JPS59114877A - Semiconductor photo coupler - Google Patents

Semiconductor photo coupler

Info

Publication number
JPS59114877A
JPS59114877A JP57225465A JP22546582A JPS59114877A JP S59114877 A JPS59114877 A JP S59114877A JP 57225465 A JP57225465 A JP 57225465A JP 22546582 A JP22546582 A JP 22546582A JP S59114877 A JPS59114877 A JP S59114877A
Authority
JP
Japan
Prior art keywords
light
wavelength
receiving element
light receiving
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225465A
Other languages
Japanese (ja)
Inventor
Yukinori Kuwano
桑野 幸徳
Shoichi Nakano
中野 昭一
Masaru Takeuchi
勝 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57225465A priority Critical patent/JPS59114877A/en
Publication of JPS59114877A publication Critical patent/JPS59114877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier

Abstract

PURPOSE:To eliminate the mutual interference between adjacent photo couplers and thus prevent crosstalk by photo-coupling the first and second light emitting and receiving elements via the first and second wavelengths which are different respectively. CONSTITUTION:The operating wavelengths (coupling wavelengths) of the first and second photo couplers are made different. For example, the first light emitting element 2a constituting the first photo coupler is composed of a GaP single crystal which emits a green light of a light emission center wavelength of 565nm, the first light receiving element 3a is composed of an amorphous Si (a- Si:H) of the peak of light receiving 580nm, and an LED consisting of a GaP single crystal of a light emission center wavelength 700nm is used as the second light emitting element 2c of the second photo coupler. As the second light receiving element 3c, an amorphous Si germanium (a-SixGe1-x:H) of the peak of light receiving of 680nm is selected.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は受光のピーク波長が異なるアモルファス半導体
を含む受光素子を備えた半導体光結合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor optical coupling device equipped with a light receiving element including an amorphous semiconductor having different peak wavelengths of light reception.

(ロ)従来技術 本発明者等は半導体材料として有望視されているアモル
ファスシリコンの如きアモルファス半導体から成る太陽
電池及び光センサを実用化すると袂に、祈るアモルファ
ス半導体?受光素子とした光結合装置の開発を進めてい
る。
(B) Prior Art The present inventors have been praying for the practical use of solar cells and optical sensors made of amorphous semiconductors such as amorphous silicon, which is seen as a promising semiconductor material. We are proceeding with the development of an optical coupling device as a photodetector.

化1図は特願昭56−200469号として本願出願人
が既に出願した光結合装置を示し、(1)はガラス・耐
熱プラスチック等から成る光伝搬媒体としての絶縁基板
、(2a)(2b)は該絶縁基板11Jの一方の一主面
(ia)VC配置された第1・第2の発光素子、1a)
(5b)は上記絶縁基板filの他方の一主面(1b)
に形成された第1・第2の受光素子で、夫々第1・第2
の発光素子(2a)(2b)−td        1
兵4油#並びに受光素子(3a)(3b)は上記絶縁基
板(1)?隔てて対向し、対向したもの同士が光学的に
結合する。
Figure 1 shows an optical coupling device already filed by the applicant as Japanese Patent Application No. 56-200469. is one main surface (ia) of the insulating substrate 11J, first and second light emitting elements arranged with VC, 1a)
(5b) is the other main surface (1b) of the insulating substrate fil.
The first and second light-receiving elements are formed in the first and second light-receiving elements, respectively.
Light-emitting elements (2a) (2b)-td 1
Soldier 4 oil # and light receiving elements (3a) (3b) are the above insulating substrate (1)? They are separated and face each other, and the opposing parts are optically coupled to each other.

