JPH0230191B2 - - Google Patents

Info

Publication number
JPH0230191B2
JPH0230191B2 JP56200469A JP20046981A JPH0230191B2 JP H0230191 B2 JPH0230191 B2 JP H0230191B2 JP 56200469 A JP56200469 A JP 56200469A JP 20046981 A JP20046981 A JP 20046981A JP H0230191 B2 JPH0230191 B2 JP H0230191B2
Authority
JP
Japan
Prior art keywords
light
light emitting
light receiving
emitting elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56200469A
Other languages
Japanese (ja)
Other versions
JPS58101475A (en
Inventor
Yukinori Kuwano
Shoichi Nakano
Masaru Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56200469A priority Critical patent/JPS58101475A/en
Priority to US06/447,195 priority patent/US4626878A/en
Priority to DE8282111464T priority patent/DE3279526D1/en
Priority to EP82111464A priority patent/EP0081827B1/en
Publication of JPS58101475A publication Critical patent/JPS58101475A/en
Publication of JPH0230191B2 publication Critical patent/JPH0230191B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアモルフアス半導体等の非単結晶半導
体から成る受光素子を備えた半導体光結合装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor optical coupling device including a light receiving element made of a non-single crystal semiconductor such as an amorphous semiconductor.

近年半導体材料の開発が進む中で、シランのプ
ラズマ反応等により得られるアモルフアスシリコ
ンに於いて、従来から困難とされていたPN制御
が可能であることが判明し、此の種アモルフアス
半導体が注目を集めている。このアモルフアス半
導体は単結晶半導体に較べ製造エネルギが小さ
く、工程が簡単で、連続的に大量生産が可能であ
り、しかも使用材料が少なくてすむ、等の多くの
優れた特長点を有している。
As the development of semiconductor materials progresses in recent years, it has been discovered that PN control, which has traditionally been considered difficult, is possible in amorphous silicon obtained by silane plasma reaction, etc., and this type of amorphous semiconductor has attracted attention. are collecting. Compared to single-crystalline semiconductors, amorphous semiconductors have many advantages, such as requiring less manufacturing energy, simpler processes, continuous mass production, and requiring less materials. .

この様なアモルフアス半導体は石油等のエネル
ギ資源の枯渇に対処すべく、非枯渇、クリーンエ
ネルギ源である太陽光から直接電気を得る太陽電
池としての開発が盛んに行なわれている。
In order to cope with the depletion of energy resources such as petroleum, such amorphous semiconductors are being actively developed as solar cells that obtain electricity directly from sunlight, which is a non-depletable, clean energy source.

また、同じ理由により蒸着、印刷、スプレー、
気相成長等の方法によつて10ミクロンオーダで得
られる多結晶半導体の太陽電池についても開発が
行なわれている。
Also, for the same reason, vapor deposition, printing, spraying,
Polycrystalline semiconductor solar cells that can be obtained on the order of 10 microns by methods such as vapor phase growth are also being developed.

本発明は斯るアモルフアス半導体若しくは多結
晶半導体等の非単結晶半導体を備えた新規な半導
体光結合装置を提供するもので、以下に図面を参
照しつつ本発明の実施例につき詳述する。
The present invention provides a novel semiconductor optical coupling device equipped with such a non-single crystal semiconductor such as an amorphous semiconductor or a polycrystalline semiconductor, and embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示し、1はガラ
ス・耐熱プラスチツク等の透光性絶縁基板、2
a,2bは該絶縁基板1の一方の一主面1aに配
置された第1・第2の発光素子、3a,3bは上
記絶縁基板1の他方の一主面1bに形成された第
1・第2の受光素子で、夫々第1・第2の発光素
子2a,2b並びに受光素子3a,3bは上記絶
縁基板1を隔てて対向する。
FIG. 1 shows an embodiment of the present invention, in which 1 is a translucent insulating substrate made of glass, heat-resistant plastic, etc.;
Reference numerals a and 2b indicate first and second light emitting elements disposed on one principal surface 1a of the insulating substrate 1, and reference numerals 3a and 3b indicate first and second light emitting elements disposed on the other principal surface 1b of the insulating substrate 1. In the second light receiving element, the first and second light emitting elements 2a and 2b and the light receiving elements 3a and 3b are opposed to each other with the insulating substrate 1 interposed therebetween.

