JPS59118329A - Multi-spindle cooler - Google Patents
Multi-spindle coolerInfo
- Publication number
- JPS59118329A JPS59118329A JP23170982A JP23170982A JPS59118329A JP S59118329 A JPS59118329 A JP S59118329A JP 23170982 A JP23170982 A JP 23170982A JP 23170982 A JP23170982 A JP 23170982A JP S59118329 A JPS59118329 A JP S59118329A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- liquid
- hollow chamber
- working liquid
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
- B23Q11/127—Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.
従来この樺の装置としては第1図及び第2図に示すもの
があった。これら各図において、(1) 、 (1υは
工作機械の第1.第2の主軸装置でめシ、スパンPの間
隔で配置されている。(2) 、 (2υは主軸、(3
)。Conventionally, this birch device has been shown in FIGS. 1 and 2. In each of these figures, (1), (1υ are the first and second spindle devices of the machine tool, which are arranged at intervals of P and span P. (2), (2υ are the main spindle, (3
).
6υは軸受、(4)、Cu虚軸受台、(5) 、 (5
υはプーリ、(6)はベッドである。6υ is a bearing, (4), Cu imaginary bearing stand, (5), (5
υ is a pulley and (6) is a bed.
次に動作について説明する。図示しない駆動用電動機に
よシVベルトを介してブー1) (5) 、 (61)
に伝えらnた回転力Vこよって主軸(2) 、 12υ
を回転させる。Next, the operation will be explained. Boo 1) (5), (61) is connected to a drive motor (not shown) via a V-belt.
The rotational force V transmitted to the main shaft (2), 12υ
Rotate.
この時、主軸<2) 、 f2υと軸受台(4) 、
(4υとの間に位置する軸受(3) 、 13Uは主軸
(2)、シυが円滑に回転することを助ける目的をもっ
ているが、回転とともに軸受(3) 、 Uυは摩擦に
より発熱し温度上昇する。軸受(3) 、 6υに生じ
た熱量は軸受台(4) 、 G[)に伝わシ、ベッド(
6)および周囲空気へ伝熱して放熱する。この際に軸受
台(4)、すυは温度上昇し、各部は熱膨張による種々
の熱変形・歪を生じる。このため主軸(2)。At this time, main shaft < 2), f2υ and bearing stand (4),
(Bearings (3) and 13U located between 4υ and 4υ have the purpose of helping the main shaft (2) and υ rotate smoothly, but as they rotate, bearings (3) and 13U generate heat due to friction and their temperature rises. The heat generated in the bearing (3), 6υ is transferred to the bearing stand (4), G[), and the bed (
6) and radiates heat by transferring it to the surrounding air. At this time, the temperature of the bearing stand (4) and the shaft rises, and various parts undergo various thermal deformations and strains due to thermal expansion. For this reason, the main axis (2).
し〃の位置が変動し、被加工物を機械加工するときに加
工精度が低下するという欠点があった。さらに、相互間
の主軸(2) 、 (2υの位置の装動に差を生じると
同時に複数の加工を行なう際に相互の加工精度に差を生
じるという欠点があった。There was a drawback that the position of the mark fluctuated and the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback in that there is a difference in the mounting of the main shafts (2) and (2υ) between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除去するた
めになされたものでアリ、第1.第2の主軸装置を有効
に且つ平均的に冷却することができる多軸冷却装置を提
供することを目−的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as mentioned above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.
以ド、この発明の一実施例を第3図及び第4図に基づい
て説明する。第3図は機能系統を示すブロック図、第4
図は断面側面図であり、こI’Lら各図において、(7
) 、 (71fは軸受台(4) 、 uυの内部に形
成された環状の中空室、(8)は放熱装置であり、冷却
ファン(9)により冷却さねている。QQ 、 (10
1)は中空室(7) 、 (71)で気化する作動液体
の蒸気をそれぞn放熱装置(8)に案内する@1.第2
の蒸気管、@。Hereinafter, one embodiment of the present invention will be described based on FIGS. 3 and 4. Figure 3 is a block diagram showing the functional system, Figure 4
The figure is a cross-sectional side view, and in each figure, (7
), (71f is a bearing stand (4), an annular hollow chamber formed inside uυ, (8) is a heat dissipation device, which is cooled by a cooling fan (9).QQ, (10
1) guides the vapor of the working liquid vaporized in the hollow chambers (7) and (71) to the heat dissipation device (8), respectively. Second
steam pipe, @.
