JPS6214380B2 - - Google Patents
Info
- Publication number
- JPS6214380B2 JPS6214380B2 JP23170982A JP23170982A JPS6214380B2 JP S6214380 B2 JPS6214380 B2 JP S6214380B2 JP 23170982 A JP23170982 A JP 23170982A JP 23170982 A JP23170982 A JP 23170982A JP S6214380 B2 JPS6214380 B2 JP S6214380B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- liquid
- heat
- working liquid
- hollow chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 13
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
- B23Q11/127—Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸
受部を冷却する多軸冷却装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device for cooling bearings such as a plurality of main shafts of a machine tool, for example.
従来この種の装置としては第1図及び第2図に
示すものがあつた。これら各図において、1,1
1は工作機械の第1、第2の主軸装置であり、ス
パンPの間隔で配置されている。2,21は主
軸、3,31は軸受、4,41は軸受台、5,5
1はプーリ、6はベツドである。 Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, 1, 1
Reference numeral 1 denotes first and second spindle devices of the machine tool, which are arranged at an interval of span P. 2, 21 are main shafts, 3, 31 are bearings, 4, 41 are bearing stands, 5, 5
1 is a pulley and 6 is a bed.
次に動作について説明する。図示しない駆動用
電動機によりVベルトを介してプーリ5,51に
伝えられた回転力によつて主軸2,21を回転さ
せる。この時、主軸2,21と軸受台4,41と
の間に位置する軸受3,31は主軸2,21が円
滑に回転することを助ける目的をもつているが、
回転とともに軸受3,31は摩擦により発熱し温
度上昇する。軸受3,31に生じた熱量は軸受台
4,41に伝わり、ベツド6および周囲空気へ伝
熱して放熱する。この際に軸受台4,41は温度
上昇し、各部は熱膨脹による種々の熱変形・歪を
生じる。このため主軸2,21の位置が変動し、
被加工物を機械加工するときに加工精度が低下す
るという欠点があつた。さらに、相互間の主軸
2,21の位置の変動に差を生じると同時に複数
の加工を行なう際に相互の加工精度に差を生じる
という欠点があつた。 Next, the operation will be explained. The main shafts 2, 21 are rotated by the rotational force transmitted to the pulleys 5, 51 via the V-belt by a driving electric motor (not shown). At this time, the bearings 3, 31 located between the main shafts 2, 21 and the bearing stands 4, 41 have the purpose of helping the main shafts 2, 21 rotate smoothly.
As the bearings 3 and 31 rotate, they generate heat due to friction and their temperature increases. The amount of heat generated in the bearings 3, 31 is transmitted to the bearing stands 4, 41, and is transferred to the bed 6 and the surrounding air to radiate heat. At this time, the temperature of the bearing stands 4 and 41 increases, and various thermal deformations and strains occur in each part due to thermal expansion. For this reason, the positions of the main shafts 2 and 21 fluctuate,
There was a drawback that the machining accuracy decreased when machining the workpiece. Furthermore, there is a drawback that there is a difference in the fluctuation of the positions of the main shafts 2 and 21 between them, and at the same time, there is a difference in the machining accuracy when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除
去するためになされたものであり、第1、第2の
主軸装置を有効に且つ平均的に冷却することがで
きる多軸冷却装置を提供することを目的としてい
る。 This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and an object of the present invention is to provide a multi-shaft cooling device that can effectively and evenly cool the first and second main shaft devices. It is an object.
以下、この発明の一実施例を第3図及び第4図
に基づいて説明する。第3図は機能系統を示すブ
ロツク図、第4図は断面側面図であり、これら各
図において、7,71は軸受台4,41の内部に
形成された環状の中空室、8は放熱装置であり、
冷却フアン9により冷却されている。10,10
1は中空室7,71で気化する作動液体の蒸気を
それぞれ放熱装置8に案内する第1、第2の蒸気
管、12,121は放熱装置8で凝縮液化する作
動液体を軸受台4,41の中空室7,71にそれ
ぞれ案内する第1、第2の液管である。13はこ
の第1の液管12と第2の液管121とを連通す
る連通管である。 An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Fig. 3 is a block diagram showing the functional system, and Fig. 4 is a cross-sectional side view. In these figures, 7 and 71 are annular hollow chambers formed inside the bearing stands 4 and 41, and 8 is a heat dissipation device. and
It is cooled by a cooling fan 9. 10,10
Reference numeral 1 denotes first and second steam pipes that guide the vapor of the working liquid that is vaporized in the hollow chambers 7 and 71 to the heat radiating device 8, respectively, and 12 and 121 the working liquid that is condensed and liquefied in the heat radiating device 8 to the bearing mounts 4 and 41. These are first and second liquid pipes that are guided to hollow chambers 7 and 71, respectively. Reference numeral 13 denotes a communication pipe that communicates the first liquid pipe 12 and the second liquid pipe 121.
