JPS5917781B2 - Rotation speed detection method using multipolar resolver - Google Patents

Rotation speed detection method using multipolar resolver

Info

Publication number
JPS5917781B2
JPS5917781B2 JP4010678A JP4010678A JPS5917781B2 JP S5917781 B2 JPS5917781 B2 JP S5917781B2 JP 4010678 A JP4010678 A JP 4010678A JP 4010678 A JP4010678 A JP 4010678A JP S5917781 B2 JPS5917781 B2 JP S5917781B2
Authority
JP
Japan
Prior art keywords
phase
excitation
resolver
winding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4010678A
Other languages
Japanese (ja)
Other versions
JPS54131973A (en
Inventor
高志 勝川
晴久 川崎
孝信 岩金
謙次 広瀬
浩一郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Yaskawa Electric Manufacturing Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4010678A priority Critical patent/JPS5917781B2/en
Publication of JPS54131973A publication Critical patent/JPS54131973A/en
Publication of JPS5917781B2 publication Critical patent/JPS5917781B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Description

【発明の詳細な説明】 本発明は、回転速度検出法の新規な手段に関する。[Detailed description of the invention] The present invention relates to a novel means of rotational speed detection.

一般に、位置サーボ系を構成するとき、系の安定化を計
り、かつ応答性を向上させるためには速度ループを付加
する必要があり、この場合、別に速度検出器として直流
タコゼネ等を設けねばならない。
Generally, when configuring a position servo system, it is necessary to add a speed loop to stabilize the system and improve responsiveness, and in this case, a DC tachogenerator, etc. must be separately installed as a speed detector. .

つまり、位置サーボ系は工作機位置決めの制御等に利用
されるが、従来技術では位置および速度検出のための2
つの検出器が必要であつた。
In other words, position servo systems are used to control machine tool positioning, etc., but in the conventional technology, two systems are used for position and speed detection.
Two detectors were required.

さらにもう一つ、最近の傾向としてサーボシステムをA
C(交流)化する動きが活溌であ゛る。こ、のACサー
ボシステムにおける位置および速度の検出器として、ブ
ラシレス化されたものとしてパルス発電機(PG)また
は光学的タコゼネ(オフタコ)からの生起信号を周波数
−電圧(f/V)変換器を利用する手法がある。フ し
かしながら、この場合、生起信号のパルス数に制限があ
るため、低速運転時の制御に限界がある。
Furthermore, there is another recent trend in servo systems.
There is an active movement toward C (interchange). As a position and velocity detector in this AC servo system, a frequency-voltage (f/V) converter is used to convert the generated signal from a pulse generator (PG) or an optical tachogenerator (off-tacho) into a brushless one. There is a method to use. However, in this case, there is a limit to the number of pulses of the generation signal, so there is a limit to control during low-speed operation.

一方、レゾルバはブラシレスの電磁的検出器という点で
モータとのマッチングが良いが、普通使5用されるレゾ
ルバは極数が少ない(たとえば2極)ので変調周波数が
小さく検出しにくいという難があつた。
On the other hand, resolvers are brushless electromagnetic detectors that match well with motors, but commonly used resolvers have a small number of poles (for example, 2 poles), so the problem is that the modulation frequency is small and difficult to detect. Ta.

そこで本発明は、レゾルバ出力信号はその励磁周波数に
対して位相変調あるいは周波数変調されたものが得られ
るので、励磁周波数と変調波の両者の周波数差を取り出
せば、速度に比例した信号が得られ、かつこの場合、多
極にするほど検出感度を上げることができるという原理
を導出し、多極レゾルバを用いた回転速度検出の手段を
提供しようとするものである。
Therefore, in the present invention, since the resolver output signal can be phase-modulated or frequency-modulated with respect to its excitation frequency, by extracting the frequency difference between the excitation frequency and the modulation wave, a signal proportional to the speed can be obtained. , and in this case, the purpose is to derive the principle that the detection sensitivity can be increased as the number of poles increases, and to provide a means for detecting rotational speed using a multi-pole resolver.