上記第1・第2の発光素子2a,2bは例えば
ガリウム燐GaP単結晶から成り、その電極面の一
部分は第2図に示す如き絶縁基板1の一主面1a
にパターン印刷された銀ペースト等の導電性接着
剤4を介して上記絶縁基板1を透過しようとする
光を遮ることなく被着される。そして、上記第
1・第2の発光素子2a,2bの他の電極面はワ
イヤリード5a,5bを介して絶縁基板1上の第
1・第2の発光素子2a,2bの間に配されてい
る電極膜6に結合される。
The first and second light emitting elements 2a and 2b are made of, for example, gallium phosphorus GaP single crystal, and a part of the electrode surface is one main surface 1a of an insulating substrate 1 as shown in FIG.
The conductive adhesive 4 such as silver paste with a pattern printed thereon is applied without blocking the light that is about to pass through the insulating substrate 1. The other electrode surfaces of the first and second light emitting elements 2a and 2b are arranged between the first and second light emitting elements 2a and 2b on the insulating substrate 1 via wire leads 5a and 5b. The electrode film 6 is connected to the electrode film 6.

一方、絶縁基板1の他方の一主面1bに設けら
れた第1・第2の受光素子3a,3bは上記絶縁
基板1上にパターニングされた酸化スズ
(SnO2)、酸化インジウム(In2O3)、酸化インジ
ウム・スズ(In2O3:SnO2)等の透明電極膜7上
に例えばPIN接合型のアモルフアス半導体層8が
被着され、更にアルミニウム等の金属電極膜9が
重畳された積層構造を持つ。そして、上記第1の
受光素子3aの金属電極膜9は絶縁基板1上に延
在し隣接する第2の受光素子3bの透明電極膜7
と結合する。その結果、第1の受光素子3aと第
2の受光素子3bとは直列関係になるべく接続さ
れる。
On the other hand, the first and second light receiving elements 3a and 3b provided on the other main surface 1b of the insulating substrate 1 are made of tin oxide (SnO 2 ) and indium oxide (In 2 O) patterned on the insulating substrate 1. 3 ) For example, a PIN junction type amorphous semiconductor layer 8 is deposited on a transparent electrode film 7 made of indium tin oxide (In 2 O 3 :SnO 2 ), etc., and a metal electrode film 9 made of aluminum or the like is further superimposed. It has a laminated structure. The metal electrode film 9 of the first light receiving element 3a extends on the insulating substrate 1, and the transparent electrode film 7 of the adjacent second light receiving element 3b
combine with As a result, the first light receiving element 3a and the second light receiving element 3b are connected in series as much as possible.

次いでより具体的な実施例をその製造方法と共
に説明する。
Next, more specific examples will be described together with their manufacturing methods.

先ず透明電極膜7が蒸着若しくはスパツタによ
り被着されパターニングされたガラスから成る絶
縁基板7をプラズマ反応炉の反応電極間に配置
し、上記絶縁基板1を約300℃に加熱した状態で
シラン(SiH4)ガスと不純物ガスとしてジボラ
ン(B2H6)を1000ppm導入する。そして上記反
応電極に13.56MHz、100Wの高周波電力を付与し
て、上記絶縁基板1上に厚み約100ÅのP型のア
モルフアスシリコン(a−Si:H)を得る。その
後B2H6ガスのみを除去して厚み約5000ÅのI型
a−Si:Hを析出せしめ、更にフオスフイン
(PH3)を不純物ガスとして1000ppm混入し300Å
程度のN型a−Si:Hを形成し、絶縁基板1から
PIN各層を重畳したPIN接合を有するアモルフア
スシリコン(a−Si:H)半導体層8を得る。尚
上記a−Si:Hの成長速度は各層とも約1μm/hr
であるので、所望の厚みを得るべく時間制御され
る。
First, an insulating substrate 7 made of glass on which a transparent electrode film 7 has been deposited and patterned by vapor deposition or sputtering is placed between the reaction electrodes of a plasma reactor, and while the insulating substrate 1 is heated to approximately 300°C, silane (SiH) is applied. 4 ) Introduce 1000 ppm of diborane (B 2 H 6 ) as gas and impurity gas. A high frequency power of 13.56 MHz and 100 W is applied to the reaction electrode to obtain P-type amorphous silicon (a-Si:H) with a thickness of about 100 Å on the insulating substrate 1. After that, only the B 2 H 6 gas was removed to precipitate I-type a-Si:H with a thickness of about 5000 Å, and 1000 ppm of phosphine (PH 3 ) was added as an impurity gas to deposit a thickness of 300 Å.
Form an N-type a-Si:H of about
An amorphous silicon (a-Si:H) semiconductor layer 8 having a PIN junction in which PIN layers are overlapped is obtained. The growth rate of the above a-Si:H is approximately 1 μm/hr for each layer.
Therefore, the time is controlled to obtain the desired thickness.

