JPS59117668A - Time division multiplying circuit - Google Patents

Time division multiplying circuit

Info

Publication number
JPS59117668A
JPS59117668A JP23246582A JP23246582A JPS59117668A JP S59117668 A JPS59117668 A JP S59117668A JP 23246582 A JP23246582 A JP 23246582A JP 23246582 A JP23246582 A JP 23246582A JP S59117668 A JPS59117668 A JP S59117668A
Authority
JP
Japan
Prior art keywords
output
circuit
switching
switching element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23246582A
Other languages
Japanese (ja)
Other versions
JPH041384B2 (en
Inventor
Mitsuo Yonemori
米盛 満男
Tayu Miyatsu
宮津 多佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP23246582A priority Critical patent/JPS59117668A/en
Publication of JPS59117668A publication Critical patent/JPS59117668A/en
Publication of JPH041384B2 publication Critical patent/JPH041384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
    • G06G7/161Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division with pulse modulation, e.g. modulation of amplitude, width, frequency, phase or form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To perform a high-precision multiplying operation, by preventing the output error due to the floating capacity of a switching element and the output error due to the existence of the period when two switching elements are turned on simultaneously. CONSTITUTION:An output signal (b) from a pulse width modulating circuit 1 is inputted to gates G4 and G5. A signal (c) attained by delaying the signal (b) in an inverter G2 by DELTAT2 is inputted to gates G4 and G5 through an inerter G3. A switching signal (h) impressed to switching elements AS1 and AS2 is outputted from the gate G4, and a switching signal (i) impressed to switching elements AS2 and AS3 is outputted from the gate G5. Though switching signals (h) and (i) are signals corresponding to outputs (b) and (c) of the pulse width modulating circuit 1 respectively, rise and fall timings of both signals are operated minutely, and a minute period DELTAT when both signals are in the L level together is included at all change points of both signals but the period when they are in the H level together is not included, and thus, switching elements AS1-AS4 are not turned on simultaneously.

Description

【発明の詳細な説明】 (発明の分野) この発明は、2つのアナログ入力XとYの積に比例した
アナログ出力を得る時分割掛算回路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improvement in a time division multiplication circuit that obtains an analog output proportional to the product of two analog inputs, X and Y.

(従来技術とその問題点) 従来、この種の時分割掛算回路としては第1図および第
2図に示す回路が知られている。第1図に示す時分割掛
算回路は、一方の入力電圧EXに比例的にパルス幅が制
御される周期的パルス列を出力するパルス幅変調回路1
と、他方の入力電圧Evを受けて正負逆極性の電圧+E
Yおよび−EYを出力する増幅回路2および3と、パル
ス幅変調回路1の出力すおよびCに同期して増幅回路2
おJ:び3の出力+EYおよび−EYを交互に切換えて
低域フィルタ5に入ツノする切換回路4とを有し、上記
低域フィルタ5にて上記入力を平均化して上記2つの入
力電圧EXとEYの積に比例した出力EZを得るように
構成されている。
(Prior Art and its Problems) Conventionally, circuits shown in FIGS. 1 and 2 are known as this type of time division multiplication circuit. The time division multiplication circuit shown in FIG. 1 is a pulse width modulation circuit 1 that outputs a periodic pulse train whose pulse width is controlled proportionally to one input voltage EX.
In response to the other input voltage Ev, a voltage +E of opposite polarity is generated.
Amplifier circuits 2 and 3 output Y and -EY, and an amplifier circuit 2 synchronizes with the outputs S and C of the pulse width modulation circuit 1.
It has a switching circuit 4 which alternately switches outputs +EY and -EY of J: and 3 and inputs them into a low-pass filter 5, and the low-pass filter 5 averages the inputs to obtain the two input voltages. It is configured to obtain an output EZ proportional to the product of EX and EY.

第2図は第1図の回路の各部の動作波形を示している。FIG. 2 shows operating waveforms of each part of the circuit of FIG. 1.

