JPS59116049A - Speed detection system of electric motor - Google Patents

Speed detection system of electric motor

Info

Publication number
JPS59116049A
JPS59116049A JP57233390A JP23339082A JPS59116049A JP S59116049 A JPS59116049 A JP S59116049A JP 57233390 A JP57233390 A JP 57233390A JP 23339082 A JP23339082 A JP 23339082A JP S59116049 A JPS59116049 A JP S59116049A
Authority
JP
Japan
Prior art keywords
outputs
output
circuit
etb
resolver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233390A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishida
宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP57233390A priority Critical patent/JPS59116049A/en
Publication of JPS59116049A publication Critical patent/JPS59116049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/46Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring amplitude of generated current or voltage

Abstract

PURPOSE:To enable speed detection by using the output of a resolver by processing each of the sine wave output and cosine wave output of the resolver via a synchronous rectifying circuit, differentiating circuits, multiplier, difference circuit, etc. CONSTITUTION:The sine wave voltage ea and cosine wave voltage eb outputted from a resolver are respectively synchronously rectified in synchronous rectifying circuits 103a, 103b to outputs eta, etb. The outputs eta, etb are respectively differentiated in differentiating circuits 104a, 104b to outputs Ea, Eb. The outputs Ea, Eb are multiplied respectively by the outputs etb, eta in multipliers 104c, 104d to outputs ETa, ETb. The difference Er between the outputs ETa, and ETb is determined by an adder 104e and an actual speed voltage TSA is outputted therefrom and is fed to an arithmetic circuit. The speed detection is thus made possible by using the output of the resolver.

Description

【発明の詳細な説明】 本発明は、電動機の回転速度をレゾルバの出力により検
出することのできる1動機の速度検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-motor speed detection method that can detect the rotational speed of an electric motor based on the output of a resolver.

電動機を速度制御するためには、電動機の回転速度を検
出する必要がある。一般に電動機の回転速度を検出する
には、タコジェネレータが用いられているが、タコジェ
ネレータは一種の発電機であるからブラシ等の摩耗部品
で構成され、経年変化か生じるとともに火花等によって
ノイズが発生するという欠点がある。又光学的エンコー
ダを用いて速度検出する方式も知られているが、フォト
タイオード等の経年変化する部品を用いているため信頼
性が充分でない。
In order to control the speed of an electric motor, it is necessary to detect the rotational speed of the electric motor. Generally, a tachometer generator is used to detect the rotational speed of an electric motor, but since the tachometer generator is a type of generator, it is composed of worn parts such as brushes, and as it ages, it generates noise due to sparks, etc. There is a drawback that it does. A method of detecting speed using an optical encoder is also known, but it is not reliable enough because it uses components that change over time, such as a photodiode.

このため、経年変化に対しても充分な信頼i生が得られ
る速度検出方式が望寸れていた。
For this reason, there has been a need for a speed detection method that can provide sufficient reliability even against changes over time.

従って、本発明の目的は1位置検出器さして用いられる
信頼性の高いレゾルバの出力を用いて速度検出しうるな
動機の速度検出方式を提供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a speed detection method capable of detecting speed using the output of a highly reliable resolver used as a single position detector.

以下1本発明を図面に従い詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図はレゾルバの構成図であり、第2図はその出力波
形図である。
FIG. 1 is a configuration diagram of the resolver, and FIG. 2 is its output waveform diagram.

図中、102は’C4t3/I機のシャフトに連結され
たレゾルバであり、電動機の界磁極の位置を検出する。
In the figure, 102 is a resolver connected to the shaft of the 'C4t3/I machine, which detects the position of the field pole of the electric motor.