上記第1・第2の発光素子(2a)(2b)iま例えば
発光中心波長が565nmの緑色光を発光するガリウム
燐GaP単結晶から成り、その電極面の一部分は第2図
に示す如き絶縁基板(1)の−主面(11a)Kパター
ン印刷された限ペースト等の4磁性接着剤t4Jを介し
て上記絶縁基板111fr:伝搬しようとする光を遮る
ことなく被着される。そして上記第1・第2の発光素子
(2a)(2b)の他の電極面はワイヤリード(5a)
(5b)ik介して絶縁基#fLtl)、tの電極膜(
6)に結合される。
The first and second light emitting elements (2a) and (2b)i are made of, for example, a gallium phosphorus GaP single crystal that emits green light with an emission center wavelength of 565 nm, and a part of the electrode surface is insulated as shown in FIG. The main surface (11a) of the substrate (1) is adhered to the above-mentioned insulating substrate 111fr via a magnetic adhesive t4J such as a magnetic paste printed with a K pattern without blocking the light that is about to propagate. The other electrode surfaces of the first and second light emitting elements (2a) and (2b) are wire leads (5a).
(5b) Insulating group #fLtl) through ik, electrode film of t (
6).

一方、絶縁基板(1)の他方の一主面C1b)に設けら
れた第1・第2の受光素子(3a)(3b)tま上記絶
縁基板(1)上にバターニングされた酸化スズ(SnO
2)、酸化(ンジクム(In203)、酸化インジウA
−スズ(In20s:5nO2)等の透明電極膜+71
上に例えば受光中心波長が580nmのPIN接合型の
アモルファスシリコン層(8)が被着され、更にアルミ
ニクム等の金属電極膜(9)が取置された積層構造を持
つ。そして、上記第1の受光素子(6a)の金属電極膜
(9)は絶縁基板(13上に延在し隣接する第2の受光
素子(6b)の透明磁極膜17)と結合する。七の結果
、第1の受光素子(6a〕と第2の受光素子(3b)と
は直列関係になるべく接続される。
On the other hand, the first and second light-receiving elements (3a) (3b)t provided on the other main surface C1b) of the insulating substrate (1) are covered with tin oxide (patterned) on the insulating substrate (1). SnO
2), Oxidation (In203), Indium oxide A
-Transparent electrode film such as tin (In20s:5nO2) +71
It has a laminated structure in which, for example, a PIN junction type amorphous silicon layer (8) with a light receiving center wavelength of 580 nm is deposited on top, and a metal electrode film (9) made of aluminum or the like is further provided. The metal electrode film (9) of the first light receiving element (6a) is coupled to the insulating substrate (the transparent magnetic pole film 17 of the second light receiving element (6b) extending over and adjacent to 13). As a result of 7, the first light receiving element (6a) and the second light receiving element (3b) are connected in series as much as possible.

然し乍ら、上記絶縁基板(1)を挾んで夫々対向する第
1の発光並びに受光素子(2a)(3a)から成る第1
の光結合対と、第2の発光並びに受光素子(2b)(3
b)から成る第2の光結合対とに、同一波長のs6sn
mの緑色光によって光結合しているために、第1の発光
素子(2a〕から放射された光は対向している第1の受
光素子(5a)VC伝搬するのみならず、絶縁基板(1
)中な散乱した一部の光が第2の受光素子(3b)Kま
で到達する所謂クロストークが発生する危惧?有してい
た。即ち、隣接する光結合対の光が相互に干渉するとク
ロストークが発生し誤動作するために、祈るクロストー
クの発生は好ましくない。
However, the first light-emitting and light-receiving elements (2a) and (3a) are arranged opposite to each other with the insulating substrate (1) in between.
and a second light emitting and light receiving element (2b) (3
b) and the second optical coupling pair consisting of s6sn of the same wavelength.
Since the light is optically coupled by the green light of m, the light emitted from the first light emitting element (2a) not only propagates to the opposing first light receiving element (5a) but also to the insulating substrate (1).
) Is there a risk that so-called crosstalk may occur where some of the scattered light reaches the second light-receiving element (3b)K? had. That is, when the lights of adjacent optical coupling pairs interfere with each other, crosstalk occurs and malfunction occurs, so it is undesirable for crosstalk to occur.

(ハ) 発明の目t3り 本発明は上述の如き誤動作の原因となるクロストークな
防止することを目的として為されたものである。
(C) Aspects of the Invention t3 The present invention has been made for the purpose of preventing crosstalk that causes malfunctions as described above.

