liquid pipe of the first main shaft device and the second main shaft device is connected to the other heat radiating device. By providing a flexible part that can be expanded and contracted on either the steam pipe or the liquid pipe and transporting the heat of the bearing pedestal from the hollow chamber to the heat dissipation device, the heat of the bearing pedestal can be quickly removed efficiently and evenly. Since the bearing can be cooled down to a minimum, thermal deformation and distortion of the bearing part can be minimized and the machining accuracy of machine tools can be improved, which is extremely effective in practical terms.
第1図及び第2図は従来の多軸冷却装置を示す
断面側面図、第3図及び第4図はこの発明の一実
施例による多軸冷却装置を示すブロツク図及び断
面側面図である。
図において、1,11は第1、第2の主軸装
置、4,41は軸受台、7,71は中空室、8,
81は放熱装置、10,101は蒸気管、10
a,101aはフレキシブル部、12,121は
液管である。尚、図中同一符号は同一又は相当部
分を示す。
1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, 1 and 11 are the first and second spindle devices, 4 and 41 are bearing stands, 7 and 71 are hollow chambers, 8,
81 is a heat dissipation device, 10, 101 is a steam pipe, 10
a and 101a are flexible parts, and 12 and 121 are liquid pipes. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
れる環状の中空室と、蒸気管と液管により構成さ
れる配管により上記中空室と連通される放熱装置
とをそれぞれ有し、同じ機械に装着される第1、
第2の主軸装置を備え、上記第1の主軸装置並び
に第2の主軸装置の蒸気管又は液管の何れか一方
を他方の放熱装置に結合すると共に蒸気管又は液
管の何れか一方に伸縮可能なフレキシブル部を設
け、上記作動液体の蒸発、凝縮作用により上記軸
受台の熱量を上記中空室から上記放熱装置に熱輸
送するようにしたことを特徴とする多軸冷却装
置。 2 フレキシブル部はベローズで構成されたこと
を特徴とする特許請求の範囲第1項記載の多軸冷
却装置。[Scope of Claims] 1. Each bearing has an annular hollow chamber formed inside the bearing pedestal and filled with a working liquid, and a heat dissipation device communicated with the hollow chamber through piping constituted by a steam pipe and a liquid pipe. and the first, which is installed on the same machine,
A second main shaft device is provided, and either one of the steam pipes or liquid pipes of the first main shaft device and the second main shaft device is connected to the other heat radiating device, and expands and contracts into either the steam pipe or the liquid pipe. 1. A multi-shaft cooling device, characterized in that a flexible portion is provided, and the amount of heat in the bearing pedestal is transferred from the hollow chamber to the heat radiating device by the evaporation and condensation action of the working liquid. 2. The multi-axis cooling device according to claim 1, wherein the flexible portion is constituted by a bellows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9056482A JPS58206356A (en) | 1982-05-26 | 1982-05-26 | Multiple spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9056482A JPS58206356A (en) | 1982-05-26 | 1982-05-26 | Multiple spindle cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58206356A JPS58206356A (en) | 1983-12-01 |
JPS6218311B2 true JPS6218311B2 (en) | 1987-04-22 |
Family
ID=14001918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9056482A Granted JPS58206356A (en) | 1982-05-26 | 1982-05-26 | Multiple spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58206356A (en) |
-
1982
- 1982-05-26 JP JP9056482A patent/JPS58206356A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58206356A (en) | 1983-12-01 |