JPS59116048A - Speed detection system of electric motor - Google Patents

Speed detection system of electric motor

Info

Publication number
JPS59116048A
JPS59116048A JP57233389A JP23338982A JPS59116048A JP S59116048 A JPS59116048 A JP S59116048A JP 57233389 A JP57233389 A JP 57233389A JP 23338982 A JP23338982 A JP 23338982A JP S59116048 A JPS59116048 A JP S59116048A
Authority
JP
Japan
Prior art keywords
output
wave voltage
circuit
resolver
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233389A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishida
宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP57233389A priority Critical patent/JPS59116048A/en
Publication of JPS59116048A publication Critical patent/JPS59116048A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/46Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring amplitude of generated current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To enable speed detection by using the output of a resolver by processing each of the sine wave voltage output and cosine wave voltage output of the resolver via a differentiating circuit, multiplier, a difference circuit, and a low pass filter. CONSTITUTION:The sine wave voltage ea and cosine wave voltage eb outputted from a resolver are differentiated respectively in differentiating circuits 104a, 104b, to outputs eat, ebt. The differentiated outputs eat, ebt are multiplied by the voltages eb, ea in multipliers 104c, 104d to outputs Ea, Eb. The difference Er between the outputs Ea and EB is determined by an adder 104, and an output Er is obtd. When the difference output Er is passed through a low pass filter 104f, it is cut of the high frequency component sin<2>wt and a DC component is obtd.; therefore, an actual speed voltage TSA is outputted and is fed to an arithmetic circuit. The speed detection is thus made possible by using the output of the resolver.

Description

【発明の詳細な説明】 本発明は、電動機の回転速度をレゾルバの出方により検
出することのできる電動機の速度検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric motor speed detection method that can detect the rotational speed of an electric motor based on the output direction of a resolver.

電動機を速度制御するためには、電動機の回転速度を検
出する必要がある。一般に電動機の回転速度を検出する
には、タコジェネレータが用いられているが、タコジェ
ネレータは一種の発電機であるからブラシ等の摩耗部品
で構成され、経年変化が生じるとともに火花等によって
ノイズが発生するという欠点がある。又光学的エンコー
ダを用いて速度検出する方式も知られているが、フォト
ダイオード等の経年変化する部品を用いているだめ信頼
性が充分でない。
In order to control the speed of an electric motor, it is necessary to detect the rotational speed of the electric motor. Generally, a tachometer generator is used to detect the rotational speed of an electric motor, but since the tachometer generator is a type of generator, it is composed of worn parts such as brushes, and as it ages, it generates noise due to sparks, etc. There is a drawback that it does. A method of detecting speed using an optical encoder is also known, but it is not reliable enough because it uses components that change over time, such as photodiodes.

このため、経年変化に対しても充分な信頼性が得られる
速度検出方式が望まれていた。
For this reason, there has been a desire for a speed detection method that can provide sufficient reliability even against changes over time.

従って、本発明の目的は、位置検出器として用いられる
信頼性の高いレゾルバの出力を用いて速度検出しうる電
動機の速度検出方式を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a speed detection method for an electric motor that can detect the speed using the output of a highly reliable resolver used as a position detector.

以下、本発明を図面に従い詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図はレゾルバの構成図であり、第2図はその出力波
形図である。
FIG. 1 is a configuration diagram of the resolver, and FIG. 2 is its output waveform diagram.

図中、102は電動機のシャフトに連結されたレゾルバ
であり、電動機の界磁極の位置を検出する。このレゾル
バは回転子102aと、四転子巻線102bと、互いに
90°の位相をもって配設された2つの固定子巻線10
2c、 102dと、sin wtの搬送波(例えは3
KHz又は6KH2)を発生する搬送波発生回路102
eを有している。今、回転子102aが角度θの位置に
あるものとすれば、固定子巻線1o2c、 102!c
lからそれぞれ次式にボす電圧がe a == sir
+θsinwt        (1)eb=aysθ
sin w t        (21出力される。即
ち、第2図に示す様に、レゾル)く102から電動機の
界磁極の位置θに応じた゛リイン波電圧ea及びコサイ
ン波電圧ebが出力される。
In the figure, 102 is a resolver connected to the shaft of the electric motor, and detects the position of the field pole of the electric motor. This resolver includes a rotor 102a, a four-rotor winding 102b, and two stator windings 10 arranged with a phase of 90° to each other.
2c, 102d and sin wt carrier (for example, 3
Carrier wave generation circuit 102 that generates kHz or 6KH2)
It has e. Now, assuming that the rotor 102a is at the angle θ, the stator windings 1o2c, 102! c.
The voltage generated from l to the following equation is e a == sir
+θ sinwt (1) eb=aysθ
sin w t (21 is output; that is, as shown in FIG. 2, a rein wave voltage ea and a cosine wave voltage eb are output from the resolver 102 according to the position θ of the field pole of the motor.