第1図は、本発明の第1の実施例(2相励磁)の電気的
路線図である。
FIG. 1 is an electrical route diagram of the first embodiment (two-phase excitation) of the present invention.

1は2相固定子巻線(励磁巻線)Wα,Wβならびに回
転子位置を検出する巻線WDを有するレゾルバ、もつと
も回転子巻線WDは固定子側に配置し、ブラシレスとす
ることも可能であるが、ここでは原理上、分り易くする
ため、回転子側に置く、以下の実施例についても同じ。
1 is a resolver that has two-phase stator windings (excitation windings) Wα, Wβ and a winding WD that detects the rotor position; however, the rotor winding WD is placed on the stator side, and it is also possible to make it brushless. However, in principle, the same applies to the following embodiments, which are placed on the rotor side for ease of understanding.

また、θeは電気角を表わすものとする。2は巻線Wα
・Wβに2相の励磁電流を流すための2相正弦波発振器
(励磁電源)、3,4は励磁電源2およびレゾルバ1の
出力信号を方形波に整形するための波形整形回路、5,
6は方形波パルス列を電圧に変換するための周波数一電
圧(f/V)変換器、7はf/V変換器5,6の偏差電
圧を取り出すための差動アンプ、8は検出速度出力端で
ある。
Further, θe represents an electrical angle. 2 is the winding Wα
・Two-phase sine wave oscillator (excitation power supply) for flowing two-phase excitation current to Wβ; 3 and 4 are waveform shaping circuits for shaping the output signals of the excitation power supply 2 and resolver 1 into square waves; 5;
6 is a frequency-to-voltage (f/V) converter for converting the square wave pulse train into voltage, 7 is a differential amplifier for extracting the deviation voltage of the f/V converters 5 and 6, and 8 is a detection speed output terminal. It is.

第2図は、本発明の第2の実施例(3相励磁)の電気的
プロツク図である。
FIG. 2 is an electrical block diagram of a second embodiment (three-phase excitation) of the present invention.

20は3相正弦波発生器、10は空間的に電気角で12
0枯相の異なる位置に配置された3相の励磁巻線WR,
WS,WTの固定子巻線と回転子位置を検出するWDの
回転子巻線をもつレゾルバである。
20 is a three-phase sine wave generator, 10 is 12 in electrical angle spatially
Three-phase excitation windings WR arranged at different positions of the zero phase,
This resolver has WS and WT stator windings and a WD rotor winding that detects the rotor position.

第3図は、本発明の第3の実施例〔多4相励磁〕のプロ
ツクダイアグラムである。
FIG. 3 is a block diagram of a third embodiment (multi-four-phase excitation) of the present invention.

200は多(j1)相正弦波発生器、100は空間的に
電気角でnを正の整数としたとき2π/n位相の異なる
位置に配置されたn相の励磁巻線Wl,W2,W3・・
・・・・Wnの固定子巻線と回転子の回転位置を検出す
るためのWDの回転子巻線をもつレゾルバである。
200 is a multi-(j1) phase sine wave generator, 100 is an electrical angle, and n-phase excitation windings Wl, W2, W3 arranged at different positions with 2π/n phases, where n is a positive integer.・・・
It is a resolver that has a Wn stator winding and a WD rotor winding for detecting the rotational position of the rotor.

しかして、3相および多相励磁においても、波形整形回
路3,4からf/V変換器5,6そして差動アンプモ至
る出力段は、いずれの実施例においても変らない。
Therefore, even in three-phase and multi-phase excitation, the output stage from the waveform shaping circuits 3 and 4 to the f/V converters 5 and 6 to the differential amplifier remains the same in all embodiments.

さて、レゾルバ1の検出巻線WDには、一般につぎの(
1式)で示される電圧E。
Now, the detection winding WD of the resolver 1 generally has the following (
Voltage E shown by equation 1).