尚、中空室7,71および放熱装置8、第1、
第2の蒸気管10,101、第1、第2の液管1
2,121の内部を真空減圧後、アンモニア、フ
ロン等の作動液体がその内部に所定量封入され
る。 In addition, the hollow chambers 7 and 71 and the heat dissipation device 8, the first
Second steam pipe 10, 101, first and second liquid pipe 1
After reducing the pressure inside 2,121, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is sealed therein.
次に動作について説明する。軸受台4,41で
受熱した軸受3,31の熱量は中空室7,71内
のフロン等の作動液体を加熱して気化させる際に
蒸発潜熱として奪われ、気化したフロン等の蒸気
は自身の蒸気圧を利用してそれぞれ第1、第2の
蒸気管10,101を経て放熱装置8へ移動し、
冷却フアン9により周囲空気により冷やされる。
このとき、フロン等の蒸気は凝縮して液体に戻る
が、凝縮潜熱を周囲空気に放出し、軸受3,31
の熱量を周囲空気へ放熱する。凝縮した作動液体
は第1、第2の液管12,121を経て重力を利
用して軸受台4,41の中空室7,71へ戻る。
このような動作をくり返し行なうことにより、軸
受台4,41の熱量を放熱装置8に熱輸送して効
率よく冷却するようにしている。 Next, the operation will be explained. The heat of the bearings 3, 31 received by the bearing stands 4, 41 is taken away as latent heat of vaporization when the working liquid such as fluorocarbons in the hollow chambers 7, 71 is heated and vaporized, and the vapor of the vaporized fluorocarbons is Using steam pressure, the steam is moved to the heat radiating device 8 through the first and second steam pipes 10 and 101, respectively,
It is cooled by ambient air by a cooling fan 9.
At this time, vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released to the surrounding air, and the bearings 3, 31
of heat is radiated to the surrounding air. The condensed working liquid passes through the first and second liquid pipes 12, 121 and returns to the hollow chambers 7, 71 of the bearing stands 4, 41 using gravity.
By repeating such operations, the amount of heat in the bearing stands 4, 41 is transported to the heat radiating device 8 and efficiently cooled.
ところで、軸受台4が他方の軸受台41に比べ
温度上昇(熱量)が大きくなると、軸受台4の中
空室7内の作動液体は気化する際に軸受台41の
中空室71内の作動液体に比べより大きな蒸気
量・蒸気圧・蒸気温度となる。従つて、より大き
な蒸気量となる分だけ蒸発潜熱を大きく奪い、よ
り大きく冷却し、軸受台4の温度上昇が軸受台4
1より大きくなるのを抑制するように働く。そし
て、軸受台4の中空室7内にて気化した温度の高
い蒸気は第1の蒸気管10を経て放熱装置8へ移
動して凝縮液化する。一方、軸受台41は軸受台
4に比べ温度上昇が小さく、軸受台41の中空室
71内の作動液体は軸受台4の中空室7内の作動
液体に比べ気化する際の蒸気量・蒸気圧・蒸気温
度が低い。従つて、軸受台41の中空室71内に
て気化した温度の低い蒸気は第2の蒸気管101
を経て放熱装置8へ移動して凝縮液化する。 By the way, when the temperature rise (heat amount) of the bearing pedestal 4 is larger than that of the other bearing pedestal 41, the working liquid in the hollow chamber 7 of the bearing pedestal 4 becomes the working liquid in the hollow chamber 71 of the bearing pedestal 41 when vaporized. Compared to this, the amount of steam, pressure, and temperature are greater. Therefore, as the amount of steam becomes larger, the latent heat of vaporization is taken away to a greater extent, and the temperature of the bearing pedestal 4 increases.
It works to prevent it from becoming larger than 1. The high temperature steam vaporized in the hollow chamber 7 of the bearing stand 4 moves to the heat radiating device 8 via the first steam pipe 10 and is condensed and liquefied. On the other hand, the temperature rise of the bearing pedestal 41 is smaller than that of the bearing pedestal 4, and the working liquid in the hollow chamber 71 of the bearing pedestal 41 has a vapor amount and vapor pressure when vaporized compared to the working liquid in the hollow chamber 7 of the bearing pedestal 4.・Steam temperature is low. Therefore, the low temperature steam vaporized in the hollow chamber 71 of the bearing stand 41 is transferred to the second steam pipe 101.