次いで上記アモルフアスシリコン半導体層8を
予め定められたパターンにフオトエツチング若し
くはプラズマエツチング等の手段によつて形成す
る。また上記手段を使用せず、アモルフアスシリ
コン半導体層8を金属マスクを用いて選択的に形
成してもよい。最後に、上記アモルフアスシリコ
ン半導体層8上にアルミニウムの金属電極膜9を
蒸着し第1の受光素子3aと第2の受光素子3b
とが直列関係に接続されるべくエツチングにより
パターニングされる。
Next, the amorphous silicon semiconductor layer 8 is formed into a predetermined pattern by means such as photoetching or plasma etching. Alternatively, the amorphous silicon semiconductor layer 8 may be selectively formed using a metal mask without using the above method. Finally, an aluminum metal electrode film 9 is deposited on the amorphous silicon semiconductor layer 8 to form a first light receiving element 3a and a second light receiving element 3b.
are patterned by etching so that they are connected in series.

斯るPIN接合型アモルフアスシリコン半導体層
8から成る第1・第2の受光素子3a,3bは約
580nmに受光の中心波長λ1が存在する。
The first and second light receiving elements 3a and 3b made of the PIN junction type amorphous silicon semiconductor layer 8 are approximately
The center wavelength λ 1 of light reception exists at 580 nm.

一方、第1・第2の発光素子2a,2bは上記
第1・第2の受光素子3a,3bの中心波長λ1
発光の中心波長λ2とを一致せしめるべく、λ2
65nmのGaP単結晶から成る緑色のLEDペレツト
を用いる。上記LEDペレツトの一方の電極面を
絶縁基板1の受光素子2a,2bが対向する一主
面1aに、第2図の如くパターン印刷された導電
性接着剤4を介して破線で示すようにフエイスダ
ウンボンデイングする。そして、他方の電極面を
ワイヤーリード5a,5bを用いて絶縁基板1上
の第1・第2の発光素子2a,2bの間に設けら
れた電極膜6にボンデイングする。これ等第1・
第2の発光素子2a,2bは入力信号の給電に対
して独立して応答し発光すべく上記導電性接着剤
4及び電極膜6は結線される。
On the other hand, the first and second light emitting elements 2a and 2b are arranged so that the center wavelength λ 1 of the first and second light receiving elements 3a and 3b and the center wavelength λ 2 of light emission match, λ 2
A green LED pellet made of 65nm GaP single crystal is used. One electrode surface of the LED pellet is attached to the main surface 1a of the insulating substrate 1, where the light receiving elements 2a and 2b face each other, as shown in FIG. Bonding down. Then, the other electrode surface is bonded to the electrode film 6 provided between the first and second light emitting elements 2a and 2b on the insulating substrate 1 using wire leads 5a and 5b. This is the first one.
The conductive adhesive 4 and the electrode film 6 are connected so that the second light emitting elements 2a and 2b respond independently to the power supply of an input signal and emit light.