(→ 発明の構成 水弁EIIHよ、第1の波長2辷客に受光のピークが存
在するアモルファス半導体な含む第1の受光素子と、第
2の波長↓tに受光のピークが存在するアモルファス半
導体と含む第2の受光素子と、路用1の波長辷並びに第
2の波長↓七の光な夫々独立した電気倍り1て基づき放
射する第1・第2の発光素子と、を具備し、上記両受光
素子並びに自発光素子?各々光伝搬媒体の同一面に並置
すると共に、波長が略等しい受光素子並びVC発光素子
の一対の各々を対向せしめ光学的に結合する構成にある
(→ Structure of the invention Water valve EIIH, a first light receiving element including an amorphous semiconductor whose light reception peak exists at a first wavelength ↓t, and an amorphous semiconductor whose light reception peak exists at a second wavelength ↓t) and first and second light emitting elements that emit light based on independent electrical multipliers 1, respectively, with a wavelength range of 1 and a second wavelength ↓7, Both of the light receiving elements and the self-emitting element are arranged side by side on the same surface of the light propagation medium, and the light receiving element and the VC light emitting element having substantially the same wavelength are arranged to face each other and optically coupled.

((ホ)実施例 第6図は本発明の一実施例を示し、第1図の従来装置と
異なるところは第1の光結合対と第2の光結合対との動
作波長(結合波長)を異ならしめるべく、例えば第1の
光結合対を構成する第1の発光素子(2a)を発光中心
波長565nmの緑色光2発光するGaP単結晶で構成
し、第1の受光素子(3al−受光のピークが58Qn
mのアモルファスシリコン(a−8i:H)で構成スる
と共に、第2の光結合対の第2発光素子(2C〕として
発光中心波長700nmのGaP単結晶から成るLED
を使用し、第2の受光素子(5c)の受光のピークが6
801mのアモルファスシリコンゲルマニウム(a−3
ix Ge1−X:Hンを選択する。即ち、第1の光結
合対は第1の波長565nmで光結合すると共に、第2
の光結合対は第1のそれと異なる700nmで光結合す
る。
((E) Embodiment FIG. 6 shows an embodiment of the present invention. The difference from the conventional device shown in FIG. 1 is the operating wavelength (coupling wavelength) of the first optical coupling pair and the second optical coupling pair. For example, the first light-emitting element (2a) constituting the first optical coupling pair is made of a GaP single crystal that emits two green lights with an emission center wavelength of 565 nm, and the first light-receiving element (3al-light-receiving element The peak of is 58Qn
The LED is made of amorphous silicon (a-8i:H) of m and is made of a GaP single crystal with an emission center wavelength of 700 nm as the second light emitting element (2C) of the second optical coupling pair.
is used, and the peak of light reception by the second light receiving element (5c) is 6.
801m amorphous silicon germanium (a-3
Select ix Ge1-X:H. That is, the first optical coupling pair optically couples at the first wavelength of 565 nm, and the second optical coupling pair optically couples at the first wavelength of 565 nm.
The optical coupling pair is optically coupled at a wavelength of 700 nm different from that of the first one.

次いで本発明の要旨となる受光のピークが異なる第1 
・第2の受光素子(3a)(3c)の製造方法を説明す
る。
Next, the first method has a different peak of light reception, which is the gist of the present invention.
- The manufacturing method of the second light receiving elements (3a) (3c) will be explained.

先ず透明磁極膜(7)が蒸着若しくはスパッタにより被
着されパターニングされたガラスから成る絶縁基板(I
J&プラズマ反応炉の反応電極間に配置し、第1の受光
素子(3りの透明゛磁極膜(7]のみ5r″露出せしめ
上記絶縁基板(IJを約5[JO”Cに加熱した状態で
シラン(SユH4)ガスと不純物ガスとしてジボラン(
B2H6)&11000pp導入する。そして上記反1
を嶋tAK13.56MHz、1 oowの高周波電力
を1勺等して、上記絶縁基板(1)上に厚みyfi’l
 10 (] AのP型のアモルファスシリコン(a−
8i:H)’r得る。その後82H(Sガスのみを除去
して厚み約5000人の1型1a−8i:H7a/析出
せしめ、更にフォスフイン(PH3)を不純物ガスとし
てioooppm混入し6001程度のN型a−8i:
Hv影形成、絶縁基板(IJ tIll カらP工N各
層を重畳したPIN接合を有するアモルファスシリコン
(a−8i:H)半導体層(81e 得る。
First, a transparent magnetic pole film (7) is deposited by vapor deposition or sputtering on an insulating substrate (I
Place the first light receiving element (only the three transparent magnetic pole films (7) are exposed at 5r") between the reaction electrodes of the J & plasma reactor, and place the above insulating substrate (with the IJ heated to about 5[JO"C). Silane (S-H4) gas and diborane (as an impurity gas)
B2H6)&11000pp is introduced. And the above anti-1
A high frequency power of 13.56 MHz and 100 MHz is applied to the above insulating substrate (1) to a thickness of yfi'l.
10 (] A P-type amorphous silicon (a-
8i:H)'r obtained. After that, 82H (only the S gas was removed to precipitate 1-type 1a-8i:H7a/with a thickness of about 5000 people, and further ioooppm of phosphine (PH3) was mixed as an impurity gas, and N-type a-8i with a thickness of about 6001:
Hv shadow formation, an amorphous silicon (a-8i:H) semiconductor layer (81e) having a PIN junction with superimposed P and N layers from an insulating substrate (IJ tIll) is obtained.