このレゾルバは回転子102aと、回転子巻物!102
bと、互いに90°の位、1目をもって配設された2つ
の固定子巻線102C,102dと、s+nωtの搬送
波(例えは5KH2又は6 KHZ )を発生する&送
波発生回路102eを有している。今1回転子102a
が角度θの位置にあるものとすれば、固定予巻、彪10
2C、102dからそれぞれ次式に示す電圧がea=s
1nθs1nωt        (1)e b = 
cosθs+nωt         (2)出力され
る。即ち、第21凶に示すH)JGに、レゾルレノく1
02から醒動磯の界磁極d位置θに応じたナイン波電圧
ea及びコサイン波4圧ebが出力される。
This resolver has a rotor 102a and a rotor scroll! 102
b, two stator windings 102C and 102d arranged at 90° to each other, and a transmission wave generation circuit 102e that generates a carrier wave of s+nωt (for example, 5KH2 or 6KHZ). ing. Now 1st rotor 102a
is at the angle θ, the fixed pre-winding, Biao 10
From 2C and 102d, the voltage shown in the following formula is ea=s
1nθs1nωt (1) e b =
cosθs+nωt (2) is output. That is, H) JG shown in the 21st case,
From 02, a nine-wave voltage ea and a four-cosine wave voltage eb corresponding to the position θ of the field pole d of the floating rock are output.

そしてサイン波電圧ea及びコサイン波直圧ebをSl
nωtで同期光流すれは第2図の5illθ、 cos
θの出力がiMられ、この出力によって1例えは同期直
動にの昇磁TMの位置を得ることができる。
Then, the sine wave voltage ea and the cosine wave direct pressure eb are expressed as Sl
The synchronous light flow at nωt is 5illθ, cos in Figure 2.
The output of θ is iM, and by this output, for example, the position of the magnetized TM in synchronous direct motion can be obtained.

この様に構成されたレゾルバ102からの サイン& 
’5圧ea及びコサイン波゛蹴圧ebを/lu用して本
発明では次の様にして速度を成田する。
Sign & from the resolver 102 configured like this
In the present invention, using the 5 pressure ea and the cosine wave kick pressure eb /lu, the speed is determined as follows.

■サイン波4圧ea、コサイン波電圧、bをSinωt
で同期整流する。従って同期整流回路eta。
■Sine wave 4 voltage ea, cosine wave voltage, b are Sinωt
synchronous rectification. Therefore, the synchronous rectifier circuit eta.

etbは次式となり、第2図に示される。etb is given by the following formula, which is shown in FIG.

eta=s+nθ       (3)etb=cos
θ       (4)■次に、同期整流出力eta、
etbを微分し、微分出力Ea 、 )i:bを得る。
eta=s+nθ (3)etb=cos
θ (4) ■Next, the synchronous rectification output eta,
Differentiate etb to obtain differential output Ea, )i:b.

■更に、微分出力Eaと同期整流出力etbとを、微分
出力Ebと同期整流出力etaとを米算し、次式の乗算
出力Era°、ETbを得る。
(2) Furthermore, the differential output Ea and the synchronous rectification output etb are multiplied by the differential output Eb and the synchronous rectification output eta to obtain multiplication outputs Era° and ETb of the following equation.

ETa−Ea x e t b −d’2 cos”θ −、t(7) ETb=Ebxeta −−d−uHn”θ dt         (8) ■更に1乗算出力E’l’a、ETbの差分Erを得る
ETa - Ea x e t b - d'2 cos"θ -, t (7) ETb = Ebxeta - - d-uHn"θ dt (8) ■Additionally, the difference Er between the first power calculation output E'l'a and ETb obtain.

Er =ETa −ETb dθ = −aT(s I 112θ+cos2すdθ 一2rT(9) dθ 即ち1石は回転角を時間微分したもの、即ち実速度を示
していることになり、レゾルバ出力ea。
Er = ETa -ETb dθ = -aT (s I 112θ + cos2sdθ -2rT (9) dθ In other words, 1 stone indicates the time differentiation of the rotation angle, that is, the actual speed, and the resolver output ea.

ebから実速度電圧TSAが得られる。Actual speed voltage TSA is obtained from eb.

次に、本発明を実現するための構成について電動機とし
て同期電動機を例に説明する。
Next, a configuration for realizing the present invention will be described using a synchronous motor as an example of the motor.