上記パルス幅変調回路1は抵抗R1とコンデンサC1と
演算増幅器A1からなる積分回路10と、積分回路10
の出力電圧aをヒステリシスをもってレベル弁別する出
力反転型のシュミット回路G1(ヒスプリシスを持つイ
ンバータ)と、シュミット回路G1の出力すを論理反転
してその出力Cを抵抗R2を介して積分回路10に帰還
するインバータG2とからなる。
The pulse width modulation circuit 1 includes an integrating circuit 10 consisting of a resistor R1, a capacitor C1, and an operational amplifier A1;
An output inversion type Schmitt circuit G1 (inverter with hysteresis) that differentiates the level of the output voltage a with hysteresis, and the output of the Schmitt circuit G1 is logically inverted and its output C is fed back to the integrating circuit 10 via the resistor R2. and an inverter G2.

なお、第1図の回路全体には接地電位に対して絶対値が
等しい正負の電源電圧V+およびV−が与えられて動作
する。そのため、シュミツ[−回路G1の出力ba5よ
びインバータG2の出力Cは、Hレベル−電圧V+とし
レベル−電圧V−との論理状態をとる。
The entire circuit shown in FIG. 1 operates by being supplied with positive and negative power supply voltages V+ and V- having the same absolute value with respect to the ground potential. Therefore, the output ba5 of the Schmidts[- circuit G1 and the output C of the inverter G2 take a logical state of H level-voltage V+ and level-voltage V-.

このように構成されICパルス幅変調回路1では、第2
図の波形図にも示すように、入力電圧EXを積分する積
分回路10の動作方向がインバータG2の出力Cによっ
て正または負方向に反転されるという一種の発掘ループ
が形成され、シュミット回路G1の出力す、t5よびイ
ンバータG2の出力Cからは一定の周期のパルス列が得
られ、がっ、そのパルス列の・デユーティは次の関係を
満たず。
In the IC pulse width modulation circuit 1 configured in this way, the second
As shown in the waveform diagram in the figure, a kind of excavation loop is formed in which the operating direction of the integrating circuit 10 that integrates the input voltage EX is reversed to the positive or negative direction by the output C of the inverter G2, and the Schmitt circuit G1 A pulse train with a constant period is obtained from the output t5 and the output C of the inverter G2, but the duty of the pulse train does not satisfy the following relationship.

T I + T 2 また、上記増幅回路2は抵抗R3,R4および演算増幅
器A2かうなるゲイン1の反転増幅器であり、その出力
には入力電圧Fvの極性を反転した電圧−Evが得られ
る。同様に、増幅回路3も抵抗R5,R6および演算増
幅器A3で構成されるゲイン1の反転増幅回路であり、
増幅回路2の出力電圧の極性を反転した電圧−1−E 
vを出力する。
T I + T 2 The amplifying circuit 2 is an inverting amplifier with a gain of 1, consisting of resistors R3 and R4 and an operational amplifier A2, and a voltage -Ev obtained by inverting the polarity of the input voltage Fv is obtained at its output. Similarly, the amplifier circuit 3 is also an inverting amplifier circuit with a gain of 1, consisting of resistors R5 and R6 and an operational amplifier A3.
Voltage -1-E with the polarity of the output voltage of amplifier circuit 2 inverted
Output v.

上記切換回路4は、増幅回路3の出力+EVと低域フィ
ルタ5の入力側を結ぶF E 1”からなるスイッチン
グ素子ΔS1と、増幅回路2の出力−EYと低域フィル
タ5の入力側を結ぶ同じ<FETからなるスイッチング
素子AS2とからなり、一方のスイッチング素子へ81
は上記パルス幅変調回路1のシュミット回路G1の出力
すでもってオン・オフ制御されるとともに、他方のスイ
ッチング素子△S2は上記インバータG2の出力Cでも
ってオン・オフ制御される。
The switching circuit 4 has a switching element ΔS1 consisting of F E 1" that connects the output +EV of the amplifier circuit 3 and the input side of the low-pass filter 5, and a switching element ΔS1 that connects the output -EY of the amplifier circuit 2 and the input side of the low-pass filter 5. 81 to one switching element.
is controlled on and off by the output of the Schmitt circuit G1 of the pulse width modulation circuit 1, and the other switching element ΔS2 is controlled on and off by the output C of the inverter G2.