(121)は放熱装置(8)で凝縮液化する作動液体を
軸受台(4) 、 t4υの中空室(7) 、 (7υ
にそ口ぞ口案内する第1、第2の液管である。Q3はこ
の第1の液管@と第2の液管(121)とを連通ずる連
通管である。(121) transfers the working liquid that is condensed and liquefied in the heat dissipation device (8) to the bearing stand (4), the hollow chamber (7) of t4υ, (7υ
These are first and second liquid pipes that guide the mouth and mouth of the niso. Q3 is a communication pipe that communicates the first liquid pipe @ and the second liquid pipe (121).
尚、中空室(7) 、 (71)および放熱装置(8ン
、第1.第2の蒸気管Ql 、 (101) 、第1.
第2の液管α4゜(121)の内部を真空減圧後、アン
モニア、フロン等の作動液体がその内部に所定承封入さ
ねる。In addition, the hollow chambers (7), (71) and the heat dissipation device (8, 1st, 2nd steam pipe Ql, (101), 1st.
After the inside of the second liquid pipe α4° (121) is vacuum depressurized, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is sealed inside the second liquid pipe α4° (121).
次に動作について説明する。軸受’i&(4)、(4υ
で受熱した軸受(3) 、 C(υの熱量は中空室(7
) 、 V])内のフロン等の作動液体を加熱して気化
させる際に蒸発潜熱として奪わn、気化したフロン等の
蒸気は自身の蒸気圧を利用してそnぞロ第1.第2の蒸
気管1.10 、 (101)を経て放熱装置(8)へ
移動し、冷却ファン(9)により周囲空気により冷やさ
れる。このとき、フロン等の蒸気は凝縮して液体に戻る
が、凝縮潜熱を周囲空気に放出し、軸受(3) 、 0
υの熱量を周囲空気へ放熱する。凝縮した作動液体は第
1.第2の液管(Ld、(121)を経て重力を利用し
て軸受台(4)。Next, the operation will be explained. Bearing 'i & (4), (4υ
The amount of heat received by the bearing (3), C(υ is
), V]) When heating and vaporizing the working liquid such as fluorocarbons, it is taken away as latent heat of vaporization, and the vapor of the vaporized fluorocarbons utilizes its own vapor pressure. It passes through the second steam pipe 1.10, (101) to the heat dissipation device (8) and is cooled by the ambient air by the cooling fan (9). At this time, vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released into the surrounding air, causing the bearing (3), 0
The amount of heat υ is radiated to the surrounding air. The condensed working liquid is the first. The bearing stand (4) is passed through the second liquid pipe (Ld, (121)) using gravity.
Ω〃の中空室(7)、(2)へ戻る。このような動作を
くシ返し行なうことによシ、軸受台(4) 、 Hの熱
量を放熱装置(8)に熱相送して効率よく冷却するよう
にしている。Return to the hollow chambers (7) and (2) of Ω〃. By repeating this operation, the amount of heat from the bearing stands (4) and H is transferred to the heat dissipation device (8) for efficient cooling.