第6図は本発明の一実施例ブロック図であり、図中、1
01は回転界磁形の同期゛に動(幾であり、102は前
述のレゾルバ、106は同期整流回路であり、サイン波
電圧ea1コサイン彼電圧ebをそれぞれ同期整流して
SiH6,cosθ(第2図)を出力する。104は後
述する速度検出回路であり、同期整流出力Sinθ、 
cosθから実速度′電圧TSAを出力するものである
。105は図示しない速度指令回路から指令された速度
指令電圧VCMDと実速IK ”を圧TSAの差(以後
速度誤差という)ERを演其する演算回路、106は速
度誤差ERを増幅して社磯子電流の振幅ISを出力する
誤差アンプ、107゜108は乗算回路で、誤差アンプ
出力と同期整流回路105の出力cosθ、Sinθ・
とを乗算し2相の!流れそれ出力する。109は2相信
号を3相に変換する2相−3相変換回路で、第4図に示
すような回路構成を有している。即ち、2相−3相変換
回路は2つのオペレーションアンプOA1. OA2と
、i 13にΩの抵抗R1〜R4と、5.78にΩの抵
抗R5と、5にΩの抵抗R6f有している。さて、各抵
抗R1−R6の値を上記のように決定すると共に図示の
如く結)類すると、端子Tu、Tv、Twからそれぞれ が出力される。そして、これらiu、Iv、Iwは互い
に2π/6の位相差を有し、しかも評導起電圧E。
FIG. 6 is a block diagram of one embodiment of the present invention, in which 1
01 is a rotary field type synchronous movement (geometry), 102 is the above-mentioned resolver, and 106 is a synchronous rectifier circuit, which synchronously rectifies the sine wave voltage ea1 and the cosine voltage eb, respectively. 104 is a speed detection circuit to be described later, and synchronous rectification output Sinθ,
The actual speed voltage TSA is output from cos θ. 105 is an arithmetic circuit that calculates the difference (hereinafter referred to as speed error) ER between the speed command voltage VCMD commanded from a speed command circuit (not shown) and the actual speed IK'', and 106 is a calculation circuit that amplifies the speed error ER and outputs it to Error amplifiers 107 and 108 are multiplier circuits that output the current amplitude IS, and the error amplifier outputs and the outputs of the synchronous rectifier circuit 105 cosθ, sinθ・
Multiply the two-phase! Flow it output. 109 is a 2-phase to 3-phase conversion circuit for converting a 2-phase signal into a 3-phase signal, and has a circuit configuration as shown in FIG. That is, the 2-phase to 3-phase conversion circuit includes two operational amplifiers OA1. OA2, i13 have resistors R1 to R4 of Ω, a resistor R5 of 5.78Ω, and a resistor R6f of 5Ω. Now, when the values of each of the resistors R1 to R6 are determined as described above and connected as shown in the figure, the respective values are outputted from the terminals Tu, Tv, and Tw. These iu, Iv, and Iw have a phase difference of 2π/6 from each other, and the induced electromotive force E.

と同相の6相電流指令となっている。The 6-phase current command is in the same phase as the current command.

110U、110V、110Wはそれぞれ各相毎に設け
られた演算回路であり、指令電流1u、Iv、Iwと実
際の相電流1au、Iav、lawの差を演算する演算
回路、111はIavとIawの加算を行なってU相の
相電流iauを出力する演算回路、112V、112W
はそれぞれV相及びW相の相ERIav、 iawを検
出する検流器、113U、 115V、 113Wハ’
ctLツレ各相毎に設けられ各相の電流差を増幅する電
流アンプ、114はパルス幅変調回路、115はパルス
幅変調回路の出力信号により制御されるインパーク、1
16は6相交流電源、117は3相交流を直流に整流す
る公知の整流回路でダイオード群117a及びコンデン
サ117bを有している。
110U, 110V, and 110W are calculation circuits provided for each phase, respectively, and calculate the difference between the command currents 1u, Iv, and Iw and the actual phase currents 1au, Iav, and law; 111 is a calculation circuit for calculating the difference between Iav and Iaw; Arithmetic circuit that performs addition and outputs U-phase phase current iau, 112V, 112W
are galvanometers that detect the V-phase and W-phase ERIav and iaw, respectively, 113U, 115V, 113W Ha'
114 is a pulse width modulation circuit; 115 is an impark controlled by the output signal of the pulse width modulation circuit; 1
16 is a six-phase AC power supply, and 117 is a known rectifier circuit for rectifying three-phase AC into DC, which includes a diode group 117a and a capacitor 117b.

次に、同期電動機101がある速度で回転しているとき
に速度指令が上昇した場合について第6図の動作を説明
する。
Next, the operation shown in FIG. 6 will be described in the case where the speed command increases while the synchronous motor 101 is rotating at a certain speed.