つまり、スイッチング素子ΔS1とAS2はパルス幅変
調回路1の互いに逆相の出力信号すとOにより相捕的に
駆動され、増幅回路3の出力子EYと増幅回路2の出)
]−EYとを交互に切換えて低域フィルタ5に入ツノす
る。
In other words, the switching elements ΔS1 and AS2 are driven in a complementary manner by the output signals S and O of the pulse width modulation circuit 1, which are in opposite phases to each other, and the output terminals EY of the amplifier circuit 3 and the outputs of the amplifier circuit 2)
]-EY and enters the low-pass filter 5.

低域フィルタ5は、抵抗値の等しい2つの並列入力抵抗
R7とR8,コンデンサC2,抵抗R9および演算増幅
器△4で構成されるアクティブフィルタで、パルス幅変
調回路1の出力に同期して電圧−トEVと−EYが交互
に印加される入力信号を平均化してその直流分を抽出し
、出力電圧EZとする。良く知られているように、低域
フィルタ5の出力電圧EZは2つの入力電圧E×とEY
の積に比例する。
The low-pass filter 5 is an active filter composed of two parallel input resistors R7 and R8 with equal resistance values, a capacitor C2, a resistor R9, and an operational amplifier Δ4. The input signals to which EV and -EY are applied alternately are averaged and the DC component thereof is extracted and used as the output voltage EZ. As is well known, the output voltage EZ of the low-pass filter 5 is determined by the two input voltages Ex and EY.
is proportional to the product of

以上のように構成された従来の時分割掛算回路では、次
に述べるような問題点があった。スイッチング素子AS
1.ΔS2としてFETのような半導体スイッチング素
子を用いた場合、第1図中に点線で示すように、スイッ
チング素子の制御端子(ゲート)と出力端子(ソース)
との間に浮遊容ff1c10.020が存在しする。そ
のために、素子AS1.AS2のスイッチング動作に伴
なってその出力側に微分信号が生じ、ぞの微分信号が低
域フィルタ5に入力されて出力誤差を生じる原因となる
。スイッチング素子AS1の出力点dおよびスイッチン
グ素子AS2の出力点eの波形について上述の微分信号
を生じるよう4を第3図に示している。この図において
点線で示すのが微分信号が重畳された波形であり、実線
は望ましいスイッチング特性である。
The conventional time division multiplication circuit configured as described above has the following problems. switching element AS
1. When a semiconductor switching element such as an FET is used as ΔS2, the control terminal (gate) and output terminal (source) of the switching element are connected as shown by the dotted line in Figure 1.
A floating capacitance ff1c10.020 exists between the two. For this purpose, element AS1. As the AS2 switches, a differential signal is generated on its output side, and this differential signal is input to the low-pass filter 5, causing an output error. 4 is shown in FIG. 3 to generate the above-mentioned differential signal with respect to the waveforms at the output point d of the switching element AS1 and the output point e of the switching element AS2. In this figure, the dotted line shows the waveform on which the differential signal is superimposed, and the solid line shows the desired switching characteristics.

上記の微分信号の発生について詳述する。スイッチング
素子ΔS1の制御端子に出力すのV+が印加され、スイ
ッチング素子へ81が導通し、その出力側に電圧+Ev
が生じているとする。このとき、スイッチング素子AS
1の浮遊容fic10にはV÷−Evなる電圧が充電さ
れる。その後、信号すがV−に反転してスイッチング素
子AS1がオフすると、スイッチング素子AS1の出力
はV−−(V”−Ev)まで変化して浮遊容量C10の
電荷が抵抗R8を介して放電する。これが第3図dに点
線で付加したような微分信号となる。
The generation of the above differential signal will be explained in detail. The output V+ is applied to the control terminal of the switching element ΔS1, 81 becomes conductive to the switching element, and the voltage +Ev is applied to the output side of the switching element ΔS1.
Suppose that this occurs. At this time, switching element AS
The floating capacitance fic10 of 1 is charged with a voltage of V÷-Ev. After that, when the signal is reversed to V- and the switching element AS1 is turned off, the output of the switching element AS1 changes to V-- (V"-Ev), and the charge in the stray capacitance C10 is discharged via the resistor R8. This results in a differential signal as shown by the dotted line in Figure 3d.