ところで、軸受台(4)が他方の軸受台けりに比べ温度
上昇(熱量)が大きくなると、軸受台(4)の中空室(
7)内の作動液体は気化する際に軸受台Cυの中空室(
7])内の作動液体に比べより大きな蒸気量・蒸気圧・
蒸気温度となる。従って、よシ大きな蒸気量となる分だ
け蒸発潜熱を大きく奪い、より大きく冷却し、軸受台(
4)の温度上昇が軸受台りυよシ大きくなるのを抑制す
るように働く。そして、軸受台(4)の中空室(7)内
にて気化した温度の高い蒸気は第1の蒸気管00を経て
放熱装置(8)へ移動して凝縮液化する。一方、軸受台
包υは軸受台(4)に比べ温度上昇が小さく、軸受台(
111)の中空室(71)内の作動液体は軸受台(4)
の中空室(7)内の作動液体に比べ気化する際の蒸気量
・蒸気圧・蒸気温度が低い。従って、軸受台0υの中空
室συ内にて気化した温度の低い蒸気は第2の蒸気管(
101)を経て放熱装置(8)へ移動して凝縮液化する
。By the way, if the temperature rise (heat amount) of the bearing stand (4) becomes larger than that of the other bearing stand, the hollow chamber (of the bearing stand (4)
7) When the working liquid in the hollow chamber of the bearing stand Cυ (
7]) Larger vapor volume, vapor pressure,
Steam temperature. Therefore, a large amount of latent heat of vaporization is taken away by the large amount of steam, and a large amount of cooling is achieved.
It works to suppress the temperature rise in 4) from becoming larger than the bearing stand height υ. The high temperature steam vaporized in the hollow chamber (7) of the bearing stand (4) moves to the heat dissipation device (8) via the first steam pipe 00 and is condensed and liquefied. On the other hand, the temperature rise of the bearing pedestal υ is smaller than that of the bearing pedestal (4), and the bearing pedestal (
The working liquid in the hollow chamber (71) of 111) is transferred to the bearing stand (4).
The amount of vapor, vapor pressure, and vapor temperature during vaporization are lower than that of the working liquid in the hollow chamber (7). Therefore, the low temperature steam vaporized in the hollow chamber συ of the bearing base 0υ is transferred to the second steam pipe (
101) to the heat dissipation device (8) where it is condensed and liquefied.
しかるに、温度の高い蒸気は凝縮液化した際の温度が高
く、温度の低い蒸気は凝縮液化した際の温度が低い。放
熱装置(8)においては温度の高い凝縮液化した作動液
体と温度の低い凝縮液化した作動液体とが混合して平均
化した温度の作動液体となる。この平均化された温度の
作動液体が第1゜第2の液管(2)、 (121)によ
シそれぞnr4$3受台(4)。However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied. In the heat dissipation device (8), the high temperature condensed liquefied working liquid and the low temperature condensed liquefied working liquid are mixed to form a working liquid having an average temperature. The working liquid at this averaged temperature is transferred to the first and second liquid pipes (2) and (121), respectively, to the pedestal (4).
(41)の中空室(7)、(ハ)に戻る。即ち、軸受台
(4)の中空室(7)には低くなった温度の作動液体が
戻シ、その低くなった分たけ冷やさnて軸受台(4)の
温度上昇が減少し、軸受台(4υの中空室(2)には高
くなった温度の作動液体が戻り、その高くなった分だけ
暖めら■て軸受台り〃の温度上昇が増大し、両軸受台(
4)。Return to hollow chambers (7) and (c) in (41). That is, the working fluid at a lower temperature returns to the hollow chamber (7) of the bearing pedestal (4), and as a result, the temperature rise of the bearing pedestal (4) is reduced, and the temperature rise of the bearing pedestal (4) is reduced. The working fluid at a higher temperature returns to the 4υ hollow chamber (2) and is warmed by the increased temperature, increasing the temperature rise of the bearing pedestal and causing both bearing pedestals (
4).
44])の温度上昇差が小さく抑えらねる。44]) cannot be kept small.
