JPS59116199A - Liquid phase epitaxial growth method of garnet - Google Patents

Liquid phase epitaxial growth method of garnet

Info

Publication number
JPS59116199A
JPS59116199A JP57225173A JP22517382A JPS59116199A JP S59116199 A JPS59116199 A JP S59116199A JP 57225173 A JP57225173 A JP 57225173A JP 22517382 A JP22517382 A JP 22517382A JP S59116199 A JPS59116199 A JP S59116199A
Authority
JP
Japan
Prior art keywords
garnet
temperature
liquid phase
phase epitaxial
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225173A
Other languages
Japanese (ja)
Inventor
Taketoshi Hibiya
孟俊 日比谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57225173A priority Critical patent/JPS59116199A/en
Publication of JPS59116199A publication Critical patent/JPS59116199A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To grow a garnet film satisfying a prescribed performance index by specifying the range of growth temps. and further setting the supercooling temp. to the specified temp. or below in the epitaxial growth of the garnet film from a molten liquid consisting essentially of PBO. CONSTITUTION:When a garnet film for optical element is grown by a liquid phase epitaxial growth method from a molten liquid consisting essentially of PBO, the growth temp. and the super-cooling temp. are set to about 920-993 deg.C and to >= about 10 deg.C, respectively. A desired garnet film, e.g. Gd0.2Y2.8Fe5O12, Y3Fe5O12 is obtd., which satisfies alpha<0.6cm<-> eight absorbance and 75deg/dB performance index. Kinds of ions of rare earth elements replaced in the garnet are Eu, Tb, Nb or the like. In this manner, the reproducible garnet film can be obtd., which satisfies the prescribed performance index.

Description

【発明の詳細な説明】 本発明は光学素子用ガーネット液相エピタキシャル膜の
育成方法に関する。さらに詳しくは、光学吸収損失を低
減するための育成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a garnet liquid phase epitaxial film for optical elements. More specifically, the present invention relates to a growing method for reducing optical absorption loss.

ガーネット液相エピタキシャルの厚膜や薄膜を、非相反
素子である元アイソレータやレーザ発振素子として用い
ることが、昭和57年度電子通信学会総合全国大会講演
番号882や、プロシーディンクス・オン・ザ・サーテ
ィーンス・コンファレンス・オン・ソリッド・ステート
・デバイセス;ジャパニーズ・ジャーナル・オン・アプ
ライド・フィツクス(Proceedings of 
the 13theonference on 5ol
id 8tate 1)evices 。
The use of thick and thin garnet liquid-phase epitaxial films as non-reciprocal elements such as isolators and laser oscillation elements was reported in Lecture No. 882 of the 1982 IEICE General Conference and Proceedings on the Thirteenth.・Conference on Solid State Devices; Japanese Journal on Applied Fixtures (Proceedings of
the 13theonference on 5ol
id 8tate 1) evices.

Tokyo 、 1981 ; Japanese J
ournal ofApplied Physics)
第21巻付録21−1゜第409ページにおいて試みら
れている。
Tokyo, 1981; Japanese J
of Applied Physics)
An attempt is made in Volume 21, Appendix 21-1, page 409.

これらの素子に用いられるときの重要な材料特性の一つ
として光吸収損失がある。光吸収損失は小さい#1ど望
ましい。その目安として、光アイソレータとしてガーネ
ット液相エピタキシャルJll用いる場合には、ガーネ
ットのファラデー回転係数と光吸収損失との比である性
能指数として、75 deg/(I 8以上が要求され
る。光アイソレータにあっては、入射偏光面を45°回
転させることになるので、素子を光を通過する際の損失
としては0.6dl(以下としなければならない。例え
ばYIGを材料として用いる場合には、そのファラデー
回転係数は215deg/cnであるから、入射偏光面
と45°回転させるために必要な素子長は0、21 (
Imとなる。すなわち、光吸収損失としては0.6dB
/m番 以下でなければならない。入射光強度IOは、
素子の中を)(mだけ進んだときに(1)式%式% (11 75de g/旧3を満足するYIGの光吸収係数αは
、したがってα<0.66濡−1でなければならない。
One of the important material properties when used in these devices is optical absorption loss. It is desirable that the light absorption loss is small, such as #1. As a guideline, when using garnet liquid phase epitaxial Jll as an optical isolator, the figure of merit, which is the ratio of the Faraday rotation coefficient of garnet to the optical absorption loss, is required to be 75 deg/(I 8 or more. In this case, the incident polarization plane is rotated by 45 degrees, so the loss when light passes through the element must be 0.6 dl (or less. For example, when YIG is used as the material, its faraday Since the rotation coefficient is 215 deg/cn, the element length required to rotate the incident polarization plane by 45 degrees is 0.21 (
Im going to be. In other words, the optical absorption loss is 0.6 dB.
/m number must be below. The incident light intensity IO is
The light absorption coefficient α of YIG that satisfies (11 75 de g/former 3) when traveling by (m) in the element must therefore be α<0.66 -1. .