同様にして、スイッチング素子AS2がオンからオフに
変化したときに、第3図のeに点線で付加したような微
分信号が生ずる。
Similarly, when switching element AS2 changes from on to off, a differential signal as shown by the dotted line at e in FIG. 3 is generated.

このようなスイッチング素子AS1.△S2の浮遊容量
CI’0.C20に起因する微分パルスによって低域フ
ィルタ5の出力EZに誤差を生ずることとなるが、この
誤差は、掛算回路としての応答性を高くすべくパルス幅
変調回路1の周期1゛1十T2を小さくする程大きくな
り、無視できないまた、第1図の従来回路では次のよう
な問題もあった。スイッチング素子△S1と△S2を相
補駆動會る2相の切換信号すとCはパルス幅変調回路1
におけるインバータG2の入力側および出力側からそれ
ぞれ得られるが、入力信号すに対して出力信号Cはイン
バータG2の伝達時間のために多少貯延される。このよ
うすを第4図にある程度誇張して示している。このよう
に信号すに対して信号CがΔT2だけ遅れていると、信
号すの立上り時点で両信号す、cと61−ルベルとなり
、信号すの立下り時1点で両信号す、cともLレベルと
なる。
Such a switching element AS1. △S2 stray capacitance CI'0. The differential pulse caused by C20 causes an error in the output EZ of the low-pass filter 5, but this error is caused by changing the period 1゛10T2 of the pulse width modulation circuit 1 in order to increase the response as a multiplication circuit. The smaller the size, the larger the size, which cannot be ignored.Furthermore, the conventional circuit shown in FIG. 1 has the following problems. A two-phase switching signal that drives switching elements △S1 and △S2 in a complementary manner is C, which is a pulse width modulation circuit 1.
The output signal C is obtained from the input and output sides of the inverter G2 respectively, but the output signal C is somewhat delayed due to the propagation time of the inverter G2 relative to the input signal. This situation is shown in a somewhat exaggerated manner in Figure 4. If the signal C is delayed by ΔT2 with respect to the signal S in this way, at the rising edge of the signal S, both signals S, C and 61-levels, and at one point at the falling edge of the signal S, both signals S, C It becomes L level.

ここで問題なのは、両信号す、Cが同時に1ルベルにな
る期間が存在していることである。信号すとCがともに
Hレベルになると、スイッチング素子AS1とAS2が
同時にオンすることとなる。
The problem here is that there is a period in which both signals S and C become 1 level at the same time. When both signals S and C become H level, switching elements AS1 and AS2 are turned on simultaneously.

その結果、例えばスイッチング素子AS2がオフとなっ
て増幅回路2と低域フィルタ5とを速やかに遮断しなけ
ればいけないのに、スイッチング素子△S2のオフタイ
ミングが遅れたことによって増幅回路2の出力側が強制
的に接地電位に引き落とされてしまい、増幅回路2およ
び3の増幅が忠実に行なわれなくなる。当然このことも
出力誤差の原因となる。
As a result, for example, although the switching element AS2 should be turned off and the amplifier circuit 2 and the low-pass filter 5 should be cut off immediately, the output side of the amplifier circuit 2 is delayed due to the delay in the off timing of the switching element ΔS2. Since the potential is forcibly lowered to the ground potential, the amplification circuits 2 and 3 cannot faithfully perform amplification. Naturally, this also causes an output error.

(発明の目的) この発明の目的は、上述したスイッチング素子の浮遊容
量に起因づる出力誤差、および2つのスイッチング素子
が同時にオンしてしまう期間が存在することによる出力
誤差を防止した高精度の時分割掛枠回路を提供覆ること
にある。
(Object of the Invention) An object of the present invention is to provide a high-precision timer that prevents the output errors caused by the stray capacitance of the switching elements mentioned above and the output errors caused by the existence of periods in which two switching elements are turned on at the same time. Provides a split frame circuit for covering.