このような動作がくυ返されると、だんだん軸受台(4
)側の中空室(7)内の作動液体の量が少なくなり軸受
台Ωυ側の中空室(2)内の作動液体の量が多くなるが
、連通管α騰によシ放熱装置(8)から軸受台りυ側の
中空室(2)内に戻る作動液体の一部を軸受台(4)側
の中空室(7)に戻すことができ、両作動液体の量を所
定量にするように働いている。このような動作をくり返
し行なうことにより、両軸受8 (4) + (’υの
何しか一万の発熱箪・温度上昇が増大しはじめると、両
軸受台(4) 、 f4])の温度上昇差を小さく抑え
るように働き、両軸受台(4) 、 I4υが平均的に
有効に冷却される。従って、工作機械においては軸受部
の熱変形・歪を最少限に抑えることができ、加工精度を
同上させることができる。As this operation is repeated, the bearing stand (4
The amount of working fluid in the hollow chamber (7) on the ) side decreases and the amount of working fluid in the hollow chamber (2) on the bearing stand Ωυ side increases, but due to the rise of the communicating pipe α, the heat dissipation device (8) A part of the working liquid that returns from the hollow chamber (2) on the bearing stand υ side can be returned to the hollow chamber (7) on the bearing stand (4) side, so that the amounts of both working liquids are kept at a predetermined level. working in By repeating this operation, the temperature of both bearings 8 (4) + ('υ's 10,000 heat generation unit / When the temperature rise starts to increase, the temperature of both bearing stands (4), f4]) will increase. It works to keep the difference small, and both bearing stands (4) and I4υ are effectively cooled on the average. Therefore, in the machine tool, thermal deformation and distortion of the bearing portion can be suppressed to a minimum, and machining accuracy can be improved.
尚、上記実施例では冷却ファン(9)を用いた場合につ
いて述べtこが、冷却ファン(9)を用いず自然風冷し
てもよく、あるいは冷却源として一冷却風以外の冷却水
・油などを用いても同様の効果が得らiする。Incidentally, in the above embodiment, the case where the cooling fan (9) is used is described. A similar effect can be obtained by using the following.
また、上記実施例では中空室(7) 、 (7υが軸受
台(4)。Further, in the above embodiment, the hollow chamber (7) and (7υ are the bearing pedestals (4)).
すυにそnぞn設けらnた場合について述べたが、中空
室(7) 、 (7υを軸受(3) 、 G3υあるい
は軸受(3) 、 1.(υと軸受台(4)、(2)と
の間にそn(:′n設けるようにしてもよい。We have described the case where the hollow chamber (7), (7υ and bearing (3), G3υ or bearing (3), 1. (υ and bearing stand (4), ( 2) may be provided with son(:'n).
ところで、上記説明では主軸装置が2個の場合について
述べt二が、8個以上の主軸装置の場合についてもこの
発明を適用し得ることができ、上記実施例と同様な効果
を桑する。By the way, in the above description, the case where there are two spindle devices is described, but the present invention can also be applied to a case where there are eight or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通9、軸受部内部に形成され且
つ作動液体が封入さnる環状の中空室をそれぞn有する
第1.第2の主軸装置、この第1゜第2の主軸装置の熱
量を放熱する放熱装置、第1゜第2の主軸装置の中空室
で気化する作動液体の蒸気を放熱装置にそれぞ口案内す
る第1.第2の蒸気管、放熱装置で凝縮液化する作動液
体を第1゜第2の主軸装置の中空室にそれぞ几案内する
第1゜第2のfi、管、第1の液管と第2の液管を連通
ずる連通管を設け、軸受部の熱量を中空室から放熱装置
に熱輸送するようにしたことによυ、軸受部の熱量を速
やかに奪い効率よく且つ平均的に冷却できるので、軸受
部の熱変形・歪を最少限に抑制し工作機械等の加工精度
を向上できるという実用上極めて大きな効果がある。The present invention is characterized by the first through-hole 9 having an annular hollow chamber formed inside the bearing portion and filled with a working liquid. a second main shaft device, a heat radiating device that radiates heat from the first main shaft device, and a second main shaft device that guides the vapor of the working liquid vaporized in the hollow chamber of the second main shaft device to the heat radiating device, respectively. 1st. a second steam pipe, a first liquid pipe and a second fi, which guide the working liquid condensed and liquefied by the heat dissipation device into the hollow chambers of the first and second main shaft devices, respectively; By providing a communication pipe that communicates the liquid pipes and transporting the heat of the bearing part from the hollow chamber to the heat radiating device, the heat of the bearing part can be rapidly removed and cooled efficiently and evenly. This has an extremely large practical effect in that thermal deformation and distortion of the bearing part can be suppressed to a minimum and the machining accuracy of machine tools can be improved.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図及び正面図、第8図及び第4図はこの発明の一実施例