そして最終的に上記第1・第2の発光素子2
a,2bの入力線並び第1・第2の受光素子3
a,3bの出力線を司どるリードフレーム10,
11…を結合して第1図に示す如く外来光を遮蔽
するモールド体12でモールドし半導体光結合装
置を完成する。
Finally, the first and second light emitting elements 2
Input lines a and 2b lined up first and second light receiving elements 3
A lead frame 10 that controls the output lines of a and 3b,
11... are combined and molded with a mold body 12 that blocks external light as shown in FIG. 1 to complete a semiconductor optical coupling device.

この様にして製造された半導体光結合装置の受
光側は第1・第2の受光素子3a,3bが直列接
続関係にあり等価的に第3図の如き回路図に置換
することができる。即ち、受光素子3a,3bは
夫々直流電流源13a,13bとダイオード14
a,14bとの逆並列回路で表わすことができ
る。第3図に於いて、Rは出力端子15,16間
に接続された負荷抵抗である。
On the light-receiving side of the semiconductor optical coupling device manufactured in this way, the first and second light-receiving elements 3a and 3b are connected in series, and the circuit diagram can be equivalently replaced with the circuit diagram shown in FIG. That is, the light receiving elements 3a and 3b are connected to the DC current sources 13a and 13b and the diode 14, respectively.
It can be represented by an anti-parallel circuit with a and 14b. In FIG. 3, R is a load resistance connected between output terminals 15 and 16.

而して、第1の発光素子2aに入力信号がリー
ドフレーム10,10を介して給電されると、該
第1の発光素子2aは発光動作し絶縁基板1を透
過して対向する第1の受光素子3aを光照射す
る。光照射された第1の受光素子3aはアモルフ
アスシリコン半導体層8の主にI型層に於いて自
由状態の電子及びホールが発生しその各々はPIN
接合電界に引かれて移動して透明電極膜7並びに
金属電極膜9間に光起電力を発生せしめる。とこ
ろが第2の発光素子2bは発光動作状態にないの
で、対向する第2の受光素子3bは、上記光起電
力による直流電流源13aと逆方向のダイオード
14b状態にある。従つて負荷抵抗Rには光電流
には流れず出力端子15,16間には出力が得ら
れない。
When an input signal is supplied to the first light emitting element 2a via the lead frames 10, 10, the first light emitting element 2a operates to emit light, transmitting light through the insulating substrate 1 to the opposing first light emitting element 2a. The light receiving element 3a is irradiated with light. In the first light receiving element 3a irradiated with light, free state electrons and holes are generated mainly in the I-type layer of the amorphous silicon semiconductor layer 8, and each of them becomes a PIN.
It moves under the influence of the junction electric field and generates a photovoltaic force between the transparent electrode film 7 and the metal electrode film 9. However, since the second light emitting element 2b is not in a light emitting operation state, the opposing second light receiving element 3b is in a diode 14b state in the opposite direction to the photovoltaic DC current source 13a. Therefore, no photocurrent flows through the load resistor R, and no output is obtained between the output terminals 15 and 16.

一方、この状態で第2の発光素子2bに入力信
号を供給し発光せしめると第2の受光素子3bは
逆方向のダイオード14b状態から順方向の直流
電流源13bとなり、負荷抵抗Rに光電流が流れ
る。その結果出力端子15,16間に出力信号が
得られる。この様に2個の受光素子3a,3bを
直列接続し、夫々に入力信号に対して独立して発
光動作する2個の発光素子2a,2bを対向せし
めることによつて、出力信号として入力信号の論
理積を得ることができる。
On the other hand, when an input signal is supplied to the second light emitting element 2b in this state to cause it to emit light, the second light receiving element 3b changes from the reverse direction diode 14b state to the forward direction DC current source 13b, and a photocurrent is applied to the load resistor R. flows. As a result, an output signal is obtained between output terminals 15 and 16. By connecting the two light-receiving elements 3a and 3b in series in this way and having the two light-emitting elements 2a and 2b facing each other, each of which operates to emit light independently in response to an input signal, it is possible to receive the input signal as an output signal. We can obtain the logical product of .