そしてサイン波電圧ea及びコサイン波電圧ebを5i
nWiで同期整流ずれは、第2図のsinθ、Q)Sθ
の出力が得られ、この出力によって、例えば同期電動機
の界磁極の位置を得ることができる。
Then, the sine wave voltage ea and the cosine wave voltage eb are 5i
In nWi, the synchronous rectification deviation is sinθ, Q)Sθ in Figure 2.
An output is obtained, and from this output, for example, the position of the field pole of a synchronous motor can be obtained.

この様にR1,ff成されたレゾルバ102からのサイ
ン波電圧ea及びコサイン波電圧ebを利用して本発明
では次の様にして速度を検出する。
In the present invention, the speed is detected in the following manner using the sine wave voltage ea and cosine wave voltage eb from the resolver 102 with R1 and ff formed in this manner.

■サイン波電圧ea及びコサイン波電圧ebを微分する
。従って微分出力eat、ebtは次式となる。
■ Differentiate the sine wave voltage ea and the cosine wave voltage eb. Therefore, the differential outputs eat and ebt are as follows.

dθ 6Hi=−(0)Sθルsinwt−1−sinθ・w
 −cxysw t    (3)t dθ e b j = −(−s+nθ戸sInwt+”θ、
 W−coswt    (4)i ■次に微分出力eatとコサイン波電圧ebを、微分出
力ebtとサイン被電!feaを乗算し、各々徂忙算出
力Ea、 Ebを得る。
dθ 6Hi=-(0)Sθru sinwt-1-sinθ・w
−cxysw t (3) t dθ e b j = −(−s+nθ sInwt+”θ,
W-coswt (4)i ■Next, the differential output eat and the cosine wave voltage eb are connected to the differential output ebt and the sine voltage! fea to obtain the respective busyness calculation outputs Ea and Eb.

Ea  = eat X eb dθ =(−−−θ・sin W t −1−sinθ・W 
−coswt ) −cmθ・t sin w t                  
  (5)Eb = et)t Xea −(東θ 、−5oθ)、sinwt+−θ−W 、c
oswt ) 。
Ea = eat X eb dθ = (---θ・sin W t −1−sinθ・W
-coswt) -cmθ・t sin w t
(5) Eb = et)t Xea − (east θ, −5oθ), sinwt+−θ−W, c
oswt).

t sinθ−sin W t(6) ■次に乗算出力Ea、Ebの差分Erを得る。t sin θ-sin W t (6) (2) Next, obtain the difference Er between the multiplication outputs Ea and Eb.

Er=Ea−Eb −−’!−” −5ih2wt  (sln2θ十cL
)s2θ)t −”! −sin2wt              
        ’力i ■差分Erをローノくスフイルタを通すと、sir+2
wtの項は一定値にとなるので、(方式は、dθ   
            (8)Er−旧゛K dθ となυ、心は回転角を時間微分したもの、即ち速度を示
しでいるから、実速度電圧TSAは、dθ      
       (9)TSA=、、、i( となり、レゾルバの出力ea、ebから実速度電圧TS
Aが得られる。
Er=Ea-Eb--'! −” −5ih2wt (sln2θ0cL
)s2θ)t −”! −sin2wt
'Force i ■When the difference Er is passed through a filter, sir+2
Since the wt term has a constant value, (the method is dθ
(8) Er - old K dθ υ, since the center shows the time differentiation of the rotation angle, that is, the speed, the actual speed voltage TSA is dθ
(9) TSA= , , i( , and from the resolver outputs ea and eb, the actual speed voltage TS
A is obtained.

次に、本発明を実現するための構成について電動機とし
て同期電動機を例に説明する。
Next, a configuration for realizing the present invention will be described using a synchronous motor as an example of the motor.

