JPS59118330A - Multi-spindle cooler - Google Patents

Multi-spindle cooler

Info

Publication number
JPS59118330A
JPS59118330A JP23171082A JP23171082A JPS59118330A JP S59118330 A JPS59118330 A JP S59118330A JP 23171082 A JP23171082 A JP 23171082A JP 23171082 A JP23171082 A JP 23171082A JP S59118330 A JPS59118330 A JP S59118330A
Authority
JP
Japan
Prior art keywords
bearing
liquid
hollow chamber
working liquid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23171082A
Other languages
Japanese (ja)
Other versions
JPS6214381B2 (en
Inventor
Hitoshi Inoue
均 井上
Kenji Kataoka
片岡 憲二
Hisaaki Yamakage
久明 山蔭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23171082A priority Critical patent/JPS59118330A/en
Publication of JPS59118330A publication Critical patent/JPS59118330A/en
Publication of JPS6214381B2 publication Critical patent/JPS6214381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE:To cool a main spindle device effectively and evenly, by a method wherein a working liquid is passed through a vapor tube, a liquid tube and a connecting tube having flexible parts, and a calorific value of a bearing part is trnasmitted to a radiator from a hollow chamber. CONSTITUTION:Calorific values of bearings 3-31, which received heat by bearing rests 4-41, are taken away as evaporation latent heat when a working liquid such as Flon in hollow chambers 7-71 is made to evaporate by heating the working liquid. Vapor such as the evaporated Flon is moved to a radiator 8 through vapor tubes 10-101 having flexible parts and cooled by a cooling fan 9. The condensed working liquid is returned to the hollow chambers 7-71 of the bearing rests 4-41 through liquid tubes 12-121 having flexible parts. The liquid tubes 12-121 having flexible parts are connected through connecting tube 13 with each other.

Description

【発明の詳細な説明】 この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.

従来この種の装置としては第1図及び第2図に示すもの
かあった。これら各図において、ill、(1υは工作
機械の第1.第2の主軸装置であり、スパンPの間隔で
配置されている。12+、+211は主軸、(3)、(
3Dは軸受、+41 、 (4υは軸受台、+51. 
(51)はプーリ、(6)はベッドである。
Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, ill, (1υ are the first and second spindle devices of the machine tool, which are arranged at an interval of span P. 12+, +211 are the main spindles, (3), (
3D is the bearing, +41, (4υ is the bearing stand, +51.
(51) is a pulley, and (6) is a bed.

次に動作について説明する。図示しない駆動用電動機に
よりVベルトを介してプーリt5+ 、(51)に伝え
られた回転力によって主軸+21.(2υを回転させる
。この時、主軸+21.(211と軸受台+41 、 
(41)との間に位置する軸受t31.(3υは主軸+
2+1211が円滑に回転することを助ける目的をもっ
ているが、回転とともに軸受+31 、 (311は摩
擦により発熱し温度上昇する。
Next, the operation will be explained. The main shaft +21. (Rotate 2υ. At this time, main shaft +21. (211 and bearing stand +41,
(41) bearing t31. (3υ is principal axis +
The purpose is to help the bearings 2+1211 rotate smoothly, but as they rotate, the bearings 31 and 311 generate heat due to friction and rise in temperature.

軸受+31.(13υに生じた熱量は軸受台+41 、
 (41)に伝わり、ベッド(6)および周囲空気へ伝
熱して放熱する。
Bearing +31. (The amount of heat generated at 13υ is the bearing stand + 41,
(41), the heat is transferred to the bed (6) and the surrounding air, and is radiated.

この際に軸受台(4+ 、 (4υは温度上昇し、各部
は熱膨張による種々の熱変形、歪を生じる。このため主
部 軸+211211の位置が変動し、被加工物を機械化工
するときに加工精度が低下するという欠点があった。さ
らに、相互間の主軸!21.(2υの位置−の変動に差
を生じると同時に複数の加工を行なう際に相互の加工精
度に差を生じるという欠点があった。
At this time, the temperature of the bearing stand (4+, (4υ) increases, and each part undergoes various thermal deformations and strains due to thermal expansion. As a result, the position of the main shaft +211211 changes, and when machining the workpiece, There was a drawback that the machining accuracy decreased.Furthermore, there was a drawback that there was a difference in the fluctuation of the position of the spindle !21. was there.