同様の考え方から第4図に示す如く第1の受光
素子3aと第2の受光素子3bとを並列関係に接
続すると少なくとも第1・第2の発光素子2a,
2bの何れか一方が発光することにより出力端子
15,16間に論理和出力を得ることができる。
From the same idea, if the first light receiving element 3a and the second light receiving element 3b are connected in parallel as shown in FIG. 4, at least the first and second light emitting elements 2a,
When either one of the terminals 2b emits light, an OR output can be obtained between the output terminals 15 and 16.

ところで、斯る半導体光結合装置において、第
1・第2の発光素子2a,2bからの出射光にク
ロストークが生じ、第1の発光素子2a(または
第2の発光素子2b)からの出射光が第1の受光
素子3a(または第2の受光素子3b)だけでな
く、第2の受光素子3b(または第1の受光素子
3a)にも照射されると誤つた信号を出力するこ
とになる。
By the way, in such a semiconductor optical coupling device, crosstalk occurs in the light emitted from the first and second light emitting elements 2a and 2b, and the light emitted from the first light emitting element 2a (or the second light emitting element 2b) If the light is irradiated not only to the first light receiving element 3a (or second light receiving element 3b) but also to the second light receiving element 3b (or first light receiving element 3a), an erroneous signal will be output. .

ここで、斯るクロストークを抑制するために
は、第1・第2の発光素子2a,2bの間隔を大
きくすれば良いが、斯る間隔を単に大きくするだ
けでは、この間隔部分がデツドスペースとなつて
不要に装置の大型化を招くことになる。
Here, in order to suppress such crosstalk, it is sufficient to increase the interval between the first and second light emitting elements 2a and 2b, but simply increasing the interval will cause this interval to become a dead space. This results in an unnecessary increase in the size of the device.

そこで、本実施例によれば、第1・第2の発光
素子2a,2bの間隔を大きくすることにより出
来た空間に電極膜6を配することによつて、斯る
電極膜6を他の部分に配するに較べて装置の大型
化を防ぎ、かつクロストークの発生を抑制してい
る。
Therefore, according to this embodiment, by disposing the electrode film 6 in the space created by increasing the interval between the first and second light emitting elements 2a and 2b, the electrode film 6 can be This prevents the device from becoming larger and suppresses the occurrence of crosstalk compared to placing it in sections.

第5図は本発明の更に他の実施例であり、第
1・第2の発光素子2a,2bをアモルフアス半
導体で形成したところに特徴が存在する。製造方
法は受光素子3a,3bと同様にプラズマ反応に
より形成される。即ち、絶縁基板1の一主面1a
に透明電極膜17をパターン形成した後、反応ガ
スとしてSiH4を70%、メタンCH4を30%導入し
PIN接合型のアモルフアスシリコンカーバイド
(a−SiC:H)半導体層18を得る。この時P
型N型を制御する不純物ガスとしてB2H6及び
PH3が夫々1000ppmの濃度で使用される。得られ
たPIN各膜厚は順次100〜200Å、5000Å、500Å
であり発光の中心波長λ3は680nmであつた。
FIG. 5 shows still another embodiment of the present invention, which is characterized in that the first and second light emitting elements 2a and 2b are formed of amorphous semiconductors. The manufacturing method is similar to that of the light receiving elements 3a and 3b, and is formed by plasma reaction. That is, one main surface 1a of the insulating substrate 1
After patterning the transparent electrode film 17, 70% SiH 4 and 30% methane CH 4 were introduced as reactive gases.
A PIN junction type amorphous silicon carbide (a-SiC:H) semiconductor layer 18 is obtained. At this time P
B 2 H 6 and
PH 3 is used at a concentration of 1000 ppm each. The obtained PIN film thicknesses are sequentially 100 to 200 Å, 5000 Å, and 500 Å.
The central wavelength of light emission λ 3 was 680 nm.