同期電動機を所望の回転速度Vcで回転せしめるべく、
演算回路105の加算端子に所定のアナログ値を有する
速度指令′1圧VCMDが入力される。一方、同期電動
機101は実速度Va((Vc)で回転しているから、
速度検出回路104より実速度Vaに比例した実速度電
圧TSAが出力され、この実速度電圧TSAは演算回路
の$N4子に入力される。従って、演算回路は指令速度
Vcと実速度Vaの差である速度誤差ERを演算し、こ
れを誤差アンプ106に入力する。誤差アンプ106は
次式に示す比例積分演算を行なう。
In order to rotate the synchronous motor at a desired rotational speed Vc,
A speed command '1 pressure VCMD having a predetermined analog value is input to the addition terminal of the arithmetic circuit 105. On the other hand, since the synchronous motor 101 is rotating at the actual speed Va ((Vc),
The speed detection circuit 104 outputs an actual speed voltage TSA proportional to the actual speed Va, and this actual speed voltage TSA is input to the $N4 terminal of the arithmetic circuit. Therefore, the arithmetic circuit calculates a speed error ER, which is the difference between the commanded speed Vc and the actual speed Va, and inputs this to the error amplifier 106. The error amplifier 106 performs proportional-integral calculation as shown in the following equation.

尚、(ID式の演%結果Isは電機子yt流の振幅に相
当する。即ち、負荷が変動し、あるいは速度指令が変化
すると速度誤差E R(=Vc−Va)が大きくなり、
これに応じて電機子電流振幅Isも大きくなる。
Note that (the % calculation result Is of the ID formula corresponds to the amplitude of the armature yt flow. In other words, when the load fluctuates or the speed command changes, the speed error E R (= Vc - Va) increases,
Correspondingly, the armature current amplitude Is also increases.

Isが大きくなれはより大きなトルクが発生し、このト
ルクにより電動機の実速度が指令速度にもたらされる。
As Is increases, a larger torque is generated, and this torque brings the actual speed of the motor to the commanded speed.

一方、同期電動機101の界磁極の位置(角度θ)を示
す2相のサイン波Sinθ1コサイン波cosθがレゾ
ルバ102及び同期整流回路103により得られている
ので、乗算回路107,108からは各々11a(−I
s −cosθ) e 11b(=Is−s+nθ)の
出力が得られる。
On the other hand, since the two-phase sine wave Sin θ1 and cosine wave cos θ indicating the position (angle θ) of the field pole of the synchronous motor 101 are obtained by the resolver 102 and the synchronous rectifier circuit 103, the multiplier circuits 107 and 108 each receive signals 11a( -I
s − cos θ) e 11b (=Is−s+nθ) is obtained.

ついで2相−3相変換回路109はQ、0式に示す演算
を行ない3相の電流指令Iu、Iv、Iwをそれぞれ出
力する。尚、これらIu、”Ivjwは同期’a Ai
b機101の誘導起電圧EOと同相の6相電流指令とな
っている。
Next, the 2-phase to 3-phase conversion circuit 109 performs the calculation shown in the equation Q, 0 and outputs three-phase current commands Iu, Iv, and Iw, respectively. In addition, these Iu, "Ivjw are synchronized 'a Ai
The six-phase current command is in phase with the induced electromotive force EO of machine b 101.

しかる後、6相′亀流指令Iu、Iv、Iwは演算回路
110U、110V、110Wにて実際の相電流Iau
、Iav。
After that, the 6-phase' turtle current commands Iu, Iv, Iw are converted to the actual phase current Iau by the calculation circuits 110U, 110V, 110W.
, Iav.

Iawと差分がとられ、ついでその差分である三相交流
信号iu、 iV、 iW は電流アンプ115U、1
13V。
The difference between Iaw and Iaw is taken, and the three-phase AC signals iu, iV, iW, which are the differences, are sent to current amplifiers 115U and 1
13V.

113Wにて増幅されてパルス幅変調回路114に入力
される。
The signal is amplified at 113W and input to the pulse width modulation circuit 114.