(発明の構成と効果) 上記の目的を達成づるために、この発明は、スイッチン
グ素子がオンからオフに変化したとき、速やかにぞの出
力側を接地電位に接続するように働くスイッチング素子
を追加するとともに、2系統のスイッチング素子を相、
補駆動でる切換信号のタイミング調整回路を設け、両切
換信号の変化点で同時オン期間をなくし、反対に微少な
同時オフ期間を生ずるようにしたことを特徴とり−る。
(Structure and Effect of the Invention) In order to achieve the above object, the present invention adds a switching element that works to quickly connect the output side of the switching element to the ground potential when the switching element changes from on to off. At the same time, the switching elements of the two systems are
The present invention is characterized in that a timing adjustment circuit is provided for the switching signals that are auxiliary drives, so that simultaneous on periods are eliminated at the change points of both switching signals, and on the contrary, a minute simultaneous off period is generated.

この構成によれば、スイッチング素子に浮遊容量があっ
ても有害な微分信号が生じなくなり、またスイッチング
素子の同時Aン状態がなくなるので、上述したような従
来の出力誤差を防止することができ、高精度の掛算動作
を実現することができる。
According to this configuration, even if there is stray capacitance in the switching element, a harmful differential signal will not be generated, and the simultaneous A state of the switching element will not occur, so the conventional output error as described above can be prevented. A highly accurate multiplication operation can be realized.

(実施例の説明) 第5図はこの発明を適用しlc時分割掛算回路の構成例
を示す。第5図の回路において、パルス幅変調回路1.
増幅回路2および3.低域フィルタ5の構成は第1図に
示した従来のらのと全く同じであり、同一部分に同一符
号をイ]シてその説明は省略(゛る。
(Description of Embodiments) FIG. 5 shows a configuration example of an LC time division multiplication circuit to which the present invention is applied. In the circuit of FIG. 5, pulse width modulation circuit 1.
Amplifier circuits 2 and 3. The configuration of the low-pass filter 5 is exactly the same as that of the conventional filter shown in FIG. 1, and the same parts are denoted by the same reference numerals and the explanation thereof will be omitted.

この発明に係る時分割掛枠回路は以下の構成に特徴を有
する。まず、上記パルス幅変調回路1の出力信号すおよ
びCを受けてその変化点タイミングを微少に操作し、互
いにほぼ逆相でかつずべての変化点で同時に11011
つまりLレベルとなる微少時間を含んだ2相のパルス列
からなる切換信号りおよび1を作るタイミング調整回路
6を設けている。
The time-sharing hanging frame circuit according to the present invention is characterized by the following configuration. First, by receiving the output signals S and C of the pulse width modulation circuit 1 and slightly manipulating their changing point timings, the timings of the changing points are almost opposite to each other and are simultaneously 11011 at all changing points.
In other words, a timing adjustment circuit 6 is provided which generates a switching signal consisting of a two-phase pulse train including a minute time when the signal reaches the L level.

また、上記切換回路5は、上記増幅回路3の出ノノート
EYと上記低域フィルタ5の入ノ〕側とを結ぶスイッチ
ング素子ΔS1と、このスイッチング素子AS1の出力
側と接地電位点を結ぶスイッチング素子AS3ど、上記
増幅回路2の出力−Evと上記低域フィルタ5の入力側
とを結ぶスイッチング素子AS2と、このスイッチング
素子AS2の出ノj側と接地電位点を結ぶスイッチング
素子△S4とを有し、スイッチング素子AS1とへ84
とが上記一方の切換信号りにより同時にオン・オフされ
、スイッチング素子AS2とAS2とが上記他方の切換
信号iにより同時にオン・オフされるように構成されて
いる。
The switching circuit 5 also includes a switching element ΔS1 that connects the output note EY of the amplifier circuit 3 and the input side of the low-pass filter 5, and a switching element that connects the output side of this switching element AS1 and a ground potential point. AS3 has a switching element AS2 that connects the output -Ev of the amplifier circuit 2 and the input side of the low-pass filter 5, and a switching element ΔS4 that connects the output j side of this switching element AS2 and the ground potential point. and switching element AS1 to 84
are turned on and off simultaneously by one of the switching signals, and switching elements AS2 and AS2 are simultaneously turned on and off by the other switching signal i.