が誘起される。ここで、Eは出力電圧(振幅一定)θe
はレゾルバのロータの電気角で、 θe=f(N)つまりモータ回転速度 Nの関数 (l式)はレゾルバ回転子の回転数および回転方向に応
じて、位相変調あるいは周波数変調された信号が得られ
ることを示している。
is induced. Here, E is the output voltage (constant amplitude) θe
is the electrical angle of the resolver rotor, and θe=f(N), that is, the function of the motor rotational speed N (formula l), obtains a phase-modulated or frequency-modulated signal depending on the rotational speed and direction of the resolver rotor. This indicates that the

すなわら、検出巻線の出力電圧周波数F。That is, the output voltage frequency F of the detection winding.

は、ただし、f=ω/2πで励磁周波数±△fは回転速
度に応じた周波数変化分 なる変化をする。
However, when f=ω/2π, the excitation frequency ±Δf changes by the frequency change according to the rotation speed.

したがつて、励磁巻線の励磁周波数fおよび検出巻線の
出力電圧周波数FOをf/V変換した電圧の差を取り出
せば、速度に対応した周波数変化分士△fなる成分が得
られる。
Therefore, by extracting the difference between the excitation frequency f of the excitation winding and the voltage obtained by f/V conversion of the output voltage frequency FO of the detection winding, a frequency change component Δf corresponding to the speed can be obtained.

この場合、f/V変換器のフイルタ時定数は、従来のパ
ルス発電機(PG)またはオプタコの出力パルスを゛f
・/V変換して速度信号とする方式に比較して)充分小
さく選ぶことが可能であるので、その応答性にすぐれて
いる。
In this case, the filter time constant of the f/V converter is equal to the output pulse of a conventional pulse generator (PG) or optaco.
・Compared to the system in which the speed signal is obtained by converting /V), it is possible to select a sufficiently small value, resulting in excellent responsiveness.

また、低速回転時における脈動の発生の問題がない。Further, there is no problem of pulsation occurring during low speed rotation.

そうして、3相、多相励磁のときのレゾルバ10,10
0の誘起電圧は、2相励磁の場合をSin(ωt+θe
)とすると、3相励磁ではKsin(ωt+θEXn相
励磁ではKsin(ωt+θe)になり、係数kあるい
はk゛が異なるだけである。
Then, the resolvers 10, 10 during three-phase and multi-phase excitation
In the case of two-phase excitation, the induced voltage of 0 is Sin(ωt+θe
), in three-phase excitation, Ksin(ωt+θEX), and in n-phase excitation, Ksin(ωt+θe), and only the coefficient k or k′ is different.

また、3相正弦波発生器20、多相正弦波発生器200
は、2相正弦波発生器2の出力が2相→3相あるいは2
相→n相への変換器を介することで容易に構成すること
ができる。なお、この実施例ではアナログ方式を適用し
たが、デイジタル的に速度信号を得ることも可能である
In addition, a three-phase sine wave generator 20 and a polyphase sine wave generator 200
, the output of the 2-phase sine wave generator 2 changes from 2-phase to 3-phase or 2-phase
It can be easily constructed by using a phase->n-phase converter. Although an analog system is used in this embodiment, it is also possible to obtain the speed signal digitally.

ただ、デイジタル方式では1digitの誤差が入るか
ら、パルス発電機(PG)のパルス数の大のものが適当
である。
However, since the digital system has an error of 1 digit, a pulse generator (PG) with a large number of pulses is appropriate.

さらに、レゾルバ1の励磁巻線Wα,Wβおよび検出巻
線WDとの関係は、両者を人れ換えて、検出巻線側を励
磁してやれば、2相の励磁巻線Wα,Wβには振幅変調
された2相の信号が得られる。
Furthermore, the relationship between the excitation windings Wα, Wβ and the detection winding WD of the resolver 1 can be changed by changing the positions of the two and exciting the detection winding side. A two-phase signal is obtained.