向上記a−Sユ=Hの成長速度は各層とも約1μm/h
rであるので、所望の厚みな得るべく時間制御される。
The growth rate of Koji a-S Yu=H is approximately 1 μm/h for each layer.
r, the time is controlled to obtain the desired thickness.

次いで上記アモルファスシリコン半導体層(8)乞適当
なマスク手段で復い第2の受光素子(6C)を形成する
アモルファスシリコンゲルマニウム(a−3ix Ge
1−x:H)層(sc)17:プラズマ反応によシ被着
する。この時導入される反応ガ、cはsiH,*−6o
96、ゲルマン(GeH4〕−4096である。他の条
件は第1の受光素子(6a)を形成するa−5i:Hと
同様である。
Next, the amorphous silicon semiconductor layer (8) is covered with amorphous silicon germanium (a-3ix Ge) which forms the second light receiving element (6C).
1-x:H) layer (sc) 17: Deposited by plasma reaction. The reaction gas introduced at this time, c is siH, *-6o
96, germane (GeH4)-4096.Other conditions are the same as a-5i:H forming the first light receiving element (6a).

この様にして製造されたa−3i:H並びVCa−8i
xGe1−X:Hから成る第1・第2の受光素子(3a
)(3c)が直列的に接続せしめられると等刷部に第4
図の如き回路図に置挟することができる。即ち、受光素
子(3a)(30)は夫々直流電流源(10a)(IO
C)とダイオード(ilaBiic)との逆並列回路で
表わすことができる。同図vciいて、0は出力端子σ
ハシ間に接続され次負荷抵抗である。
a-3i:H row VCa-8i manufactured in this way
The first and second light receiving elements (3a
) (3c) are connected in series, the fourth
It can be inserted into a circuit diagram as shown in the figure. That is, the light receiving elements (3a) (30) are connected to the DC current sources (10a) (IO
C) and a diode (ilaBiic) in an antiparallel circuit. In the same figure, vci is 0, which is the output terminal σ
The next load resistor is connected between the wires.

而して、第1の発光素子(2a)に電気信号が給電され
ると、該第1の発光素子(2a)は56snmの緑色光
を発光し絶縁基板(1)を伝搬して対向する受光のピー
クが5801mの第1の受光素子(6a)を光照射する
。光照射された第1の受ffi素子(5a )はその受
光のピーク波長と発光素子(2a)の発光波長とが略一
致1−る結果、当該透明電極膜(7)並びに金属電極膜
(9)間に光起電力を発生せしめる。ところが第2の発
光素子(2C)が発光動作にない状態に於いては、第2
の受光素子(30)K第1の発光素子(2a)の緑色光
の一部が散乱により入射し℃も該第2の受yt素子(6
C)の受光のピーク波長と発光波長とが大きく異なるた
めに、第2の受光素子(6C)は光起電力を発生するに
至らず上記第1の受光素子(3a〕の直流電流#(10
a)と逆方向のダイオード(iic)状態にある。従っ
て、負荷抵抗(R)vcは充電流が流れず出力端子Uク
ロJ間には出力が得られない。
Then, when an electric signal is supplied to the first light emitting element (2a), the first light emitting element (2a) emits green light of 56 snm, propagates through the insulating substrate (1), and receives the opposite light. The first light receiving element (6a) with a peak of 5801 m is irradiated with light. The peak wavelength of the light received by the first ffi element (5a) that is irradiated with the light and the emission wavelength of the light emitting element (2a) approximately match, so that the transparent electrode film (7) and the metal electrode film (9) ) to generate a photovoltaic force between them. However, when the second light emitting element (2C) is not in the light emitting operation, the second light emitting element (2C)
A part of the green light from the first light emitting element (2a) enters the light receiving element (30) K due to scattering, and the temperature also decreases to 30°C.
Since the peak wavelength of light reception and the emission wavelength of C) are significantly different, the second light receiving element (6C) does not generate a photovoltaic force and the DC current #(10
It is in a diode (IIC) state in the opposite direction to a). Therefore, no charging current flows through the load resistor (R)vc, and no output is obtained between the output terminals U and J.