パルス1隅変調回路114では、鋸歯状波信号STSと
三相交流信号iu、 iV、 iWの振幅を比較し、パ
ルス幅変調された三相の電流指令をインバータ115を
構成する各パワートランジスタQ1〜Q6のベースに入
力し、これら各パワートランジスタQs〜Q6をオン/
オフ制御し、同期電動機101に三相電流を供給する。
The pulse one-corner modulation circuit 114 compares the amplitudes of the sawtooth wave signal STS and the three-phase alternating current signals iu, iV, and iW, and sends the pulse width modulated three-phase current command to each of the power transistors Q1 to Q1 making up the inverter 115. input to the base of Q6 to turn on/off each of these power transistors Qs to Q6.
The synchronous motor 101 is controlled to be off and three-phase current is supplied to the synchronous motor 101.

以後、同様な制御が行われて最終的に同期電動機101
は指令速度で回転することtこなる。
Thereafter, similar control is performed and finally the synchronous motor 101
rotates at the commanded speed.

第5図は第6図構成の同期整流回路106及び速、度検
出回路104の構成図であり、図中、105a。
FIG. 5 is a block diagram of the synchronous rectifier circuit 106 and the speed and speed detection circuit 104 configured in FIG. 6, and in the figure, 105a.

106bは各々同期整流回路であり、レゾルバ102の
回転子巻線102bを励磁する高周波信号Sinωtで
サイン波電圧ea、コサイン波電圧を同期整流して、嫡
(3)式のeta 、第(4)式のetbを出力するも
のである。104a、104bは各々微分回路であり、
各々コンデンサC1(C2)、抵抗R1(、R2)で構
成され、各々第13)式、第(4)式の同期整流出力e
ta、etbを微分して2g (5)式、第(6)式の
微分出力Ea、Ebを出力するもので、その周波数ゲイ
ンは電jijl]機の速度範囲(sinθの周波数範囲
)ではリニアー特性を示す様に微分定数か決定される。
106b is a synchronous rectifier circuit, which synchronously rectifies the sine wave voltage ea and the cosine wave voltage using the high frequency signal Sinωt that excites the rotor winding 102b of the resolver 102, and calculates the eta of the direct equation (3) and the equation (4). It outputs etb of the equation. 104a and 104b are differentiating circuits,
Each is composed of a capacitor C1 (C2) and a resistor R1 (, R2), and has a synchronous rectification output e of equations 13) and 4), respectively.
It differentiates ta, etb and outputs the differential outputs Ea and Eb of 2g (5) and (6), and its frequency gain has a linear characteristic in the speed range of the machine (frequency range of sin θ). The differential constant is determined as shown below.

104C,104dは各々乗算回路であり、アナログ乗
算器で構成され、微分回路104a、104bの出力E
a 、Ebと同期整流出力eta、etbとを乗算し、
第(7)式、第(8)式の乗算出力ETa、ETbを発
するもの、104eは加算回路であり、乗算回路104
C,104dの乗算出力ETa、ETbの差分Er(即
ち、実速度電圧)を出力するものである。
104C and 104d are multiplication circuits, each consisting of an analog multiplier, and the output E of the differentiating circuits 104a and 104b.
Multiply a, Eb and synchronous rectification output eta, etb,
104e is an adder circuit that generates the multiplication outputs ETa and ETb of Equations (7) and (8), and the multiplication circuit 104
The difference Er (ie, actual speed voltage) between the multiplied outputs ETa and ETb of C and 104d is output.

次に、第5図構成の動作について説明すると、レゾルバ
102から出力されたす、イン波電圧ea 及びコサイ
ン波電圧ebは各々同期整流回路103a。
Next, the operation of the configuration shown in FIG. 5 will be described. The in-wave voltage ea and the cosine-wave voltage eb output from the resolver 102 are each input to the synchronous rectifier circuit 103a.

105bで同期整流され、第(3)式、第(4)式の同
期整流出力eta、etbとなる。次に各同期整流出力
eta、etbは各微分回路104a、104bで各々
微分され、第(5)式、第(6)式の微分出力Ea、E
bとなる。
It is synchronously rectified at 105b and becomes synchronously rectified outputs eta and etb of equations (3) and (4). Next, the synchronous rectified outputs eta and etb are differentiated by the differentiating circuits 104a and 104b, respectively, and the differential outputs Ea and E of equations (5) and (6) are
It becomes b.