(この場合のキヤリアは励磁周波数)。この2相信号よ
り位相変調信号を出せば、この実施例と同様の速度検出
を行なうことができる。この実施例における実際値の→
1を紹介しておこう。レゾルバ極数100P(極)、回
転数1800rpm(毎分回転数)、△f=1500H
2(−.ルツ)、励磁周波数=5〜15kH7,(キロ
・ヘルツ)という成果が得られている。
(The carrier in this case is the excitation frequency). If a phase modulation signal is output from this two-phase signal, speed detection similar to this embodiment can be performed. Actual value in this example →
Let me introduce 1. Number of resolver poles: 100P (poles), rotation speed: 1800 rpm (rotations per minute), △f=1500H
2 (-. rutz), excitation frequency = 5 to 15 kHz, (kilo Hertz).

かくして本発明により、位置サーボ系における速度ルー
ブを付加するさいレゾルバで両者の制御が可能となり、
その波及的効果は大きい。
Thus, according to the present invention, when adding a velocity rube to a position servo system, it is possible to control both with a resolver.
The ripple effect is huge.

しかも、レゾルバの極数および相数を被制御モータ(同
期機)と同一とすれば、そのモータの電流分配信号を直
接的に利用することができる。
Moreover, if the number of poles and the number of phases of the resolver are the same as those of the controlled motor (synchronous machine), the current distribution signal of the motor can be directly used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の実施例のプロツクダイア
グラムである。 1.10,100・・・・・・レゾルバ、2,20,2
00・・・・・・2相、3相、n相正弦波発生器(励磁
電源)、3.4・・・・・・波形整形回路、5,6・・
・・・・周波数一電圧(f/V)変換器、7・・・・・
・差動アンプ、8・・・・・・検出速度出力端、Wα,
Wβ,WR,WS,WT,Wl〜W『・・・・・励磁巻
線、WD・・・・・・検出巻線その誘起電圧EOその周
波数FO..E・・・・・・検出出力電圧(振幅一定)
f・・・・・・レゾルバ励磁周波数(ω=2πf)、△
f・・・・・・回転速度に応じた周波数変化分、θe・
・・・・・レゾルバ・ロータの電気角、K,lc′・・
・・・・係数、t・・・・・・時間。
1 through 3 are process diagrams of an embodiment of the present invention. 1.10,100...Resolver, 2,20,2
00... 2-phase, 3-phase, n-phase sine wave generator (excitation power supply), 3.4... Waveform shaping circuit, 5, 6...
...Frequency-to-voltage (f/V) converter, 7...
・Differential amplifier, 8...Detection speed output terminal, Wα,
Wβ, WR, WS, WT, Wl~W ``...excitation winding, WD...detection winding its induced voltage EO its frequency FO. .. E...Detection output voltage (constant amplitude)
f...Resolver excitation frequency (ω=2πf), △
f... Frequency change according to rotation speed, θe・
...Electrical angle of resolver rotor, K, lc'...
...Coefficient, t...Time.

Claims (1)

【特許請求の範囲】 1 空間的に電気角で90°位相の異なる位置に配置さ
れた2相の励磁巻線、ならびに回転子の回転位置を検出
するための検出巻線を有するレゾルバにおいて、前記レ
ゾルバの励磁巻線に印加される励磁信号および電気角の
回転子に対応して得られる検出巻線の位相変調出力信号
の周波数の差を取り出し速度信号とすることを特徴とす
る回転速度検出法。 2 空間的に電気角でnを正の整数としたとき2π/n
位相の異なる位置に配置されたn相の励磁巻線、ならび
に回転子の回転位置を検出するための検出巻線を有する
レゾルバにおいて、前記レゾルバの励磁巻線に印加され
る励磁信号および電気角の回転子に対応して得られる検
出巻線の位相変調出力信号の周波数の差を取り出し速度
信号とすることを特徴とする回転速度検出法。
[Scope of Claims] 1. In a resolver having two-phase excitation windings spatially arranged at positions with a phase difference of 90 degrees in electrical angle and a detection winding for detecting the rotational position of the rotor, A rotational speed detection method characterized in that the frequency difference between the excitation signal applied to the excitation winding of the resolver and the phase modulation output signal of the detection winding obtained corresponding to the electrical angle rotor is extracted and used as a speed signal. . 2 When n is a positive integer in electrical angle spatially, 2π/n
In a resolver having n-phase excitation windings arranged at positions with different phases and a detection winding for detecting the rotational position of the rotor, the excitation signal applied to the excitation winding of the resolver and the electrical angle A rotational speed detection method characterized in that a frequency difference between phase modulated output signals of detection windings obtained corresponding to a rotor is extracted and used as a speed signal.
JP4010678A 1978-04-03 1978-04-03 Rotation speed detection method using multipolar resolver Expired JPS5917781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4010678A JPS5917781B2 (en) 1978-04-03 1978-04-03 Rotation speed detection method using multipolar resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010678A JPS5917781B2 (en) 1978-04-03 1978-04-03 Rotation speed detection method using multipolar resolver