一方、この状態で第2の発光素子(2C)を発光せしめ
ると、該第2の発光素子(2C)は第2の受光素子Co
o)の受光のピーク波長680nmと略等しい700n
mの赤色光を発光する結果、第2の受光素子(3C)は
逆方向のダイオード(11C)状態から順方向の直流電
流源(ipc)となシ、負荷抵抗0に光電j瓦が流れ、
出力端子L]211131間に出力信号が得られる。こ
の様VC2個の受光素子(3a、)[0)を直列接続し
、夫々の屯気(入力)信号〆こ対して独立して発光動作
する2個の発光素子(2a)(2cJ&対向せしめるこ
とf(山って、出力信号として入力信号Q−理積を得る
ことができる。
On the other hand, when the second light emitting element (2C) is caused to emit light in this state, the second light emitting element (2C) is connected to the second light receiving element Co.
700n, which is approximately equal to the peak wavelength of light reception of o), 680nm.
As a result of emitting red light of m, the second light receiving element (3C) changes from the reverse direction diode (11C) state to the forward direction direct current source (IPC), and a photoelectric current flows through the load resistance 0.
An output signal is obtained between the output terminals L]211131. In this way, the two VC light receiving elements (3a,) [0) are connected in series, and the two light emitting elements (2a) (2cJ&) that operate independently to emit light in response to the respective air (input) signals are made to face each other. f(mountain), the input signal Q-reason can be obtained as an output signal.

同、第2の発光素子(2C)のみが発光動作し℃も第1
の受光素子(6a〕は受光のピーク波長と発光波長が大
きく異なると共に、発光(辻の一部のみしか入射しない
ためVC逆方向のダイオード(11a)状態どなる。
In the same case, only the second light emitting element (2C) operates to emit light, and the temperature is also the same as that of the first one.
In the light-receiving element (6a), the peak wavelength of light reception and the wavelength of light emission are greatly different, and the light emission (only a part of the crossroads) is incident, so the state of the diode (11a) in the opposite direction of VC changes.

(へ) 発明の効果 本発明は以上の説明からり]らかな卯く、各々光学的に
結合する第1の発光・受光素子並びVC第2の発光・受
光素子は、夫々異なる第1の波長及び第2の波長を介し
て光結合するので、隣接する光結合対の光が相互に干渉
することはなくクロストーク?防止することができ、祈
るクロストークを原因とする誤動作を確冥に抑圧するこ
とができる0
(f) Effects of the Invention The present invention is based on the above explanation] The first light emitting/light receiving element and the VC second light emitting/light receiving element each having a different first wavelength are optically coupled to each other. Since the light is optically coupled via the second wavelength, the lights of adjacent optically coupled pairs do not interfere with each other, resulting in crosstalk. It is possible to prevent malfunctions caused by crosstalk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2因に七の要部平面図、第
6図は本発明の実施例断面図、第4図はその等価回路図
で、(1)は絶縁基板、(2a)(2C)は第1・第2
の発光素子、(5a )(6C)は第1・第2の受光素
子%(8)はアモルファスシリコン層、(80)!Jア
モルファスシリコンゲルマニウム層、を夫々示している
Fig. 1 is a sectional view of the conventional example, secondly, a plan view of the main part of the seventh factor, Fig. 6 is a sectional view of the embodiment of the present invention, and Fig. 4 is its equivalent circuit diagram, (1) is an insulating substrate, (2a) (2C) are the first and second
(5a) (6C) are first and second light receiving elements (8) are amorphous silicon layers, (80)! J amorphous silicon germanium layer.