この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、第1.第2の主軸装置を有効
に且つ平均的に冷却することができる多軸冷却装置を提
供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.

以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第3図は機能系統を示すブロック図、第4
図は断面側面図であり、これら各図において、t71.
 (71)は軸受台+41.(41)の内部に形成され
た環状の中空室、(8)は放熱装置であり、冷却ファン
(91により冷却されている。(lω、  (101)
は中空室+7+、 (71)で気化する作動液体の蒸気
をそれぞれ放熱装置(8)に案内すると共に例えばベロ
ーズ等の伸縮可能なフレキシブル部(10a) 、 (
101a) ヲ有する蒸気管、(12)、 (121)
は放熱装置(8)で凝縮液化する作動液体を軸受台+4
1i4υの中空室+71.  (71)にそれぞれ案内
すると共に例えばベローズ等の伸縮可能なフレキシブル
部(12a) 、  (121a)を有する液管である
。(13)はこの第1の液管(17Jと第2の液管(1
21)とを連通すると共に例えばベローズ等の伸縮可能
なフレキシブル部(13a)を有する連通管である。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 3 is a block diagram showing the functional system, Figure 4
The figures are cross-sectional side views, and in each of these figures, t71.
(71) is bearing stand +41. The annular hollow chamber formed inside (41), (8) is a heat dissipation device, and is cooled by a cooling fan (91. (lω, (101)
guide the vapor of the working liquid vaporized in the hollow chamber +7+, (71) to the heat dissipation device (8), respectively, and extendable and contractible flexible parts (10a), such as bellows, etc.
101a) Steam pipe with wo, (12), (121)
The working fluid that is condensed and liquefied in the heat dissipation device (8) is transferred to the bearing stand +4.
1i4υ hollow chamber +71. (71), and has flexible parts (12a) and (121a) that can be expanded and contracted, such as bellows. (13) is the first liquid pipe (17J) and the second liquid pipe (17J).
21) and has a flexible part (13a) such as a bellows that can be expanded and contracted.

尚、中空室t71. (71)および放熱装置(8)、
第1゜第2の蒸気管(fil、  (101)、第1.
第2の液管圓。
In addition, the hollow chamber t71. (71) and a heat dissipation device (8),
1st° 2nd steam pipe (fil, (101), 1st.
Second liquid tube circle.

(121)の内部全真空減圧後、アンモニア、フロン等
の作動液体がその内部に所定量封入される。
After the internal pressure of (121) is completely reduced to vacuum, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is sealed inside.

次に動作について説明する。軸受台+41.(4υで受
熱した軸受f31.c3υの熱量は中空室+71. (
71)内のフロン等の作動液体を加熱して気化させる際
に蒸発潜熱として奪われ、気化したフロン等の蒸気は自
身の蒸気圧を利用してそれぞれ第1.第2の蒸気管uo
1. (101)を経て放熱装置(8)へ移動し、冷却
ファン(9+により周囲空気により冷やされる。このと
き、フロン等の蒸気は凝縮して液体に戻るが、凝縮潜熱
を周囲空気に放出し、軸受f31.(3υの熱量を周囲
空気へ放熱する。凝縮した作動液体は第1゜第2の液管
←L (121)を経て重力を利用して軸受台+4+1
4υの中空室(71,(71)へ戻る。このような動作
をくり返し行なうことにより、軸受台+41.(4υの
熱量を放熱装置(8)に熱輸送して効率よく冷却するよ
うにしている。
Next, the operation will be explained. Bearing stand +41. (The amount of heat of the bearing f31.c3υ that received heat at 4υ is the hollow chamber + 71.
71) When heating and vaporizing the working liquid such as fluorocarbon in the 1. second steam pipe uo
1. (101) to the heat dissipation device (8), where it is cooled by the surrounding air by the cooling fan (9+).At this time, vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released to the surrounding air. Bearing f31. (Radiates heat of 3υ to the surrounding air. The condensed working liquid passes through the 1st 2nd liquid pipe ←L (121) and uses gravity to the bearing base + 4 + 1
Return to the 4υ hollow chamber (71, (71). By repeating this operation, the heat of the bearing stand + 4υ is transported to the heat dissipation device (8) for efficient cooling. .