この実施例では、上記タイミング調整回路6はインバー
タG3とANDゲートG4とNoRゲー4〜G5とから
なり、この回路の動作波形を第6図に示している。
In this embodiment, the timing adjustment circuit 6 includes an inverter G3, an AND gate G4, and NoR gates 4 to G5, and the operating waveforms of this circuit are shown in FIG.

パルス幅変調回路1からの出力信号すはANDゲーh 
G 4およびNORゲートG5にそれぞれ入力される。
The output signal from the pulse width modulation circuit 1 is an AND game h
G4 and NOR gate G5, respectively.

また、信号すよりインバータG2を軽て△T2だけ理れ
を伴った信号Cは、インバータG3を経てANDゲート
G4およびNORグーi〜G5にそれぞれ入力される。
Further, the signal C, which is distorted by ΔT2 by passing the inverter G2, is input to the AND gate G4 and the NOR gates i to G5 through the inverter G3.

そして、ANDゲーh G 4からスイッチング素子△
S1とAS4に印加される切換信号りが出力され、NO
RゲートG5からスイッチング素子AS2と△S3に印
加される切換信号iが出力される。
Then, from the AND game h G 4, the switching element △
The switching signal applied to S1 and AS4 is output, and NO
A switching signal i applied to switching elements AS2 and ΔS3 is output from R gate G5.

ここで、インバータG3の入出力C→9には第6図に示
すようにΔT3の応答遅れを伴い、同じくANDゲート
G4の入出力にはΔT4の応答遅れを伴い、N、ORゲ
ー1−05の入出力にはΔT5の応答遅れを伴う。これ
らの応答遅れを利用することにより、第6図のり、iに
示すように、切換信号りとiはパルス幅変調回路・1の
出力すとCにそれぞれ対応した信号であるが、両信号の
立」ニりおよび立下りタイミングが微少に操作されて、
両信号のすべての変化点でともにLレベルとなる微少期
間へTが含まれ、両信号がともにHレベルとなる期間は
全く含まれない信号となる。
Here, the input/output C→9 of the inverter G3 is accompanied by a response delay of ΔT3 as shown in FIG. 6, and the input/output of the AND gate G4 is also accompanied by a response delay of ΔT4. The input/output is accompanied by a response delay of ΔT5. By utilizing these response delays, as shown in Fig. 6, the switching signals R and i correspond to the outputs of the pulse width modulation circuit 1 and C, respectively. The rising and falling timings are slightly manipulated,
T is included in the minute period in which both signals are at L level at all changing points, and the signal does not include any period in which both signals are at H level.

その結果、スイッチング素子△S1〜AS4が同時にA
ンJることはなくなり、従来のように2つのjケ幅回路
2と3の出力側が短絡状態となって正常な増幅作用を損
うことがなくなり、この点での出力誤差を防止づること
ができる。
As a result, switching elements ΔS1 to AS4 simultaneously switch to A
This eliminates the possibility that the output sides of the two J-width circuits 2 and 3 become short-circuited and impair the normal amplification function as in the conventional case, and it is possible to prevent output errors at this point. can.

また、スイッチング素子△S1がオンからオフに変化づ
−るど、同時にスイッチング素子AS3がオンからオフ
に変化し、スイッチング素子AS1の出力側を速やかに
接地電位に引き落と1゜よって、スイッチング素子AS
Iの浮遊容量cioの電荷放電も瞬時になされ、従来の
ような微分信号が生じて低域フツィルタ5側に入力され
るという不都合がなくなる。スイッチング素子AS2側
の動作についても同様で、スイッチング素子Δ$4の働
きで低域フィルタ5の抵抗R7を通して従来のような微
分信号が入力されてしまうのを防止する。
Furthermore, as the switching element ΔS1 changes from on to off, the switching element AS3 simultaneously changes from on to off, and the output side of the switching element AS1 is quickly pulled down to the ground potential.
The charge discharge of the stray capacitance cio of I is also instantaneously performed, and the disadvantage of generating a differential signal and inputting it to the low frequency filter 5 side as in the conventional case is eliminated. The same applies to the operation of the switching element AS2, and the action of the switching element Δ$4 prevents a differential signal from being input through the resistor R7 of the low-pass filter 5 as in the conventional case.