第5図は本発明の一実施例プロ7り図であり、図中、1
01は回転界磁形の同期電動機であり、102は前述の
レゾルバ、105は同期整流回路であり、サイン波電圧
ea、コザイン被電圧ebヲそれぞれ同期整流してSl
nθ、低θ (第2図)を出力する。104は後述する
速度検出回路であり、サイン波電圧ea、コザイン波電
圧ebから実速度電圧TSAを出力するものである。1
05は図示しない速度指令回路から指令された速度指令
電圧VCMDと実速度m圧TSAの差(以後速度誤差と
いう)ERを演算する演算回路、106は速度1差Wa
を増’1IilI l〜で電機子電流の振+1fji 
I sを出力する誤差アンプ、107,108は乗算回
路で、誤差アンプ出力と同期整流回路103の出力方θ
、 sinθとを乗算し2相の電流指令I、 a (二
l5−(2)θ)、I、b(二lS−5Inθ)をそれ
ぞれ出力する。109は2相信号を6相に変換する2相
−3相変換回路で、第4図にボすような回路構成を有し
ている。即ち、2相−3相i換回路は2つのオペレーシ
ョンアンプOAI、OA2と、10にΩの抵抗馬〜R4
と、578にΩの抵抗l輸と、5にΩの抵抗R6を看し
ている。さて、各抵抗R,〜R6の値を上記のように決
定すると共に図示の如く結線すると、端子Tu、 Tv
、 Twからそれぞれ が出力される。そして、これらIu、 Iv、 Iwは
互いに2π/3の位相差を有し、しかも誘導起電圧E。
FIG. 5 is a schematic diagram of one embodiment of the present invention, and in the figure, 1
01 is a rotating field type synchronous motor, 102 is the above-mentioned resolver, and 105 is a synchronous rectifier circuit, which synchronously rectifies the sine wave voltage ea and the cosine voltage eb, respectively.
It outputs nθ, low θ (Fig. 2). Reference numeral 104 denotes a speed detection circuit to be described later, which outputs an actual speed voltage TSA from a sine wave voltage ea and a cosine wave voltage eb. 1
05 is an arithmetic circuit that calculates the difference (hereinafter referred to as speed error) ER between the speed command voltage VCMD commanded from a speed command circuit (not shown) and the actual speed m pressure TSA, and 106 is a speed 1 difference Wa.
Increase the armature current swing by +1 fji
An error amplifier that outputs Is, 107 and 108 are multiplication circuits, and the difference between the error amplifier output and the output of the synchronous rectifier circuit 103 is θ.
, sin θ, and outputs two-phase current commands I, a (2 l5 - (2) θ) and I, b (2 lS - 5 In θ), respectively. 109 is a 2-phase to 3-phase conversion circuit for converting a 2-phase signal into 6-phase signals, and has a circuit configuration as shown in FIG. That is, the 2-phase to 3-phase i conversion circuit includes two operational amplifiers OAI and OA2, and a resistor of 10Ω to R4.
And we are looking at the resistance l of Ω at 578 and the resistance R6 of Ω at 5. Now, by determining the values of each resistor R, ~R6 as described above and connecting them as shown, the terminals Tu, Tv
, Tw, respectively. These Iu, Iv, and Iw have a phase difference of 2π/3 from each other, and an induced electromotive force E.

と同相の6相電流指令となっている。The 6-phase current command is in the same phase as the current command.

110U、110V、110Wはそれぞれ各相毎に設け
られた演算回路であシ、指令電流Iu、 Iv、 Iw
と実際の相電流Iau、 Iav、 Iawの差を演算
する演算回路、111はIavとIawの加算を行なっ
て同相の相電流Iauを出力する演算回路、112V、
112Wはそれぞれ■相及びW相の相電流Iav、 I
awを検出する検流器、113U、 113V、 11
3Wはそれぞれ各相毎に設けられ各相の電流差を増幅す
る電流アンプ、114はパルス幅変調回路、115はパ
ルス幅変調回路の出力信号により制御されるインバータ
、116は6相交流電源、117は3相交流を直流に整
流する公知の整流回路でダイオード群117a及びコン
デンサ117bを有している。
110U, 110V, and 110W are arithmetic circuits provided for each phase, respectively, and command currents Iu, Iv, and Iw.
and the actual phase currents Iau, Iav, and Iaw; 111 is an arithmetic circuit that adds Iav and Iaw and outputs the in-phase phase current Iau; 112V;
112W are the phase currents Iav and I of the ■ phase and W phase, respectively.
Galvanometer to detect aw, 113U, 113V, 11
3W is a current amplifier provided for each phase and amplifies the current difference between each phase, 114 is a pulse width modulation circuit, 115 is an inverter controlled by the output signal of the pulse width modulation circuit, 116 is a 6-phase AC power supply, 117 is a known rectifier circuit that rectifies three-phase alternating current into direct current, and includes a diode group 117a and a capacitor 117b.