ところで、軸受台(4)が他方の軸受台(4υに比べ温
度上昇(熱量)が大きくなると、軸受台(4)の中空室
(7)内の作動液体は気化する際に軸受台(4υの中空
室(71)内の作動液体に比べより大きな蒸気量・蒸気
圧・蒸気温度となる。従って、より大きな蒸気量となる
分だけ蒸発潜熱を大きく奪い、より大きく冷却し、軸受
台(4)の温度上昇が軸受台(4υより大きくなるのを
抑制するように働く。そして、軸受台(4)の中空室(
7)内にて気化した温度の高い蒸気は第1の蒸気管α0
)を経て放熱装置(8)へ移動して凝縮液化する。一方
、軸受台(4υは軸受台(4)に比べ温度上昇が小さく
、軸受台(4υの中空室(71)内の作動液体は軸受台
(4)の中空室(7)内の作動液体に比べ気化する際の
蒸気量・蒸気圧・蒸気温度が低い。従って、軸受台(4
1)の中空室(71)内にて気化した温度の低い蒸気は
第2の蒸気管(101)を経て放熱装置(8)へ移動し
て凝縮液化する。
By the way, when the temperature rise (calorific value) of the bearing pedestal (4) becomes larger than that of the other bearing pedestal (4υ), the working liquid in the hollow chamber (7) of the bearing pedestal (4) vaporizes and the temperature of the bearing pedestal (4υ) increases. The amount of vapor, vapor pressure, and vapor temperature are larger than that of the working liquid in the hollow chamber (71).Therefore, the larger amount of vapor absorbs a large amount of latent heat of vaporization, and cools the bearing pedestal (4). It works to suppress the temperature rise of the bearing pedestal (4υ) from becoming larger than the temperature rise of the bearing pedestal (4).
7) The high temperature steam vaporized in the first steam pipe α0
) to the heat dissipation device (8) where it is condensed and liquefied. On the other hand, the temperature rise of the bearing stand (4υ) is smaller than that of the bearing stand (4), and the working liquid in the hollow chamber (71) of the bearing stand (4υ) is transferred to the working liquid in the hollow chamber (7) of the bearing stand (4). The amount, pressure, and temperature of steam during vaporization are lower than that.Therefore, the bearing stand (4
The low-temperature steam vaporized in the hollow chamber (71) of 1) moves to the heat dissipation device (8) via the second steam pipe (101), where it is condensed and liquefied.

しかるに、温度の高い蒸気は凝縮液化した際の温度が高
く、温度の低い蒸気は凝縮液化した際の温度が低い。放
熱装置(8)においては温度の高い凝縮液化した作動液
体と温度の低い凝縮液化した作動液体とが混合17て平
均化した温度の作動液体となる。この平均化された温度
の作動液体が第1゜第2の液管(121,(121)に
よりそれぞれ軸受台(4)。
However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied. In the heat dissipation device (8), the high temperature condensed liquefied working liquid and the low temperature condensed liquefied working liquid are mixed 17 to form a working liquid having an average temperature. The working liquid at this averaged temperature is transferred to the bearing pedestal (4) through the first and second liquid pipes (121, (121), respectively).