要求されるαの値は、材料の7アラデ一回転係数によっ
ても異ガるが、前記の電子通信学会総合全国大会講演番
号882に開示されるようなファラデー回転係数が19
0deg/cInのGd:YIGを光アイソレータ材料
に用いる場合には、α〈0.60/L 1である必要が
ある。
The required value of α varies depending on the material's 7Araday rotation coefficient, but the Faraday rotation coefficient of 19
When using Gd:YIG of 0 deg/cIn as an optical isolator material, it is necessary that α<0.60/L 1.

これオでのところ光学素子用ガーネット液相エピタキシ
ャル膜の光吸収係数は、しばしば大きいことがあり、材
料の性能指数を75deg/dB  以下下の値にする
ことは困難であった。本発明の目的は、光学素子用ガー
ネット液相エピタキシャル膜の光吸収係数がα〈0,6
薗 となるようなガーネット膜の育成条件を提供するこ
とにある。
In this case, the light absorption coefficient of the garnet liquid phase epitaxial film for optical elements is often large, and it has been difficult to reduce the figure of merit of the material to a value below 75 deg/dB. The purpose of the present invention is to provide a garnet liquid phase epitaxial film for optical elements with a light absorption coefficient of α<0,6.
The objective is to provide conditions for growing a garnet film that will produce a garnet film.

本発明者は、ガーネット液相エピタキシャル族の育成条
件と光吸収係数との間に因果関係があることを実験的に
見出し、不発明をなすに至った。
The present inventor has experimentally discovered that there is a causal relationship between the growth conditions of the garnet liquid phase epitaxial family and the light absorption coefficient, and has thus accomplished the invention.

以下に、夷験結来に基づく本発明の原理を述べる。The principle of the present invention based on the experimental results will be described below.

第1図の1. 2および3は、それぞれ液相温度がそれ
ぞれ930℃、988℃および1003℃ の融液を用
いて、過飽和温度(定義は育成温度と液相温度との差)
を変えてガーネット膜を育成した場合の波長1.3μm
の光における吸収係数を示したものである。光吸収係数
は膜育成温度の低下、すなわち、過冷却温度の増大に伴
い指数関数的に増大する。第2図は、液相温度を連続的
に変化させた融液を準備し、これらの融液から過冷却温
度を変えてガーネット膜を育成した時に、過冷却温度Δ
Tが0.10および20℃とした場合の波長1.3μm
の光における吸収係数を示している。図中4−5および
6はΔ’I’=O110および20℃ に灼応している
。なお、八T=0℃での吸収係数は、有限の過冷却温度
での吸収係数の測定値をΔT=0 に外挿したときの櫃
である。
1 in Figure 1. 2 and 3 use melts with liquidus temperatures of 930°C, 988°C, and 1003°C, respectively, to determine the supersaturation temperature (defined as the difference between the growth temperature and the liquidus temperature).
Wavelength 1.3μm when growing garnet film by changing
This shows the absorption coefficient of light. The light absorption coefficient increases exponentially as the film growth temperature decreases, that is, as the supercooling temperature increases. Figure 2 shows that the supercooling temperature Δ was obtained by preparing melts whose liquidus temperatures were continuously changed and growing a garnet film from these melts by changing the supercooling temperature.
Wavelength 1.3μm when T is 0.10 and 20℃
It shows the absorption coefficient of light. In the figure, 4-5 and 6 correspond to Δ'I'=O110 and 20°C. Note that the absorption coefficient at 8T=0°C is the value obtained by extrapolating the measured value of the absorption coefficient at a finite supercooling temperature to ΔT=0.

この図から明らかなように、吸収は二つの責素で決壕り
ている。一つはΔT=0の状態で生ずる吸収であり、こ
れは融液の液相温度が決まれば平衡論的に決定゛される
吸収である。他は膜が成長するときの動力学的効果よっ
て生ずる吸収である。
As is clear from this diagram, absorption is determined by two factors. One is absorption that occurs in the state of ΔT=0, and this absorption is determined equilibria once the liquidus temperature of the melt is determined. The other is absorption caused by kinetic effects as the film grows.