次に微分出力Ea、Ebは乗算回路104G 、 10
4dで各々同期整流出力etb、etaと乗算され、第
(7,)式、第(8)式に示す乗算出力ETa’、ET
bとなる。乗算出力ET a 、 ET bは加算回路
104eでその差分Erが取られ、第(9)式に示す実
速度電圧TSAが出力され、第3図の演算回路105に
送られる。
Next, the differential outputs Ea and Eb are output from multiplication circuits 104G and 10
4d are respectively multiplied by the synchronous rectification outputs etb and eta, and the multiplier outputs ETa' and ET shown in equations (7,) and (8) are obtained.
It becomes b. The difference Er between the multiplication outputs ET a and ET b is taken by the addition circuit 104 e, and the actual speed voltage TSA shown in equation (9) is outputted and sent to the arithmetic circuit 105 in FIG. 3.

上述の説明では同期電動澄を例に説明したが、他の交流
モータ、更に直流モータにも適用できる。
In the above description, the synchronous electric motor was used as an example, but the present invention can also be applied to other AC motors and even DC motors.

以上説明した様に、本発明によ、れは、レゾルバの出力
であるサイン波及びコサイン波を同期整流回路で同期整
流し、更に微分回路で微分した後、乗算回路で微分サイ
ン波と同期整流コサイン波とを、微分コサイン波と同期
整流サイン波とを乗算し、乗算出力の差分を差分回路で
とって実速度電圧を得ているので、レゾルバの出力によ
って速度検出が可能となるという効果をブし、経年変化
し、信頼性の高くないタコジェネレータ、光学的エンコ
ーダを用いる必要がかいから電動機の信頼性向上、メイ
ンテナンスフリーに寄与することが太きい。又、速度検
出出力もアナログ的に瞬1析なく得られ、従来のタコジ
ェネレータによる速度信号と何等変わることのない精度
の高い実速度電圧が得られるという効果も奏する。更に
、同期電動機に適用すれは、1つのレゾルバから界磁極
の位1itf示すSiH6,cosθ 信号と実速度信
号とが得られ、別途位置検出器を設ける必要がないとい
う効果も奏する。
As explained above, according to the present invention, the sine wave and cosine wave output from the resolver are synchronously rectified in a synchronous rectifier circuit, further differentiated in a differentiator circuit, and then the differentiated sine wave and cosine wave are synchronously rectified in a multiplier circuit. The actual speed voltage is obtained by multiplying the cosine wave, the differential cosine wave, and the synchronous rectified sine wave, and the difference between the multiplication outputs is taken by a differential circuit, so the effect is that speed detection is possible using the output of the resolver. This greatly contributes to improving the reliability of electric motors and making them maintenance-free, since there is no need to use tacho generators and optical encoders, which tend to deteriorate over time and are not reliable. Further, the speed detection output can be obtained in an analog manner without any instantaneous analysis, and there is also the effect that a highly accurate actual speed voltage that is no different from a speed signal from a conventional tacho generator can be obtained. Furthermore, when applied to a synchronous motor, a SiH6, cos θ signal indicating the field pole position 1 itf and an actual speed signal can be obtained from one resolver, and there is also the effect that there is no need to provide a separate position detector.

dθ その上、直接π成分が得られるので高周波信号に影響さ
れない精度の高い速度検出が可能となり、しかも回路構
成も簡単であるという極めて有用な効果も奏する。
dθ Furthermore, since the π component can be obtained directly, highly accurate speed detection that is not affected by high frequency signals is possible, and the circuit configuration is also simple, which is an extremely useful effect.