(4υの中空室t7+、 (71)に戻る。即ち、軸受
台(4)の中空室(7)には低くなった温度の作動液体
が戻り、その低くなった分だけ冷やされて軸受台+41
の温度上昇が減少し、軸受台+41)の中空室(71)
には高くなつF41 、 (41)の温度上昇差が小さ
く抑えられる。このような動作がくり返されると、だん
だん軸受台(4)側の中空室(7)内の作動液体の量が
少な(なり軸受台(41)側の中空室(71)内の作動
液体の量が多(なるが、連通管a■により放熱装置(8
)から軸受台(4υ側の中空室(71)内に戻る作動液
体の一部を軸受台(4)側の中空室(7)に戻すことが
でき、両作動液体の量を所定量にするように働いている
。このような動作をくり返し行なうことにより、両軸受
台+41i4υの何れか一方の発熱量・温度上昇が増大
しはじめると、両軸受台+41.(4υの温度上昇差を
小さく抑えるように働き、両軸受台+41.(4υが平
均的に有効に冷却される。従って、工作機械においては
軸受部の熱変形・歪を最少限に抑えることができ、加工
精度を向上させることができる。また、主軸(2)と主
軸口とのスパンPを第1.第2の蒸気管0.01.  
(101)のフレキシブル部(10a) 、(101a
) 、第1.第2の液管(1■、  (121)のフレ
キシブル部(12a) 、 (121a)並びに連通管
(13)のフレキシブル部(1,3a)の伸縮範囲内で
可変とすることができる。
(4υ hollow chamber t7+, returns to (71). In other words, the lower temperature working fluid returns to the hollow chamber (7) of the bearing pedestal (4), is cooled by the lowered temperature, and is cooled to the bearing pedestal +41.
The temperature rise in the hollow chamber (71) of the bearing stand +41) is reduced.
The difference in temperature rise between F41 and (41), which increases with F41, can be suppressed to a small value. As this operation is repeated, the amount of working fluid in the hollow chamber (7) on the bearing pedestal (4) side gradually decreases (as the amount of working fluid in the hollow chamber (71) on the bearing pedestal (41) side gradually decreases). Although the amount is large, the heat dissipation device (8
) can return part of the working fluid that returns into the hollow chamber (71) on the bearing stand (4υ side) to the hollow chamber (7) on the bearing stand (4) side, making the amounts of both working liquids a predetermined amount. By repeating this operation, if the heat generation amount and temperature rise of either of the bearing stands +41i4υ begins to increase, the difference in temperature rise of both bearing stands +41.(4υ) will be kept small. As a result, both bearing stands +41. Also, the span P between the main shaft (2) and the main shaft port can be set to 0.01.
(101) flexible part (10a), (101a
), 1st. It can be made variable within the expansion and contraction range of the flexible parts (12a), (121a) of the second liquid pipes (1), (121) and the flexible parts (1, 3a) of the communication pipe (13).

尚、上記実施例では冷却ファンt9+を用いた場合につ
いて述べたが、冷却ファン(9)を用いず自然風冷して
もよく、あるいは冷却源として冷却風以外の冷却水・油
などを用いても同様の効果が得られる。
Although the above embodiment describes the case where the cooling fan t9+ is used, natural air cooling may be used without using the cooling fan (9), or cooling water, oil, etc. other than the cooling air may be used as the cooling source. A similar effect can be obtained.

また、上記実施例では中空室+71. (71)が軸受
台+41.(4υにそれぞれ設けられた場合について述
べたか、中空室(71,(71)を軸受t31.131
)あるいは軸受(3)、6υと軸受台+41.t4υと
の間にそれぞれ設けるようにしてもよいっ ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上記実施例と同様な効果を
奏する。
Further, in the above embodiment, the hollow chamber +71. (71) is the bearing stand +41. (Did we mention the case where each of the hollow chambers (71, (71) are provided in the bearing t31.131)?
) or bearing (3), 6υ and bearing stand +41. Although the above explanation deals with the case where there are two spindle devices, the present invention can also be applied to the case where there are three or more spindle devices. The same effects as in the above embodiment are achieved.