第2図に明らかなように、ΔT=0における吸収、すな
わち平衡論的に決定され、吸収は、液相温度に多くて”
窓++と呼ばれる領域がある。おおよそ、930〜10
00℃の範囲で吸収が最小となっている。これに対応j
−で、ΔT=10℃のときに吸収係数がα≦Q、5cI
m’  となる領域が、膜育成温度が915〜995℃
の範囲において存在している。
As is clear from Figure 2, the absorption at ΔT=0, that is, is determined equilibria, and the absorption is mostly at the liquidus temperature.
There is an area called window++. Approximately 930-10
Absorption is minimum in the range of 00°C. Corresponding to this
-, when ΔT=10℃, the absorption coefficient is α≦Q, 5cI
m' is a region where the film growth temperature is 915-995℃
Exist within the range of

すなわち、PbOを主成分とする融液からの光学素子用
ガーネット液相エピタキシャル膜の育成法において、過
冷却温度を10℃以下とする育成法5− であり、またガーネット膜の育成温度を920〜993
℃として過冷却温度を10℃以下とすることを特徴とす
る育成法である。
That is, in the method for growing a garnet liquid phase epitaxial film for optical elements from a melt containing PbO as a main component, the supercooling temperature is 10°C or less, and the garnet film is grown at a temperature of 920°C or less. 993
This is a growth method characterized by setting the supercooling temperature to 10°C or less.

以下に夾月例を用いて、本発明をさらに詳細に説明する
The present invention will be explained in more detail below using examples.

実施例1 第1表に示す組成のM!ll液を用いてGd O,2Y
 2.8F’esOt2ガーネツト液相エピタキシヤA
/膜を育成した。このml故の液相温度は1003℃で
あり、液相温度(過冷却yjA度Δ1゛=0℃)に外挿
される波長1.3μmの吸収係数はα二Q、lOIノi
’であった。
Example 1 M! of the composition shown in Table 1! Gd O,2Y using ll solution
2.8F'esOt2 Garnet liquid phase epitaxy A
/ film was grown. The liquidus temperature for this ml is 1003℃, and the absorption coefficient at a wavelength of 1.3μm extrapolated to the liquidus temperature (supercooling yjA degrees Δ1゛=0℃) is α2Q, lOInoi
'Met.

また、過冷却温度Δ’I’ =tO“C(育成温度とし
ては993℃)での0,55吸収係数はα=0.55濡
−1であシー1の材料のファラデー回転係数が190d
eg/出であることから性能指数75deg/dBを満
足できた。しかしながらΔT=15℃ としたときには
、α−1,95Ga−1とab、75deg/dBの性
能指数を満足できなかった。
In addition, the 0.55 absorption coefficient at the supercooling temperature Δ'I' = tO"C (growth temperature is 993°C) is α = 0.55 -1, and the Faraday rotation coefficient of the material of Sea 1 is 190d.
eg/dB, it was possible to satisfy the figure of merit of 75deg/dB. However, when ΔT=15° C., the performance index of α-1,95Ga-1, ab, and 75deg/dB could not be satisfied.

実施例2 第1表に示す組成の融液を用いてY a l’ e s
 (J 、26一 ガーネッ) 7ff1.411エピタキシヤル膜を育成
した。この融液の液相温度は988℃であり、液相温度
(過冷却温度Δ1゛=0℃)に外挿される波長1.3μ
mの吸収係数はα二0.1t)ht”であった。また過
冷却温IAeΔT= 1 +)℃(すなわち育成vMA
度としては978℃)での吸収1糸数はα”−0,35
tim ”でめ9、この材料の7アクデ一回転係数が2
15deg/―であることから注1し指数75deg/
dBを満足できた。
Example 2 Using a melt having the composition shown in Table 1, Y a l' e s
(J, 26-Garnet) A 7ff1.411 epitaxial film was grown. The liquidus temperature of this melt is 988℃, and the wavelength 1.3μ extrapolated to the liquidus temperature (supercooling temperature Δ1゛=0℃)
The absorption coefficient of m was α20.1t)ht”. Also, the supercooling temperature IAeΔT=1 +)°C (i.e., the growth vMA
The number of absorbed threads at 978°C is α”-0.35
tim” and the rotation coefficient of this material is 2.
Since it is 15deg/-, the index is 75deg/
I was able to satisfy dB.

なお、過冷却温度を20℃とした場合にはα=0.80
in  となり、75deg/dB の性能指数を満足
できなかった。
In addition, when the supercooling temperature is 20℃, α=0.80
in, and could not satisfy the figure of merit of 75 deg/dB.