尚1本発明を一実施例により説明したが、本発明の主旨
の範囲内で種々の変形が可能であり、これらを本発明の
範囲から排除するものでは力い。
Although the present invention has been described with reference to one embodiment, various modifications can be made within the scope of the present invention, and these are not excluded from the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明りこ用いられるレゾルバ構成図。 第2図は第1図構成の出力波形図、第6図は本発明の実
現のための一実箔例ブロック図、第4図は第6図構成の
要部溝成図、第5図は第6図構成の速度検出回路構成図
を示す。 図中、101・・・電動(p、102・・・レゾルバ、
102a・・・回転子、102b・・・回転子巻線、1
02C,102d・・・固定子巻線、106・・・同期
整流回路、104・・・速度検出回路、104a、10
4b ・・・微分回路、104 C,、,104d−・
・乗算回路、  104e・・・加X回路。 特許出願人  ファナック株式会社 代理人 弁理士  辻     實 外2名
FIG. 1 is a configuration diagram of a resolver used in the present invention. Fig. 2 is an output waveform diagram of the configuration shown in Fig. 1, Fig. 6 is a block diagram of an example of an actual foil for realizing the present invention, Fig. 4 is a diagram of main parts of the configuration shown in Fig. 6, and Fig. 5 is FIG. 6 shows a configuration diagram of the speed detection circuit of the configuration. In the figure, 101... Electric (p, 102... Resolver,
102a... Rotor, 102b... Rotor winding, 1
02C, 102d... Stator winding, 106... Synchronous rectifier circuit, 104... Speed detection circuit, 104a, 10
4b... Differential circuit, 104 C,, 104d-...
- Multiplier circuit, 104e...Additional X circuit. Patent applicant Fanuc Co., Ltd. agent Patent attorney Sangai Tsuji 2 people

Claims (1)

【特許請求の範囲】[Claims] 電動、礪と共に回転する回転子・と固定子とを有するレ
ゾルバと、該レゾルバのサイン波出力とコサイン波出力
との各々を同期整流する同期整流回路と、該同期読流サ
イン波出力と同期整流コサイン波出力との各々を微分子
る微分回路と、該微分されたサイン波出力と該同期整流
コサイン波出力とを、該微分されたコザイレ彼出力と該
同期寮流サイン波出力とを各々乗算する乗算回路と、譲
乗算回路の各々の出力の差分を得る差分回路とを1ii
fiえ、該差分回路の出力による実速度電圧を得ること
を特徴とする電動度の速度検出方式。
An electric resolver having a rotor and a stator that rotate together with the cylinder, a synchronous rectifier circuit that synchronously rectifies each of a sine wave output and a cosine wave output of the resolver, and synchronous rectification of the sine wave output and the synchronous rectifier. a differentiating circuit which differentiates each of the cosine wave output, the differentiated sine wave output and the synchronous rectified cosine wave output, and the differentiated cosine wave output and the synchronous rectified sine wave output, respectively. 1ii.
A method for detecting speed of electric power, characterized in that an actual speed voltage is obtained from the output of the differential circuit.
JP57233390A 1982-12-22 1982-12-22 Speed detection system of electric motor Pending JPS59116049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233390A JPS59116049A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233390A JPS59116049A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Publications (1)

Publication Number Publication Date
JPS59116049A true JPS59116049A (en) 1984-07-04

Family

ID=16954337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233390A Pending JPS59116049A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Country Status (1)

Country Link
JP (1) JPS59116049A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733355A (en) * 1980-08-06 1982-02-23 Toshiba Corp Digital speed detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733355A (en) * 1980-08-06 1982-02-23 Toshiba Corp Digital speed detector

Similar Documents

Publication Publication Date Title
JP3410451B2 (en) Speed controller for synchronous reluctance motor
US5747971A (en) Position and velocity sensorless control for a motor generator system operated as a motor using exciter impedance
EP0030462B1 (en) Induction motor drive apparatus
EP0089208B1 (en) A.c. motor drive apparatus
JP2708332B2 (en) Control method of induction motor
JPS59123482A (en) Control system for synchronous motor
JPS5953796B2 (en) Induction motor control device
KR20000046679A (en) Method and apparatus for controlling speed of synchronous reluctance motor
JPS59162794A (en) Control system of synchronous motor
JPS59116049A (en) Speed detection system of electric motor
JPS5917781B2 (en) Rotation speed detection method using multipolar resolver
JPH09238492A (en) Control equipment of ac motor
JPS5989591A (en) Drive controller for induction motor
EP0073839B1 (en) Control device for synchronous motor
JP2764002B2 (en) Position control system
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPH0785672B2 (en) Three-phase synchronous motor speed controller
JPS6243436B2 (en)
JP2007166687A (en) Motor unit and motor drive control device
JPS6225893A (en) Controller for synchronous motor
KR900005762B1 (en) Ac servo system
JP2914997B2 (en) Inverter control device
JPS6156951B2 (en)
JPS6030897B2 (en) speed detection device
JPS59116048A (en) Speed detection system of electric motor