この゛発明は以上説明した通り、軸受部内部に形成され
且つ作動液体が封入される環状の中空室をそれぞれ有す
る第1.第2の主軸装置、この第1、第2の主軸装置の
熱量を放熱する放熱装置、第1、第2の主軸装置の中空
室で気化する作動液体の蒸気を放熱装置にそれぞれ案内
すると共に伸縮可能なフレキシブル部を有する第1.第
2の蒸気管、放熱装置で凝縮液化する作動液体を第1.
第2の主軸装置の中空室にそれぞれ案内すると共に伸縮
可能なフレキシブル部を有する第1.第2の液管、第1
の液管と第2の液管を連通ずると共に伸縮可能なフレキ
シブル部を有する連通管を設け、軸受部の熱量を中空室
から放熱装置に熱輸送するようにしたことにより、軸受
部の熱量を速やかに奪い効率よく且つ平均的に冷却でき
るので、軸受部の熱変形・歪を最少限に抑制し工作機械
等の加工精度を同上できるという実用上極めて大きな効
果がある。
As described above, this invention provides first and second shafts each having an annular hollow chamber formed inside the bearing portion and filled with a working fluid. a second main shaft device, a heat radiating device that radiates heat from the first and second main shaft devices, a heat radiating device that guides the vapor of the working liquid vaporized in the hollow chambers of the first and second main shaft devices to the heat radiating device, and expands and contracts. The first with a possible flexible part. The working liquid that is condensed and liquefied in the second steam pipe and the heat dissipation device is transferred to the first steam pipe.
The first spindle has flexible parts that are respectively guided into the hollow chambers of the second spindle device and are extendable and retractable. second liquid pipe, first
By providing a communication pipe that communicates the liquid pipe with the second liquid pipe and has a flexible part that can be expanded and contracted, the amount of heat in the bearing part is transported from the hollow chamber to the heat radiating device, thereby reducing the amount of heat in the bearing part. Since it can be quickly, efficiently, and evenly cooled, thermal deformation and distortion of the bearing portion can be suppressed to a minimum, and the machining accuracy of machine tools can be improved, which is extremely effective in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の多軸冷却装置を示す断面側面
図及び正面図、第3図及び第4図はこの発明の一実施例
による多軸冷却装置を示すブロック図及び断面側面図で
ある。 図において、txt、(tυは第1.第2の主軸装置、
+41 、 (41)は軸受台、(71,(71)は中
空室、+81は放熱装置、[101,(101)は第1
.第2の蒸気管、(10a) 。 (101a)はフレキシブル部、(1渇、  (121
)は第1.第2の液管、(12a) 、  (121a
)はフレキシブル部、賭は連通管、(13a)はフレキ
シブル部である。 尚、図中同一符号は同−又は相当部分を示す。 代理人 葛野信− 第1図 第2図 第3図
1 and 2 are a cross-sectional side view and a front view showing a conventional multi-shaft cooling device, and FIG. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. It is. In the figure, txt, (tυ are the first and second spindle devices,
+41, (41) is the bearing stand, (71, (71) is the hollow chamber, +81 is the heat dissipation device, [101, (101) is the first
.. Second steam pipe, (10a). (101a) is a flexible part, (1), (121
) is the first. Second liquid pipe, (12a), (121a
) is a flexible part, ``bet'' is a communicating pipe, and (13a) is a flexible part. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)軸受部内部に形成され且つ作動液体が封入される
環状の中空室をそれぞれ有する第1.第2の主軸装置、
上記第1.第2の主軸装置の熱量を放熱する放熱装置、
上記第1.第2の主軸装置の中空室で気化する作動液体
の蒸気を上記放熱装置にそれぞれ案内すると共に伸縮可
能なフレキシブル部を有する第1.第2の蒸気管、上記
放熱装置で凝縮液化する作動液体を上記第1.第2の主
軸装置の中空室にそれぞれ案内すると共に伸縮可能なフ
レキシブル部を有する第1.第2の液管、この第1の液
管と第2の液管を連通ずると共に伸縮可能なフレキシブ
ル部を有する連通管を備えたことを特徴とする多軸冷却
装置。 (21中空室は軸受台に形成されたことを特徴とする特
許請求の範囲第1項記載の多軸冷却装置。 (3)中空室は軸受に形成されたことを特徴とする特許
請求の範囲第1項記載の多軸冷却装置。 (4)中空室は軸受と軸受台との間に形成されたことを
特徴とする特許請求の範囲第1項記載の多軸冷却装置。 (5)フレキシブル部はベローズで構成されたことを特
徴とする特許請求の範囲第1項ないし第4項の何れかに
記載の多軸冷却装置。
Scope of Claims: (1) First and second parts each having an annular hollow chamber formed inside the bearing part and filled with a working liquid. a second spindle device;
Above 1. a heat radiating device that radiates heat from the second spindle device;
Above 1. The first main shaft device has a flexible portion that guides the vapor of the working liquid vaporized in the hollow chamber of the second main shaft device to the heat radiating device, and has an expandable and contractible flexible portion. A second steam pipe transfers the working liquid to be condensed and liquefied in the heat dissipation device to the first steam pipe. The first spindle has flexible parts that are respectively guided into the hollow chambers of the second spindle device and are extendable and retractable. A multi-axis cooling device comprising a second liquid pipe, a communication pipe that communicates the first liquid pipe and the second liquid pipe and has a flexible part that can be expanded and contracted. (21) The multi-shaft cooling device according to claim 1, characterized in that the hollow chamber is formed in a bearing stand. (3) Claim, characterized in that the hollow chamber is formed in a bearing The multi-shaft cooling device according to claim 1. (4) The multi-shaft cooling device according to claim 1, characterized in that the hollow chamber is formed between the bearing and the bearing stand. (5) Flexible 5. The multi-axis cooling device according to claim 4, wherein the portion is constituted by a bellows.
JP23171082A 1982-12-24 1982-12-24 Multi-spindle cooler Granted JPS59118330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23171082A JPS59118330A (en) 1982-12-24 1982-12-24 Multi-spindle cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23171082A JPS59118330A (en) 1982-12-24 1982-12-24 Multi-spindle cooler