実施例3 第1表に示す組成の融液を用いてGa 0.2 Y 2
.8F e 5012  ガーネット液相エピタキシャ
ル膜を育成した。この融液の液相温度は952℃であり
、液相温度(過冷却温度Δ′v−0℃)に外挿される波
長1.3μmの吸収係数はα=0.15圀−1であった
。また過冷却温度ΔT=10℃ (育成温度942℃)
での吸収係数はα” 0.40 GB ”であシ、この
材料のファラデー回転係数が190deg/Qeである
ことから性能指数75deg/dBを満足できる。
Example 3 Using a melt having the composition shown in Table 1, Ga 0.2 Y 2
.. A 8F e 5012 garnet liquid phase epitaxial film was grown. The liquidus temperature of this melt was 952°C, and the absorption coefficient at a wavelength of 1.3 μm extrapolated to the liquidus temperature (supercooling temperature Δ'v - 0°C) was α = 0.15K-1. . Also, supercooling temperature ΔT = 10℃ (growth temperature 942℃)
The absorption coefficient is α"0.40 GB", and since the Faraday rotation coefficient of this material is 190 deg/Qe, the figure of merit of 75 deg/dB can be satisfied.

ただしΔT−15℃としたときには、α二0.65 C
1n ”となり性能指数75 d e g/dBを満足
できなかった。
However, when ΔT-15℃, α20.65℃
1n'', failing to satisfy the figure of merit of 75 deg/dB.

実施例4 第1表に示す組成の融液を用いてGd O02Y 2,
8F e 5012ガーネツト欣相エピタキシヤル膜を
育成した。
Example 4 Using a melt having the composition shown in Table 1, Gd O02Y 2,
An 8F e 5012 garnet phase epitaxial film was grown.

この融液の液相温度は930℃であり、液相温度(過冷
却温度Δ′P−0℃)に外挿される波長1.3μmの吸
収係数はα=0.1圀 であった。また過冷却温度ΔT
=to℃(育成温度として920 ℃)での吸収係数は
α二Q、5m’であシ、この材料のファラデー回転係数
が190 deg/ahであることから性能指数75d
eg/dBを満足できた。なお、ΔT−11’Cとする
場合にはα=3.55m”となり、性能指数75deg
/dBを満足できなかった。
The liquidus temperature of this melt was 930°C, and the absorption coefficient at a wavelength of 1.3 μm extrapolated to the liquidus temperature (supercooling temperature Δ'P-0°C) was α=0.1. Also, the supercooling temperature ΔT
The absorption coefficient at = to ℃ (920 ℃ as the growth temperature) is α2Q, 5m', and since the Faraday rotation coefficient of this material is 190 deg/ah, the figure of merit is 75d.
I was able to satisfy eg/dB. In addition, when ΔT-11'C is used, α=3.55m'', and the figure of merit is 75deg.
/dB could not be satisfied.

しかしながら、以下に示す比較例1および2の場合には
、75deg/dBの性能指数を満足するα<0.6o
n  の吸収係数を得ることはできなかった。
However, in the case of Comparative Examples 1 and 2 shown below, α<0.6o that satisfies the figure of merit of 75 deg/dB.
It was not possible to obtain an absorption coefficient of n.

比較例1 第1表に示す組成の融液を用いてGdo、zY2.sF
e 5012ガーネツト液相エピタキシヤル膜を育成し
た。
Comparative Example 1 Gdo, zY2. sF
e 5012 garnet liquid phase epitaxial film was grown.

この融液の液相温度は1005℃であり、液相温度(過
冷却温度Δ′r−0℃)に外挿される波長1.3μmの
吸収係数はα”0.15C1n 1  であったが、過
冷却温度Δ″r=xo℃(′R育成温度しては995℃
)での吸収係数はα=0.65− であり、 この材料
のファラデー回転係数が190 de g/cmである
ことから、性能指数75deg/dB  を満足できな
かった。
The liquidus temperature of this melt was 1005°C, and the absorption coefficient at a wavelength of 1.3 μm extrapolated to the liquidus temperature (supercooling temperature Δ′r−0°C) was α”0.15C1n 1 . Supercooling temperature Δ″r=xo℃ ('R growth temperature is 995℃
), and since the Faraday rotation coefficient of this material was 190 deg/cm, the figure of merit of 75 deg/dB could not be satisfied.

比較例2 第1表に示す組成の融液を用いてUd o、2 Y2.
B Fe 5012ガーネツト液相エピタキシヤル膜を
育成した。
Comparative Example 2 Using a melt having the composition shown in Table 1, Udo, 2 Y2.
A B Fe 5012 garnet liquid phase epitaxial film was grown.