次に、同期電動機101がある速度で同転しているとき
に速度指令が上昇した場合について第6図の動作を説明
する。
Next, the operation shown in FIG. 6 will be described in the case where the speed command increases while the synchronous motor 101 is rotating at a certain speed.

同期電動機を所望の回転速度Vcで回転せしめるべく、
演算回路105の加算端子に所定のアナログ値を有する
速度指令電圧VCMDが入力される。
In order to rotate the synchronous motor at a desired rotational speed Vc,
A speed command voltage VCMD having a predetermined analog value is input to an addition terminal of the arithmetic circuit 105 .

一方、同期電動機101は実速度Va((Vc)で回転
しているから、速度検出回路104より実速度Vaに比
例した実速度電圧TEAが出力され、この実速度電圧T
SAは演算回路の減算端子に入力される。従って、演算
回路は指令速度Vcと実速度VaO差である速度誤差E
Rを演算し、これを誤差アンプ106に入力する。誤差
アンプ106d、次式に示す比例積分演算を行なう。
On the other hand, since the synchronous motor 101 is rotating at the actual speed Va ((Vc), the speed detection circuit 104 outputs an actual speed voltage TEA proportional to the actual speed Va, and this actual speed voltage T
SA is input to the subtraction terminal of the arithmetic circuit. Therefore, the arithmetic circuit calculates the speed error E, which is the difference between the commanded speed Vc and the actual speed VaO.
R is calculated and inputted to the error amplifier 106. The error amplifier 106d performs proportional-integral calculation as shown in the following equation.

尚、90式の演算結果Isはm様子電流の振幅に相当す
る。即ち、負荷が変動し、あるいは速度指令が変化する
と速度誤差ER(=Vc−Va )が大きくなり、これ
に応じて電機子電流振幅Isも大きくなる。Isが大き
くなればより大き々トルクが発生し、このトルクにより
電動機の実速度が指令速度にもたらされる。
Note that the calculation result Is of Equation 90 corresponds to the amplitude of the m-mode current. That is, when the load fluctuates or the speed command changes, the speed error ER (=Vc-Va) increases, and the armature current amplitude Is also increases accordingly. As Is becomes larger, a larger torque is generated, and this torque brings the actual speed of the electric motor to the commanded speed.

一方、同期電動機101の界磁極の位置(角度θ)を示
す2相のザイン波sinθ、コサイン波■θがレゾルバ
102及び同期整流回路103により得られているので
、乗算回路107,108からは各々I、 a (=I
 s−sθ) 、 II b (=I B −5usθ
)の出力が得られる。
On the other hand, since the two-phase sine wave sin θ and cosine wave ■θ indicating the position (angle θ) of the field pole of the synchronous motor 101 are obtained by the resolver 102 and the synchronous rectifier circuit 103, the multiplier circuits 107 and 108 respectively I, a (=I
s-sθ), II b (=I B -5usθ
) output is obtained.

ついで2相−3相変換回路109はC0)式に示す演算
を行ないろ相の電流指令Iu、 Iv、 Iw をそれ
ぞれ出力する。尚、これらIu、 Iv、 Iwは同期
電動機101の誘導起電圧Eoと同相の5相電流指令と
なっている。
Next, the 2-phase to 3-phase conversion circuit 109 performs the calculation shown in equation C0) and outputs the current commands Iu, Iv, and Iw for each phase. Note that these Iu, Iv, and Iw are five-phase current commands that are in phase with the induced electromotive force Eo of the synchronous motor 101.