一方先の実施例に於ける第1・第2の受光素子
3a,3bはアモルフアスシリコン半導体層8か
ら成つていたがその中心波長λ2が580nmである
為に本実施例には不都合である。その為に本実施
例に於いては第1・第2の受光素子3a,3bは
中心波長λ4が上記発光素子2a,2bのそれと同
じ680nmであるアモルフアスシリコンゲルマニ
ウム(a−SiGe:H)半導体層8が使用される。
この時導入される反応ガスはSiH4:60%、ゲル
マン(GeH4):40%である。
On the other hand, the first and second light-receiving elements 3a and 3b in the previous embodiment were made of an amorphous silicon semiconductor layer 8, but since the center wavelength λ 2 of the layer 8 was 580 nm, this was inconvenient for this embodiment. be. Therefore, in this embodiment, the first and second light receiving elements 3a and 3b are made of amorphous silicon germanium (a-SiGe:H) whose center wavelength λ 4 is 680 nm, which is the same as that of the light emitting elements 2a and 2b. A semiconductor layer 8 is used.
The reaction gases introduced at this time were SiH 4 :60% and germane (GeH 4 ): 40%.

斯る構造によれば発光素子2a,2bとしてア
モルフアス半導体を使用することによつて安価に
製造することができるのみならず、絶縁基板1上
にワイヤリード5a,5bを介さず直接金属電極
膜19に延在せしめることができ、モールド体1
2を充填する際の上記ワイヤリード5a,5bの
断線事故を回避することができる。
According to such a structure, not only can the light emitting elements 2a and 2b be manufactured at low cost by using amorphous semiconductors, but also the metal electrode film 19 can be directly formed on the insulating substrate 1 without using the wire leads 5a and 5b. can be extended to the mold body 1
It is possible to avoid an accident of disconnection of the wire leads 5a and 5b when filling the battery.

また、上述の如くアモルフアス半導体層8,1
8は、同一素材で発光素子を形成した場合と受光
素子を形成した場合とでは発光中心波長が受光中
心波長に較べ長波長側に移動する特性を有してい
ると共に、反応ガスの組成並びに組成比を適宜選
択することによつて可視光領域に限らず紫外・赤
外の領域に感度を有する素子を自由に形成するこ
とができる。更にアモルフアス半導体層の形成時
に付与する高周波電力並びに水素濃度を増大せし
めることによつて、アモルフアス半導体層を微結
晶化し変換効率の向上を図つても良く、PIN接合
型でなくてもPN接合、ヘテロフエイス接合、シ
ヨツトキバリア型でも実現し得る。また受光素子
を形成するアモルフアス半導体層8は上述の如き
光照射に対し光起電力を発生せしめる接合形態を
持たず、光照射によつて導電率を上昇する光導電
効果を利用したものであつても本発明の作用効果
を妨げるものではない。
Further, as described above, the amorphous semiconductor layers 8, 1
8 has a characteristic that the emission center wavelength shifts to the longer wavelength side compared to the light reception center wavelength when the light emitting element and the light receiving element are formed from the same material, and the composition of the reactant gas and the composition By appropriately selecting the ratio, it is possible to freely form an element having sensitivity not only in the visible light region but also in the ultraviolet and infrared regions. Furthermore, by increasing the high-frequency power and hydrogen concentration applied during the formation of the amorphous semiconductor layer, the amorphous semiconductor layer can be microcrystallized and the conversion efficiency can be improved. It can also be realized with a face joint or a shot barrier type. Further, the amorphous semiconductor layer 8 forming the light receiving element does not have a bonding form that generates a photovoltaic force in response to light irradiation as described above, but utilizes the photoconductive effect that increases the conductivity by light irradiation. However, this does not impede the effects of the present invention.

尚、以上の説明に於いては発光素子、受光素子
は夫々2個用いて論理積出力若しくは論理和出力
を得ていたが、何にもこれに限定されるものでな
く、例えば論理積回路と論理和回路とを同一基板
に多数配置しそれ等を結線しても良く、また配置
状態も一次元に限ることなく二次元方向に拡がつ
ても良い等の種々の変更が考えられる。
In the above explanation, two light-emitting elements and two light-receiving elements were used to obtain an AND output or an OR output, but the invention is not limited to this, and for example, an AND circuit and Various modifications are conceivable, such as arranging a large number of OR circuits on the same board and connecting them, and the arrangement state is not limited to one dimension, but may be extended in two dimensions.