による多軸冷却装置を示すブロック図及び断面側面図で
ある。
図において、(1) 、 (1υは第1.第2の主軸装
置、(4)、Ω旧よ軸受台、(7) 、 nは中空室、
(8)は放熱装置α0 、 (101)は第1.第2の
蒸気管、(12、(121)は第1.第2の液管である
。
尚、図中同一符号は同−又は相当部分を示す。
代理人 葛 野 信 −
第1図
第2図
第3図
8
第4図
3 12.1211 and 2 are a cross-sectional side view and a front view showing a conventional multi-shaft cooling device, and FIG. 8 and FIG. 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. It is. In the figure, (1), (1υ is the first and second spindle device, (4), Ω is the bearing stand, (7), n is the hollow chamber,
(8) is the heat dissipation device α0, and (101) is the first heat dissipation device α0. The second steam pipes (12, (121) are the first and second liquid pipes. The same reference numerals in the figures indicate the same or corresponding parts. Agent Nobu Kuzuno - Figure 1, Figure 2 Figure 3 Figure 8 Figure 4 3 12.121
Claims (4)
環状の中空室をそ0ぞ0有する第1.第2の主軸装置、
上記第1.第2の主軸装置の熱量を放熱する放熱装置、
上記第1.第2の主軸装置の中空室で気化する作動液体
の蒸気を上記放熱装置にそれぞn案内する第1.第2の
蒸気管−1上記放熱装置で凝縮液化する作動液体を上記
第1.第2の主軸装置の中空室にそれぞれ案内する第1
.第2の液管、この第1の液管と第2の液管を連通ずる
連通管を備えたことを特徴とする多軸冷却装置。(1) The first bearing has an annular hollow chamber formed inside the bearing and in which the working liquid is sealed. a second spindle device;
Above 1. a heat radiating device that radiates heat from the second spindle device;
Above 1. The first one guides the vapor of the working liquid vaporized in the hollow chamber of the second main shaft device to the heat radiating device. Second steam pipe-1 The working liquid that is condensed and liquefied in the heat dissipation device is transferred to the first steam pipe. The first one guided respectively into the hollow chamber of the second spindle device.
.. A multi-axis cooling device comprising: a second liquid pipe; and a communication pipe that communicates the first liquid pipe with the second liquid pipe.
許請求の範囲第1項記載の多軸冷却装置。(2) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in the bearing stand.
請求の範囲第1項記載の多軸冷却装置。(3) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in the bearing.
特徴とする特許請求の範囲第1項記載の多軸冷却装置。(4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing and the bearing stand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23170982A JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23170982A JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59118329A true JPS59118329A (en) | 1984-07-09 |
JPS6214380B2 JPS6214380B2 (en) | 1987-04-02 |
Family
ID=16927774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23170982A Granted JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59118329A (en) |
-
1982
- 1982-12-24 JP JP23170982A patent/JPS59118329A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6214380B2 (en) | 1987-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59118329A (en) | Multi-spindle cooler | |
JPS59118362A (en) | Multi-spindle cooling device | |
JPS59118338A (en) | Multi-spindle cooling device | |
JPS6214381B2 (en) | ||
JPS59118356A (en) | Multi-spindle cooling device | |
JPS6233453B2 (en) | ||
JPS6214385B2 (en) | ||
JPS59118331A (en) | Multi-spindle cooler | |
JPS6214383B2 (en) | ||
JPS59118334A (en) | Multi-spindle cooler | |
JPS6216785B2 (en) | ||
JPS59118327A (en) | Multi-spindle cooler | |
JPS59118355A (en) | Multi-spindle cooling device | |
JPS6214382B2 (en) | ||
JPS6218308B2 (en) | ||
JPS6216778B2 (en) | ||
JPS6216781B2 (en) | ||
JPS6216787B2 (en) | ||
JPS59118345A (en) | Multi-spindle cooling device | |
JPS59118352A (en) | Multi-spindle cooling device | |
JPS59118328A (en) | Multi-spindle cooler | |
JPS59118339A (en) | Multi-spindle cooling device | |
JPS6216777B2 (en) | ||
JPS59118333A (en) | Multi-spindle cooler | |
JPS6216776B2 (en) |