なお、スイッチング素子AS1〜Δs4.シュミット回
路G1.インバータG2.G3.NADゲートG4.N
ORゲートG5はC−MOSで更iFするのが好ましい
。この場合、C−MOSゲー1〜の入出力伝達時間が約
5Qnsであることから、パルス幅変調回路1の出力周
期を100μsと充分小さくしても、タイミング調整回
路6による上記Δ丁の調整による誤差は0.1%以下と
非常に小さく無視できる程度におさえることができる。
Note that the switching elements AS1 to Δs4. Schmitt circuit G1. Inverter G2. G3. NAD gate G4. N
It is preferable that the OR gate G5 is a C-MOS and is further subjected to an iF. In this case, since the input/output transmission time of the C-MOS gate 1~ is about 5Qns, even if the output period of the pulse width modulation circuit 1 is sufficiently small as 100μs, the timing adjustment circuit 6 will not be able to adjust the above ΔT. The error is very small, 0.1% or less, and can be suppressed to a negligible level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の微分割掛算回路を示す回路図、第2図は
第1図の回路の動作を示す波形図、第3図および第4図
は第1図の回路の問題点を示した波形図、第5図はこの
発明を適用した時分割掛咋回路の構成を、示す回路図、
第6図は第5図にお【ノるタイミング調整回路6の動作
波形図である。 1・・・・・・パルス幅変調回路 23・・・増幅回路 4・・・・・・切換回路 5・・・・・・低域フィルタ 6・・・・・・タイミング調整回路 ASI〜AS4・・・スイッチング素子特許出願人 立石電機株式会ネ1 第3図 第4図 第6図 第5図
Figure 1 is a circuit diagram showing a conventional differential division multiplication circuit, Figure 2 is a waveform diagram showing the operation of the circuit in Figure 1, and Figures 3 and 4 show problems with the circuit in Figure 1. A waveform diagram, and FIG. 5 is a circuit diagram showing the configuration of a time-sharing multiplication circuit to which the present invention is applied.
FIG. 6 is an operational waveform diagram of the timing adjustment circuit 6 shown in FIG. 1...Pulse width modulation circuit 23...Amplification circuit 4...Switching circuit 5...Low pass filter 6...Timing adjustment circuit ASI to AS4. ... Switching element patent applicant Tateishi Electric Co., Ltd. Figure 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)一方の入力信号Xに比例的にパルス幅が制御され
る周期的パルス列を出力するパルス幅変調回路と、他方
の入力信号Yに比例した正負逆極性の電圧+Evおよび
−EYを出力する増幅回路と、上記パルス幅変調回路の
出力に同期して上記増幅回路の出ツノ1〜EYおよび−
Evを交互に切換えて低域フィルタに入力する切換回路
とを有し、上記低域フィルタにて上記入力を平均化して
2つの入力信号XとYの積に比例した出力を得る時分割
掛算回路において、 上記パルス幅変調回路のパルス列出力を受けてその変化
タイミングを微少に操作し、互いにほぼ逆相でかつ1べ
ての変化点で同時に゛0パとなる微少時間を含んだ2相
のパルス列からなる切換信号t+ d3よびiを作るタ
イミング調整回路を有し、上記切換回路は、上記増幅回
路の出力+EYと上記低域フィルタの入力側とを結ぶス
イッチング素子ΔS1と、このスイッチング素子△s1
の出力側と接地電位点を結ぶスイッチング素子△s3と
、上記増幅回路の出り)−EYと上記低域フィルタの入
力側とを結ぶスイッチング素子AS2と、このスイッチ
ング素子AS2の出力側と接地電位点を結ぶスイッチン
グ素子△S4とを有し、スイッチング素子AS1とAS
4とが上記一方の切換信号りにより同時にオン・オフさ
れ、スイッチング素子AS2と△S3とが上記他方の切
換信号iにより同時にオン・オフされるように構成され
ていることを特徴とする時分割掛算回路。
(1) A pulse width modulation circuit that outputs a periodic pulse train whose pulse width is controlled proportionally to input signal X on one side, and voltages +Ev and -EY of opposite polarity proportional to input signal Y on the other side. outputs 1 to EY and - of the amplifier circuit in synchronization with the output of the amplifier circuit and the pulse width modulation circuit.
a switching circuit that alternately switches Ev and inputs it to a low-pass filter, and a time-sharing multiplication circuit that averages the input in the low-pass filter to obtain an output proportional to the product of two input signals X and Y. In the above, the pulse train output of the pulse width modulation circuit is received and its change timing is slightly manipulated to produce a two-phase pulse train that is almost in opposite phase to each other and includes a short time period in which all change points become zero at the same time. The switching circuit includes a switching element ΔS1 that connects the output +EY of the amplifier circuit and the input side of the low-pass filter, and this switching element Δs1.
A switching element Δs3 connects the output side of the switching element Δs3 to the ground potential point, a switching element AS2 connects the output side of the amplifier circuit -EY and the input side of the low-pass filter, and the output side of this switching element AS2 connects to the ground potential point. It has a switching element ΔS4 that connects the points, and the switching elements AS1 and AS
4 are simultaneously turned on and off by one of the switching signals, and the switching elements AS2 and ΔS3 are simultaneously turned on and off by the other switching signal i. Multiplication circuit.
JP23246582A 1982-12-24 1982-12-24 Time division multiplying circuit Granted JPS59117668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23246582A JPS59117668A (en) 1982-12-24 1982-12-24 Time division multiplying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23246582A JPS59117668A (en) 1982-12-24 1982-12-24 Time division multiplying circuit