この融液の液相温度は928℃であり、液相温度(過冷
却温度Δ’I’=Q℃)に外挿される波長1.3μmの
吸収係数はα=0.15薗 であったが、過冷却温度Δ
T=10℃(育成温度としては918℃)での吸収係数
はα二0.68a@”であり、この材料の7アラデ一回
転係数が190deg/eであることから性能指数75
deg/dBを満足できなかった。
The liquidus temperature of this melt was 928°C, and the absorption coefficient at a wavelength of 1.3 μm extrapolated to the liquidus temperature (supercooling temperature Δ'I' = Q°C) was α = 0.15. , supercooling temperature Δ
The absorption coefficient at T = 10°C (918°C as a growth temperature) is α20.68a@'', and the 7-Alade rotation coefficient of this material is 190 deg/e, so the figure of merit is 75.
deg/dB could not be satisfied.

なお、ガーネットに置換する希土類イオンの種類をGd
以外にHu、 ’rb、 Ndなどに変えた場合には効
果は同様であり、性能指数が75deg/dB以上のも
のが得られた。
In addition, the type of rare earth ion to be replaced with garnet is Gd.
In addition, when changing to Hu, 'rb, Nd, etc., the effect was similar, and a figure of merit of 75 deg/dB or more was obtained.

以上説明したように本発明を用いることにより、性能指
数が75deg/dB 以上の光学素子用ガーネット液
相エピタキシャル膜が、再現性よく得られる。
As explained above, by using the present invention, a garnet liquid phase epitaxial film for optical elements having a figure of merit of 75 deg/dB or more can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜育成温度と1.3μmにおける光吸収との関
係を示す図、脣(2図は液相温度を変化させて育成した
ガーネット膜において、膜育成温度と、1.3μmにお
ける光吸収との関係を示す図。 11− 第 1 図
Figure 1 shows the relationship between film growth temperature and light absorption at 1.3 μm; Diagram showing the relationship between 11-Figure 1

Claims (1)

【特許請求の範囲】 1)  k’bOt−主成分とする#agからの光学素
子用のガーネット液相エピタキシャル膜の育成方法にお
いて、過冷却温度を10℃以下とすることをQif値と
するガーネット欣相エピタキシャル膜育成方法。 2)ガーネット液相エピタキシャル腺の育成温度を92
0〜993℃とする特許請求の範囲第1項記載のガーネ
ット液相エピタキシャル展育成方法。
[Claims] 1) In a method for growing a garnet liquid phase epitaxial film for optical elements from #ag as a main component of k'bOt, garnet whose Qif value is a supercooling temperature of 10°C or less. A method for growing epitaxial films. 2) Growth temperature of garnet liquid phase epitaxial gland is 92
The garnet liquid phase epitaxial growth method according to claim 1, wherein the temperature is 0 to 993°C.
JP57225173A 1982-12-22 1982-12-22 Liquid phase epitaxial growth method of garnet Pending JPS59116199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225173A JPS59116199A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method of garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225173A JPS59116199A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method of garnet

Publications (1)

Publication Number Publication Date
JPS59116199A true JPS59116199A (en) 1984-07-04

Family

ID=16825088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225173A Pending JPS59116199A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method of garnet

Country Status (1)

Country Link
JP (1) JPS59116199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850885A1 (en) 1996-12-25 1998-07-01 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Melt treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850885A1 (en) 1996-12-25 1998-07-01 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Melt treatment apparatus

Similar Documents

Publication Publication Date Title
JPH09328398A (en) Faraday rotator exhibiting angular hysteresis
JPS59116199A (en) Liquid phase epitaxial growth method of garnet
Ballhausen et al. Confirmation of the red band system in MnO4-as 1T1← 1A1 from the effect of pressure on single crystal absorption spectra
US5466388A (en) Material for magnetostatic-wave devices
US3654162A (en) Ferrimagnetic iron garnet having large faraday effect
JPH0576611B2 (en)
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPS60134404A (en) Magnetooptical material
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JP2816370B2 (en) Magneto-optical material
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
US3609008A (en) Thallium iron fluoride and devices utilizing same
JPH0618949A (en) Cerium-doped optical device
JPH0588126A (en) Magneto-optical material, its production, and optical element using same
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
US3485551A (en) Rubidium iron fluoride magneto-optical devices
JPH0415199B2 (en)
JPH0251494A (en) Material for magneto-optical element
JPS62138397A (en) Magnetic garnet material for magneto-optical element
JPH07104224A (en) Nonreciprocity optical device
Tolksdorf Magneto-optic materials
JPH0359012B2 (en)
JPS6365420A (en) Magneto-optical element
JPS6278194A (en) Magneto-optical garnet single crystal film and method of growing same