Publications (2)

Publication Number Publication Date
JPS59118330A true JPS59118330A (en) 1984-07-09
JPS6214381B2 JPS6214381B2 (en) 1987-04-02

Family

ID=16927791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23171082A Granted JPS59118330A (en) 1982-12-24 1982-12-24 Multi-spindle cooler

Country Status (1)

Country Link
JP (1) JPS59118330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880798A1 (en) * 2006-07-18 2008-01-23 Franz Kessler GmbH Spindle unit for fitting in a machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880798A1 (en) * 2006-07-18 2008-01-23 Franz Kessler GmbH Spindle unit for fitting in a machine tool

Also Published As

Publication number Publication date
JPS6214381B2 (en) 1987-04-02

Similar Documents

Publication Publication Date Title
JPS59118330A (en) Multi-spindle cooler
JPS59118333A (en) Multi-spindle cooler
JPS59118362A (en) Multi-spindle cooling device
JPS59118339A (en) Multi-spindle cooling device
JPS59118328A (en) Multi-spindle cooler
JPS59118345A (en) Multi-spindle cooling device
JPS59118355A (en) Multi-spindle cooling device
JPS59118332A (en) Multi-spindle cooler
JPS59118326A (en) Multi-spindle cooler
JPS58206351A (en) Multiple spindle cooling device
JPS6216788B2 (en)
JPS59118324A (en) Multi-spindle cooler
JPS6214384B2 (en)
JPS59118344A (en) Multi-spindle cooling device
JPS6214388B2 (en)
JPS59118349A (en) Multi-spindle cooling device
JPS59118325A (en) Mutli-spindle cooler
JPS59118329A (en) Multi-spindle cooler
JPS6214387B2 (en)
JPS6216776B2 (en)
JPS6216780B2 (en)
JPS6216779B2 (en)
JPS6216774B2 (en)
JPS59118335A (en) Multi-spindle cooling device
JPS59118338A (en) Multi-spindle cooling device