Publications (2)

Publication Number Publication Date
JPS59117668A true JPS59117668A (en) 1984-07-07
JPH041384B2 JPH041384B2 (en) 1992-01-10

Family

ID=16939711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23246582A Granted JPS59117668A (en) 1982-12-24 1982-12-24 Time division multiplying circuit

Country Status (1)

Country Link
JP (1) JPS59117668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106779A (en) * 2001-09-27 2003-04-09 Nippon Steel Corp Cooling device and cooling method of reduced iron agglomerated product
JP2011184801A (en) * 2011-05-27 2011-09-22 Nippon Steel Engineering Co Ltd Cooling device for reduced iron agglomerate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106779A (en) * 2001-09-27 2003-04-09 Nippon Steel Corp Cooling device and cooling method of reduced iron agglomerated product
JP2011184801A (en) * 2011-05-27 2011-09-22 Nippon Steel Engineering Co Ltd Cooling device for reduced iron agglomerate

Also Published As

Publication number Publication date
JPH041384B2 (en) 1992-01-10

Similar Documents

Publication Publication Date Title
KR960012801B1 (en) Ripple-free phase detector using two sample-and-hold circuit
US7746130B2 (en) Triangular wave generating circuit having synchronization with external clock
JP3440120B2 (en) Apparatus for generating clock signal from digital signal
EP0952669B1 (en) Phase comparison circuit
KR940704082A (en) Switching amplifier
US6346852B1 (en) Class-D amplifier with enhanced bandwidth
JPH08327677A (en) Detection circuit and detection method for capacitive sensor
JPS59117668A (en) Time division multiplying circuit
JPS6359216A (en) Frequency division circuit
JPS59117667A (en) Time division multiplying circuit
KR100289395B1 (en) Generating circuit for reference clock
JPS6333804B2 (en)
EP0377978B1 (en) A PLL control apparatus
JP2585554B2 (en) Power supply
FR2564657B1 (en) AMPLIFIER FOR PHYSIOLOGICAL SIGNALS
JPH04170219A (en) Duty correction circuit
JPS62186607A (en) Triangular wave generator
JPS5938759Y2 (en) phase locked circuit
EP0308540B1 (en) Oscillator circuit
JPH1032926A (en) Power supply voltage control circuit
SU1197055A1 (en) Charge amplifier
SU1495981A1 (en) Stabilized generator of triangular voltages
SU1741159A1 (en) Scanning amplifier
JPS61116422A (en) Analog-digital converting circuit
SU1406529A1 (en) Device for measuring pulse duration