本発明半導体光結合装置は以上の説明から明ら
かな如く、複数の発光素子と、該複数の発光素子
の夫々に入力信号を給電するための電極と、上記
発光素子からの発光を受光して夫々電気信号に変
換する非単結晶半導体から成る複数の受光素子
と、該複数の受光素子の夫々から出力信号を取り
出す取出電極とを備え、上記複数の発光素子の間
に、上記電極の少なくとも1つを配設し、更に、
上記複数の受光素子の少なくとも2個の取出電極
を、これ等少なくとも2個の受光素子と対向する
発光素子へ給電される信号の論理積または論理和
を得るべく電気的に直列または並列に結合せしめ
たので、装置の大型化を招くことなく発光素子の
出射光のクロストーク発生を抑制し、上記2個の
受光素子から入力信号に対する論理的な出力信号
を正確に得ることができ、しかも入力信号は一旦
光信号に変換されている為に安価且つ製造が容易
な非単結晶半導体を使用したにも拘らず、単結晶
半導体を用いたものに較べ遜色のない応答速度を
実現することができる。
As is clear from the above description, the semiconductor optical coupling device of the present invention includes a plurality of light emitting elements, an electrode for feeding an input signal to each of the plurality of light emitting elements, and a plurality of electrodes for receiving light emitted from the light emitting elements. A plurality of light-receiving elements made of a non-single-crystal semiconductor that converts into electrical signals, and an extraction electrode that extracts an output signal from each of the plurality of light-receiving elements, and at least one of the electrodes is arranged between the plurality of light-emitting elements. and further,
At least two extraction electrodes of the plurality of light-receiving elements are electrically coupled in series or in parallel to obtain a logical product or a logical sum of signals supplied to the light-emitting element facing the at least two light-receiving elements. Therefore, it is possible to suppress the occurrence of crosstalk in the light emitted from the light emitting element without increasing the size of the device, and to accurately obtain a logical output signal in response to the input signal from the two light receiving elements. Although a non-single-crystal semiconductor is used, which is cheap and easy to manufacture because it has been converted into an optical signal, it is possible to achieve a response speed comparable to that using a single-crystal semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例断面図、第2図はそ
の製造工程の一部を説明する為の平面図、第3図
はその受光側の等価回路図、第4図は本発明の他
の実施例の受光側等価回路図、第5図は更に他の
実施例の断面図、を夫々示している。 1……透光性絶縁基板、2a,2b……第1・
第2の発光素子、3a,3b……第1・第2の受
光素子。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a plan view for explaining part of the manufacturing process, Fig. 3 is an equivalent circuit diagram of the light receiving side, and Fig. 4 is a cross-sectional view of an embodiment of the present invention. FIG. 5 shows an equivalent circuit diagram on the light receiving side of another embodiment, and FIG. 5 shows a sectional view of still another embodiment. 1... Translucent insulating substrate, 2a, 2b... 1st.
Second light emitting element, 3a, 3b...first and second light receiving elements.

Claims (1)