しかる後、3相電流指令Iu、 Iv、 Iwは演算回
路110U、 110V、 110Wにて実際の相電流
I a u、 I a v。
Thereafter, the three-phase current commands Iu, Iv, Iw are converted into actual phase currents Iau, Iav by the calculation circuits 110U, 110V, 110W.

Iawと差分がとられ、ついでその差分である三相交流
信号iu、 iv、 iwは電流アンプ113U、11
3V。
The difference between Iaw and Iaw is taken, and the three-phase AC signals iu, iv, iw, which are the differences, are then sent to current amplifiers 113U, 11
3V.

113Wにて増幅されてパルス幅変調回路114に入力
される。
The signal is amplified at 113W and input to the pulse width modulation circuit 114.

パルス幅変調回路114では、鋸歯状波信号8TSと三
相交流信号iu、 iv、 iwの振幅を比較し、パル
ス幅変調された三相の電流指令をインバータ115を構
成する各パワートランジスタQ、〜Q6のベースに入力
し、とれら各パワートランジスタQ1〜Q6をオン/オ
フ制御し、同期電動機101に三相電流を供給する。
The pulse width modulation circuit 114 compares the amplitudes of the sawtooth wave signal 8TS and the three-phase alternating current signals iu, iv, iw, and applies the pulse width modulated three-phase current command to each power transistor Q, ~, which constitutes the inverter 115. It is input to the base of Q6, controls on/off of each of the power transistors Q1 to Q6, and supplies three-phase current to the synchronous motor 101.

以後、同様な制御が行われて最終的に同期電動機101
は指令速度で回転することになる。
Thereafter, similar control is performed and finally the synchronous motor 101
will rotate at the commanded speed.

第5図は第6図構成の速度検出回路104の構成図であ
り、図中、104a、 104bは各々微分回nであシ
、各々コンデンサC+ (C2) 、抵抗)’l (R
2)で構成宴れ、各々第(1)式、第(2)式のツイン
波電圧ea、コザイン波電圧ebを微分して第(3)式
、第(4)式の微分出力eat、 ebtを出力するも
の、その周波数ゲインは電動機の速度範囲(sinθの
周波数範囲)ではリニアー特性を示す様に微分定数が決
定される。104c、 104dは各々乗算回路であり
、アナログ乗算器で構成され、微分回路104a、 1
04bの出力eat、ebt とダイン波電圧ea、コ
サイン波電圧ebとを乗算し、第(5)式、第(6)式
の乗算出力Ea。
FIG. 5 is a block diagram of the speed detection circuit 104 having the configuration shown in FIG.
2), the twin wave voltage ea and the cosine wave voltage eb of equations (1) and (2) are differentiated to produce differential outputs eat and ebt of equations (3) and (4), respectively. The differential constant is determined so that the frequency gain exhibits linear characteristics in the motor speed range (sin θ frequency range). 104c and 104d are multiplication circuits, each of which is composed of an analog multiplier, and differentiating circuits 104a and 104d.
The outputs eat and ebt of 04b are multiplied by the dyne wave voltage ea and the cosine wave voltage eb to obtain the multiplication output Ea of equations (5) and (6).

Ebを発するもの、104eは加算回路であり、乗算回
路104C,104dの乗算出力Ea、 Eb (7)
差分Erを出力するもの、104fはローパスフィルタ
であシ、加算′回路104eの出力Brの高周波成分を
カットし、実速度電圧TSAを出力するものである。
The one that emits Eb, 104e, is an adder circuit, and the multiplier outputs Ea, Eb (7) of the multiplier circuits 104C and 104d.
The circuit 104f that outputs the difference Er is a low-pass filter that cuts the high frequency component of the output Br of the adder circuit 104e and outputs the actual speed voltage TSA.