The liquid then moves to the heat dissipation device 8 where it is condensed and liquefied.
しかるに、温度の高い蒸気は凝縮液化した際の
温度が高く、温度の低い蒸気は凝縮液化した際の
温度が低い。放熱装置8において凝縮液化したそ
れぞれの作動液体は第1の液管12、第2の液管
121を通つて軸受台4,41の中空室7,71
に戻るが、連通管13により両作動液体が混合さ
れて平均化した温度の作動液体となつて中空室
7,71に戻ることになる。即ち、軸受台4の中
空室7には低くなつた温度の作動液体が戻り、そ
の低くなつた分だけ冷やされて軸受台4の温度上
昇が減少し、軸受台41の中空室71には高くな
つた温度の作動液体が戻り、その高くなつた分だ
け暖められて軸受台41の温度上昇が増大し、両
軸受台4,41の温度上昇差が小さく抑えられ
る。又、連通管13は中空室7,71に戻る両作
動液体の量を所定量にするように働いている。こ
のような動作をくり返し行なうことにより、両軸
受台4,41の何れか一方の発熱量・温度上昇が
増大しはじめると、両軸受台4,41の温度上昇
差を小さく抑えるように働き、両軸受台4,41
が平均的に有効に冷却される。従つて、工作機械
においては軸受部の熱変形・歪を最少限に抑える
ことができ、加工精度を向上させることができ
る。 However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied. The respective working liquids condensed and liquefied in the heat dissipation device 8 pass through the first liquid pipe 12 and the second liquid pipe 121 to the hollow chambers 7 and 71 of the bearing stands 4 and 41.
However, the two working liquids are mixed by the communication pipe 13 and returned to the hollow chambers 7, 71 as a working liquid having an average temperature. That is, the working fluid at a lower temperature returns to the hollow chamber 7 of the bearing pedestal 4, is cooled by the lowered temperature, and the temperature rise of the bearing pedestal 4 is reduced, and the working fluid returns to the hollow chamber 71 of the bearing pedestal 41 at a higher temperature. The working fluid at the lower temperature returns and is warmed by the increased temperature, increasing the temperature rise of the bearing pedestal 41, and suppressing the difference in temperature rise between the two bearing pedestals 4, 41 to a small value. Further, the communication pipe 13 serves to keep the amount of both working liquids returning to the hollow chambers 7, 71 at a predetermined amount. By repeating such an operation, when the heat generation amount and temperature rise of either of the bearing stands 4, 41 starts to increase, it works to suppress the difference in temperature rise of both the bearing stands 4, 41 to a small value, Bearing stand 4, 41
is effectively cooled on average. Therefore, in the machine tool, thermal deformation and distortion of the bearing portion can be minimized, and machining accuracy can be improved.
尚、上記実施例では冷却フアン9を用いた場合
について述べたが、冷却フアン9を用いず自然風
冷してもよく、あるいは冷却源として冷却風以外
の冷却水・油などを用いても同様の効果が得られ
る。 In the above embodiment, the case where the cooling fan 9 is used has been described, but the cooling fan 9 may not be used and natural air cooling may be used, or cooling water or oil other than the cooling air may be used as the cooling source. The effect of this can be obtained.
また、上記実施例では中空室7,71が軸受台
4,41にそれぞれ設けられた場合について述べ
たが、中空室7,71を軸受3,31と軸受台
4,41との間にそれぞれ設けるようにしてもよ
い。 Further, in the above embodiment, the hollow chambers 7, 71 are provided in the bearing pedestals 4, 41, respectively, but the hollow chambers 7, 71 are provided between the bearings 3, 31 and the bearing pedestals 4, 41, respectively. You can do it like this.