【特許請求の範囲】 1 複数の発光素子と、該複数の発光素子の夫々
に入力信号を給電するための電極と、上記発光素
子からの発光を受光して夫々電気信号に変換する
非単結晶半導体から成る複数の受光素子と、該複
数の受光素子の夫々から出力信号を取り出す取出
電極とを備え、上記複数の発光素子の間に、上記
電極の少なくとも1つを配設し、更に、上記複数
の受光素子の少なくとも2個の取出電極を、これ
等少なくとも2個の受光素子と対向する発光素子
へ給電される入力信号の論理積または論理和を得
るべく電気的に直列または並列に結合したことを
特徴とする半導体光結合装置。 2 上記複数の発光素子は透光性基板の一方の一
主面に配置され、複数の受光素子は他方の一主面
に形成されて夫々は対向することを特徴とした特
許請求の範囲第1項記載の半導体光結合装置。 3 上記非単結晶半導体はアモルフアス半導体で
あることを特徴とした特許請求の範囲第1項及び
第2項何れか記載の半導体光結合装置。
[Scope of Claims] 1 A plurality of light emitting elements, an electrode for feeding an input signal to each of the plurality of light emitting elements, and a non-single crystal that receives light emitted from the light emitting elements and converts them into electrical signals, respectively. It comprises a plurality of light receiving elements made of a semiconductor, and an extraction electrode for extracting an output signal from each of the plurality of light receiving elements, at least one of the electrodes is disposed between the plurality of light emitting elements, and further, the At least two extraction electrodes of the plurality of light receiving elements are electrically coupled in series or parallel to obtain a AND or OR of input signals supplied to the light emitting element facing the at least two light receiving elements. A semiconductor optical coupling device characterized by: 2. Claim 1, wherein the plurality of light emitting elements are arranged on one principal surface of the light-transmitting substrate, and the plurality of light receiving elements are formed on the other principal surface, and are opposed to each other. A semiconductor optical coupling device as described in . 3. The semiconductor optical coupling device according to claim 1 or 2, wherein the non-single crystal semiconductor is an amorphous semiconductor.
JP56200469A 1981-12-11 1981-12-11 Semiconductor photocoupler Granted JPS58101475A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56200469A JPS58101475A (en) 1981-12-11 1981-12-11 Semiconductor photocoupler
US06/447,195 US4626878A (en) 1981-12-11 1982-12-06 Semiconductor optical logical device
DE8282111464T DE3279526D1 (en) 1981-12-11 1982-12-10 Semiconductor optical logic device
EP82111464A EP0081827B1 (en) 1981-12-11 1982-12-10 Semiconductor optical logic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200469A JPS58101475A (en) 1981-12-11 1981-12-11 Semiconductor photocoupler

Publications (2)

Publication Number Publication Date
JPS58101475A JPS58101475A (en) 1983-06-16
JPH0230191B2 true JPH0230191B2 (en) 1990-07-04

Family

ID=16424831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200469A Granted JPS58101475A (en) 1981-12-11 1981-12-11 Semiconductor photocoupler

Country Status (1)

Country Link
JP (1) JPS58101475A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121764U (en) * 1985-01-14 1986-07-31
JPS6455910U (en) * 1987-09-30 1989-04-06
JP3638328B2 (en) * 1994-12-30 2005-04-13 株式会社シチズン電子 Surface mount type photocoupler and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985993A (en) * 1972-12-20 1974-08-17
JPS5382187A (en) * 1976-12-27 1978-07-20 Nec Corp Photo coupler element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985993A (en) * 1972-12-20 1974-08-17
JPS5382187A (en) * 1976-12-27 1978-07-20 Nec Corp Photo coupler element

Also Published As

Publication number Publication date
JPS58101475A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
EP0081827B1 (en) Semiconductor optical logic device
US5133809A (en) Photovoltaic device and process for manufacturing the same
EP0113434B2 (en) Photovoltaic device
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US5034068A (en) Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
CN101366125B (en) Thin-film solar cell and fabrication method thereof
JP2000068548A (en) Photovoltaic cell and manufacture thereof
JPH0290573A (en) Monolithic solar battery and bypass diode system
JP3469729B2 (en) Solar cell element
CN107318269B (en) Solar cell, method for manufacturing same, solar cell module, and wiring board
JPH0230191B2 (en)
KR101135590B1 (en) Solar cell and method for manufacturing the same
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
KR102084854B1 (en) solar cell string and manufacturing method thereof
JPH0230192B2 (en)
KR102371947B1 (en) CELL DIVISION/INTERCONNECTION STRUCTURE SOLAR MODULE USING ELECTRODE PATTERN WITH LESS Ag
JPS58196060A (en) Thin film semiconductor device
JP2004186443A (en) Solar cell with translucent thin film and module thereof
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP2771655B2 (en) Solar cell manufacturing method
JPS58118142A (en) Semicondutor device
JPS58170082A (en) Photocoupler
KR920005040Y1 (en) Amorphous silicon solar cell structure
JPH0831610B2 (en) Photovoltaic device manufacturing method
JP2771653B2 (en) Method for manufacturing photovoltaic device