次に第5図構成の動作について説明すると、レンルバ1
02から出力されたザイン波亀圧ea、コサイン波電圧
ebは各々微分回路104a、 104b で微分され
、第(3)式、第(4)式の微分出力eat、ebtと
なる。、次に各微分出力eat、 ebtは乗算回路1
04c、 104dで各々コサイン波電圧eb、サイン
波電圧eaと乗算され、第(5)式、第(6)式に示す
乗算出力Ea、 Ebとなる。更に各乗算出力Ea、 
Ebは加算回路104eでその差分Erが取られ、第(
方式の差分出力Erを得る。この差分出力Erはローパ
スフィルタ104fを通ると、sin2wtの高周波成
分がカットされ直流成分が得られ、従って実速度電圧T
SAが出力され、第6図の演算回路105に送られる。
Next, to explain the operation of the configuration shown in FIG.
The sine wave tortoise pressure ea and cosine wave voltage eb outputted from 02 are differentiated by differentiating circuits 104a and 104b, respectively, and become differential outputs eat and ebt of equations (3) and (4). , then each differential output eat, ebt is the multiplication circuit 1
04c and 104d, they are multiplied by the cosine wave voltage eb and the sine wave voltage ea, respectively, resulting in multiplication outputs Ea and Eb shown in equations (5) and (6). Furthermore, each multiplication output Ea,
The difference Er is taken from Eb by the addition circuit 104e, and the (
The difference output Er of the method is obtained. When this differential output Er passes through the low-pass filter 104f, the high frequency component of sin2wt is cut and a DC component is obtained, so that the actual speed voltage T
SA is output and sent to arithmetic circuit 105 in FIG.

上述の説明では、同期電動機を例に説明したが、他の交
流モータ、更に直流モータに適用することもできる。
In the above description, a synchronous motor was used as an example, but the present invention can also be applied to other AC motors and even DC motors.

以上説明した様に、本発明によれば、レゾルバのサイン
波電圧出力とコサイン波電圧出力の各々を微分する微分
回路と、該微分されたサイン波電圧と該コサイン波電圧
を、該微分されたコサイン波電圧と該サイン波電圧とを
各々乗算する乗算回路と、該乗算回路の各々の出力の差
分を得る差分回路と、該差分回路の出力の高周波成分を
カットするローパスフィルタとを備工、該ローパスフィ
ルタの出力により実速度電圧を得ているので、レゾルバ
の出力によって速度検出が可能となるという効果を奏し
、経年変化し、信頼性の高くないタコジェネレータ、光
学的エンコーダを用いる必要がないから電動機の信頼性
向上、メインテナンスフリーに寄与うることが大きい。
As explained above, according to the present invention, there is provided a differentiating circuit that differentiates each of the sine wave voltage output and the cosine wave voltage output of the resolver, and the differentiated sine wave voltage and the cosine wave voltage. Equipped with a multiplier circuit that multiplies a cosine wave voltage and the sine wave voltage, a difference circuit that obtains a difference between the outputs of each of the multiplier circuits, and a low-pass filter that cuts high frequency components of the output of the difference circuit, Since the actual speed voltage is obtained from the output of the low-pass filter, the speed can be detected from the output of the resolver, and there is no need to use a tacho generator or optical encoder, which deteriorates over time and is not reliable. This can greatly contribute to improving the reliability of electric motors and making them maintenance-free.

又、速度検出出力もアナログ的に瞬断なく得られ、従来
のタコジェネレータによる速度信号と何等変わることの
ない精度の高い実速度電圧が得られるという効果も奏す
る。更に、同期電itt′J機に適用すれは、1つのレ
ゾルバから界磁極の位置を示すsir+θ、O)Sθ倍
信号実速度信号とが得られ、別途位置検出器を設ける必
要がないという効果も奏する。
Further, the speed detection output can be obtained in an analog manner without momentary interruption, and a highly accurate actual speed voltage that is no different from a speed signal from a conventional tacho generator can be obtained. Furthermore, when applied to a synchronous electric machine, the sir+θ, O)Sθ multiplied signal and actual speed signal indicating the position of the field pole can be obtained from one resolver, and there is no need to provide a separate position detector. play.