ところで、上記説明では主軸装置が2個の場合
について述べたが、3個以上の主軸装置の場合に
ついてもこの発明を適用し得ることができ、上記
実施例と同様な効果を奏する。 Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通り、軸受部内部に形
成され且つ作動液体が封入される環状の中空室を
それぞれ有し、同じ機械に装着される第1、第2
の主軸装置、この第1、第2の主軸装置の熱量を
放熱する放熱装置、第1、第2の主軸装置の中空
室で気化する作動液体の蒸気を放熱装置にそれぞ
れ案内する第1、第2の蒸気管、放熱装置で凝縮
液化する作動液体を第1、第2の主軸装置の中空
室にそれぞれ案内する第1、第2の液管、第1の
液管と第2の液管を連通する連通管を設け、軸受
部の熱量を中空室から放熱装置に熱輸送するよう
にしたことにより、軸受部の熱量を速やかに奪い
効率よく且つ平均的に冷却できるので、軸受部の
熱変形・歪を最少限に抑制し工作機械等の加工精
度を向上できるという実用上極めて大きな効果が
ある。 As explained above, this invention has annular hollow chambers formed inside the bearing part and filled with working fluid, and the first and second bearings are mounted on the same machine.
a main shaft device, a heat radiating device for dissipating the heat of the first and second main shaft devices, and a first and second main shaft device for guiding the vapor of the working liquid vaporized in the hollow chambers of the first and second main shaft devices to the heat radiating device, respectively. 2 steam pipes, first and second liquid pipes that guide the working liquid that is condensed and liquefied in the heat dissipation device to the hollow chambers of the first and second main shaft devices, and the first liquid pipe and the second liquid pipe. By providing a communicating pipe and transporting the heat of the bearing from the hollow chamber to the heat radiating device, the heat of the bearing can be rapidly removed and cooled efficiently and evenly, reducing thermal deformation of the bearing.・It has an extremely large practical effect of suppressing distortion to a minimum and improving the machining accuracy of machine tools.
第1図及び第2図は従来の多軸冷却装置を示す
断面側面図及び正面図、第3図及び第4図はこの
発明の一実施例による多軸冷却装置を示すブロツ
ク図及び断面側面図である。
図において、1,11は第1、第2の主軸装
置、4,41は軸受台、7,71は中空室、8は
放熱装置、10,101は第1、第2の蒸気管、
12,121は第1、第2の液管である。尚、図
中同一符号は同一又は相当部分を示す。
1 and 2 are a cross-sectional side view and a front view showing a conventional multi-shaft cooling device, and FIG. 3 and FIG. 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. It is. In the figure, 1 and 11 are first and second main shaft devices, 4 and 41 are bearing stands, 7 and 71 are hollow chambers, 8 is a heat dissipation device, 10 and 101 are first and second steam pipes,
12 and 121 are first and second liquid pipes. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
される環状の中空室をそれぞれ有し、同じ機械に
装着される第1、第2の主軸装置、上記第1の主
軸装置の熱量を放熱する放熱装置、上記第1、第
2の主軸装置の中空室で気化する作動液体の蒸気
を上記放熱装置にそれぞれ案内する第1、第2の
蒸気管、上記放熱装置で凝縮液化する作動液体を
上記第1、第2の主軸装置の中空室にそれぞれ案
内する第1、第2の液管、この第1の液管と第2
の液管を連通する連通管を備え、上記作動液体の
蒸発、凝縮作用により、上記軸受部の熱を上記中
空室から上記放熱装置に輸送するようにしたこと
を特徴とする多軸冷却装置。 2 中空室は軸受台に形成されたことを特徴とす
る特許請求の範囲第1項記載の多軸冷却装置。 3 中空室は軸受台と軸受との間にに形成された
ことを特徴とする特許請求の範囲第1項記載の多
軸冷却装置。[Scope of Claims] 1. First and second spindle devices each having an annular hollow chamber formed inside a bearing portion and filled with a working liquid, and mounted on the same machine, and the first spindle; A heat radiator that radiates the heat of the device; first and second steam pipes that guide the vapor of the working liquid vaporized in the hollow chambers of the first and second main shaft devices to the heat radiator, respectively; and condensation in the heat radiator. first and second liquid pipes that guide the working liquid to be liquefied into the hollow chambers of the first and second main shaft devices, the first liquid pipe and the second liquid pipe;
A multi-axis cooling device, comprising a communication pipe that communicates the liquid pipes of the working liquid, and the heat of the bearing portion is transported from the hollow chamber to the heat radiating device by the evaporation and condensation action of the working liquid. 2. The multi-axis cooling device according to claim 1, wherein the hollow chamber is formed in a bearing stand. 3. The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing stand and the bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23170982A JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23170982A JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59118329A JPS59118329A (en) | 1984-07-09 |
JPS6214380B2 true JPS6214380B2 (en) | 1987-04-02 |
Family
ID=16927774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23170982A Granted JPS59118329A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59118329A (en) |
-
1982
- 1982-12-24 JP JP23170982A patent/JPS59118329A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59118329A (en) | 1984-07-09 |