Publications (2)

Publication Number Publication Date
JPS54131973A JPS54131973A (en) 1979-10-13
JPS5917781B2 true JPS5917781B2 (en) 1984-04-23

Family

ID=12571597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010678A Expired JPS5917781B2 (en) 1978-04-03 1978-04-03 Rotation speed detection method using multipolar resolver

Country Status (1)

Country Link
JP (1) JPS5917781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239571B1 (en) 1999-04-02 2001-05-29 Shiro Shimahara Resolver

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770460A (en) * 1981-01-08 1982-04-30 S G:Kk Tachometer
JPS58182559A (en) * 1982-04-21 1983-10-25 Yaskawa Electric Mfg Co Ltd Detecting apparatus of speed of revolution using resolver
US4551708A (en) * 1982-06-04 1985-11-05 Motornetics Corporation Reactance-commutated high resolution servo motor system
JPS59129646A (en) * 1983-01-17 1984-07-26 Toshiba Corp Apparatus for controlling position
JPS6152960U (en) * 1984-09-13 1986-04-09
JP2003186565A (en) * 2001-12-14 2003-07-04 Alps Electric Co Ltd Clock signal supply circuit
JP4710634B2 (en) * 2006-02-07 2011-06-29 パナソニック株式会社 Motor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239571B1 (en) 1999-04-02 2001-05-29 Shiro Shimahara Resolver

Also Published As

Publication number Publication date
JPS54131973A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
US4358722A (en) Speed detector using resolver
Ostlund et al. Sensorless rotor-position detection from zero to rated speed for an integrated PM synchronous motor drive
Juliet et al. Sensorless acquisition of the rotor position angle for induction motors with arbitrary stator windings
JP3397007B2 (en) Brushless motor
US5559419A (en) Method and apparatus for transducerless flux estimation in drives for induction machines
JP4909797B2 (en) Motor control device
US9317019B2 (en) Sinusoidal modulation control methods and circuits for permanent magnet synchronous motors
US7132816B1 (en) Brushless wound field synchronous machine rotor position tracking with exciter stator current harmonic tracking
CN102386837B (en) Vector control apparatus and motor control system
US4357569A (en) Control device for a synchronous motor
WO2001020767A1 (en) Low ripple permanent magnet motor control
US4259628A (en) Control device of AC motor
JP3707528B2 (en) AC motor control method and control apparatus therefor
Wang et al. Concept and implementation of embedded magnetic encoder in flux-switching permanent-magnet machines
JPS5917781B2 (en) Rotation speed detection method using multipolar resolver
Niemelä Position sensorless electrically excited synchronous motor drive for industrial use based on direct flux linkage and torque control
JPS5923198B2 (en) Control method of synchronous motor
JPH06225595A (en) Controller for stepping motor
JPH0551087B2 (en)
JP3100841B2 (en) Rotational position detecting device and method
JP7186846B1 (en) Control system for angle detector and AC rotating machine
JPS62203596A (en) Speed controller for 3-phase ac motor
JPS58182559A (en) Detecting apparatus of speed of revolution using resolver
JPS5854758B2 (en) Torque detection device for polyphase alternating current machine
JP2708649B2 (en) Cyclo converter control device