尚、本発明を一実施例により説明したが、本発明の主旨
の範囲内で種々の変形が可能であり、これらを本発明の
範囲から排除するものではない。
Although the present invention has been described with reference to one embodiment, various modifications can be made within the scope of the present invention, and these are not excluded from the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられるレゾルバ構成図、第2図は
第1図構成の出力波形図、第6図は本発明の実現のため
の一実施例ブロック図、第4図は第6図構成の要部構成
図、第5図は第3図構成の速度検出回路構成図を示す。 図中、101・・・電動機、102・・・レゾルバ、1
02a−回転子、102b−・・回転子巻線、102c
。 102d・・・固定子巻線、104・・・速度検出回路
、104a、 104b−−・微分回路、104c、 
104d ・・乗算回路、104e・・・加算回路、1
04 f・・・ローパスフィルタ0 特許出願人  ファナック株式会社 代理人    弁理士 辻    ff[外2名
FIG. 1 is a configuration diagram of a resolver used in the present invention, FIG. 2 is an output waveform diagram of the configuration shown in FIG. 1, FIG. 6 is a block diagram of an embodiment for realizing the present invention, and FIG. FIG. 5 is a diagram showing the configuration of the main parts of the configuration, and FIG. 5 is a diagram showing the configuration of the speed detection circuit of the configuration shown in FIG. In the figure, 101... electric motor, 102... resolver, 1
02a-rotor, 102b--rotor winding, 102c
. 102d...Stator winding, 104...Speed detection circuit, 104a, 104b--Differential circuit, 104c,
104d...Multiplication circuit, 104e...Addition circuit, 1
04 f...Low pass filter 0 Patent applicant: Fanuc Co., Ltd. agent Patent attorney: Tsuji ff [2 others]

Claims (1)

【特許請求の範囲】[Claims] 電動機と共に回転するロータと固定子とを有するレゾル
バと、該レゾルバのサイン波電圧出力とコサイン波電圧
出力の各々を微分する微分回路と、該微分されたサイン
波電圧と該コサイン波電圧を、該微分されたコサイン波
電圧と該サイン波電圧とを各々乗算する乗算回路と、該
乗算回路の各々の出力の差分を得る差分回路と、該差分
回路の出力の高周波成分をカットするローパスフィルタ
とを備え、該ローパスフィルタの出方にょ9実速度電圧
を得ることを特徴とする電動機の速度検出方式。
a resolver having a rotor and a stator that rotate together with an electric motor; a differentiating circuit that differentiates each of a sine wave voltage output and a cosine wave voltage output of the resolver; A multiplication circuit that multiplies the differentiated cosine wave voltage and the sine wave voltage, a difference circuit that obtains a difference between the outputs of each of the multiplication circuits, and a low-pass filter that cuts high frequency components of the output of the difference circuit. 9. A speed detection method for an electric motor, characterized in that an actual speed voltage is obtained from the output of the low-pass filter.
JP57233389A 1982-12-22 1982-12-22 Speed detection system of electric motor Pending JPS59116048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233389A JPS59116048A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233389A JPS59116048A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Publications (1)

Publication Number Publication Date
JPS59116048A true JPS59116048A (en) 1984-07-04

Family

ID=16954322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233389A Pending JPS59116048A (en) 1982-12-22 1982-12-22 Speed detection system of electric motor

Country Status (1)

Country Link
JP (1) JPS59116048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222685A (en) * 1988-03-02 1989-09-05 Kawasaki Heavy Ind Ltd Current monitor for brushless motoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222685A (en) * 1988-03-02 1989-09-05 Kawasaki Heavy Ind Ltd Current monitor for brushless motoring device

Similar Documents

Publication Publication Date Title
US4967135A (en) Induction motor vector control
Peng et al. Robust speed identification for speed-sensorless vector control of induction motors
JPS59156184A (en) Controlling method of induction motor
US4458192A (en) A.C. Motor drive apparatus
EP0490024B1 (en) Induction motor vector control
JPS61180592A (en) Controller of induction motor
JP2708332B2 (en) Control method of induction motor
JPS59123482A (en) Control system for synchronous motor
JPH0724472B2 (en) Control unit for servo motor
JPS5953796B2 (en) Induction motor control device
US6385555B1 (en) Method and device for determining the rotational speed of a polyphase machine operating with field orientation and without a sensor
JPH10229687A (en) Variable speed controller of induction motor
EP0121792A2 (en) Vector control method and system for an induction motor
JPS59116048A (en) Speed detection system of electric motor
JPS59162794A (en) Control system of synchronous motor
US4752725A (en) Control apparatus for three-phase induction motor
JPS6041554B2 (en) Induction motor drive control device
JP3687331B2 (en) Induction machine variable speed drive
JP2634959B2 (en) Speed sensorless speed control method
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JP3124019B2 (en) Induction motor control device
JP2946157B2 (en) Induction motor speed control device
JP3731756B2 (en) AC servo motor control device
JPH0785672B2 (en) Three-phase synchronous motor speed controller
JPS6035914B2 (en) Control method of induction motor