Claims (1)

【特許請求の範囲】[Claims] flj  第1の波長に受光のピークが存在するアモル
ファス半導体を含む第1の受光素子と、第2の波長に受
光のピークが存在するアモルファス半導体?含む第2の
受光素子と、略第1の波長並びに第2の波長の光な夫々
独立した電気信号に基づき放射する第1・第2の発光素
子と、?具備し、上記両受光素子並びに両発元素子を各
々光伝搬媒体の同一面に並置すると共に、波長が略lし
い受光
flj A first light receiving element including an amorphous semiconductor whose light reception peak exists at a first wavelength, and an amorphous semiconductor whose light reception peak exists at a second wavelength? a second light-receiving element including a second light-receiving element, and first and second light-emitting elements that emit light of approximately the first wavelength and the second wavelength based on independent electrical signals, respectively; The two light-receiving elements and the two light-emitting elements are arranged side by side on the same surface of the light propagation medium, and the light receiving element has a substantially different wavelength.
JP57225465A 1982-12-21 1982-12-21 Semiconductor photo coupler Pending JPS59114877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225465A JPS59114877A (en) 1982-12-21 1982-12-21 Semiconductor photo coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225465A JPS59114877A (en) 1982-12-21 1982-12-21 Semiconductor photo coupler

Publications (1)

Publication Number Publication Date
JPS59114877A true JPS59114877A (en) 1984-07-03

Family

ID=16829745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225465A Pending JPS59114877A (en) 1982-12-21 1982-12-21 Semiconductor photo coupler

Country Status (1)

Country Link
JP (1) JPS59114877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848152B2 (en) 2018-03-15 2020-11-24 Analog Devices Global Unlimited Company Optically isolated micromachined (MEMS) switches and related methods comprising a light transmitting adhesive layer between an optical receiver and a light source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158086A (en) * 1974-11-18 1976-05-21 Mitsubishi Electric Corp
JPS5193176A (en) * 1975-02-13 1976-08-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158086A (en) * 1974-11-18 1976-05-21 Mitsubishi Electric Corp
JPS5193176A (en) * 1975-02-13 1976-08-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848152B2 (en) 2018-03-15 2020-11-24 Analog Devices Global Unlimited Company Optically isolated micromachined (MEMS) switches and related methods comprising a light transmitting adhesive layer between an optical receiver and a light source
US11228310B2 (en) 2018-03-15 2022-01-18 Analog Devices Global Unlimited Company System comprising a package having optically isolated micromachined (MEMS) switches with a conduit to route optical signal to an optical receiver and related methods

Similar Documents

Publication Publication Date Title
US4626878A (en) Semiconductor optical logical device
US6310382B1 (en) Multicolor sensor
US4860069A (en) Non-single-cry stal semiconductor light emitting device
KR890003148B1 (en) Semiconductor with fiber structure and manufacture thereof
US4616244A (en) Non-single-crystal semiconductor light emitting device
JPS59114877A (en) Semiconductor photo coupler
JPH01175775A (en) Photo-driven mos semiconductor device
TWI638466B (en) Receiver module
JPS5935487A (en) Manufacture of photo semiconductor device
JPS58170082A (en) Photocoupler
JPS58116779A (en) Photovoltaic device
JPH0230192B2 (en)
JPH0230191B2 (en)
JPH02194655A (en) Waveguide-type pin photodiode for photodetection
JPH0368177A (en) Thin film photocoupler
JPS61182273A (en) Multi-wavelength light-receiving element
JPH0294670A (en) Photosensor
JPS6461966A (en) Photocoupler
KR880001347B1 (en) Color sensor
JPH0262922A (en) Optical sensor
JPH01293575A (en) Photovoltaic device
JPS6011475B2 (en) CCD photo coupler
JPH0366178A (en) Optoelectric transducer
JPH0470789B2 (en)
JPS58219780A (en) Multiple wavelength light detecting device