JPH0831610B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method

Info

Publication number
JPH0831610B2
JPH0831610B2 JP62026721A JP2672187A JPH0831610B2 JP H0831610 B2 JPH0831610 B2 JP H0831610B2 JP 62026721 A JP62026721 A JP 62026721A JP 2672187 A JP2672187 A JP 2672187A JP H0831610 B2 JPH0831610 B2 JP H0831610B2
Authority
JP
Japan
Prior art keywords
electrode film
photoelectric conversion
film
electrode
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62026721A
Other languages
Japanese (ja)
Other versions
JPS63194370A (en
Inventor
浩 井上
靖雄 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP62026721A priority Critical patent/JPH0831610B2/en
Publication of JPS63194370A publication Critical patent/JPS63194370A/en
Publication of JPH0831610B2 publication Critical patent/JPH0831610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は入射光の一部を透過せしめる光起電力装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device that allows a part of incident light to pass therethrough.

(ロ) 従来の技術 光エネルギーを電気エネルギーに変換する光起電力装
置、所謂太陽電池にあって、アモルファスシリコンを主
体としたアモルファス太陽電池は大面積化が容易なこ
と、低コスト化が可能なことなどの特徴を持つことか
ら、将来の電力用太陽電池として非常に有望視されてい
る。現在は、民生用機器への応用の延長として独立電源
への使用が試みられているが、その中で自動車用の電源
又バッテリーの充電用への応用が行われ始めている(特
開昭58-50782号公報、及び/又は特開昭58-52884号公報
参照)。このように自動車用として太陽電池を使用する
場合には車体の窓ガラスやサンルーフに太陽電池を取付
けるのが通常であるが、この方法によれば窓やサンルー
フは不透明となり、視界が悪く運転に支障をきたす恐れ
もある。したがってこのような欠点をなくすために太陽
電池に、数多くの穴を穿ったシースルー型の太陽電池が
本願出願人により考案され、実願昭61-87352号として出
願されている。
(B) Conventional technology In a photovoltaic device that converts light energy into electric energy, a so-called solar cell, an amorphous solar cell mainly composed of amorphous silicon can easily have a large area and can be manufactured at low cost. Because of its characteristics, it is very promising as a solar cell for electric power in the future. At present, it is attempted to be used as an independent power source as an extension of the application to consumer equipment, and among them, application to a power source for automobiles or charging a battery is beginning to be performed (Japanese Patent Laid-Open No. 58-58-58). 50782 and / or JP 58-52884). When using solar cells for automobiles like this, it is usual to install them on the window glass of the vehicle body or the sunroof.However, this method makes the windows and sunroof opaque, which reduces visibility and hinders driving. There is also a risk of causing Therefore, in order to eliminate such a defect, a see-through type solar cell in which a large number of holes are bored in the solar cell has been devised by the applicant of the present application and is filed as Japanese Patent Application No. 61-87352.

(ハ) 発明が解決しようとする問題点 本発明は斯るシースルー型の光起電力装置を、従来の
光起電力装置と比較して大幅な製造工程数を増加を招く
ことなく製造する方法を提供するものである。
(C) Problems to be Solved by the Invention The present invention provides a method for manufacturing such a see-through type photovoltaic device without significantly increasing the number of manufacturing steps as compared with a conventional photovoltaic device. It is provided.

(ニ) 問題点を解決するための手段 本発明製造方法は上記問題点を解決すべく、透光性基
板の絶縁表面の複数の光電変換領域毎に分割配置された
透光性第1電極膜を含んで前記基板の絶縁表面に半導体
膜を配置する工程と、この半導体膜を複数の光電変換領
域毎に分割することなく当該半導体膜上に第2電極膜を
形成する工程と、前記第1電極膜の隣接間隔部の近傍に
於いて前記半導体膜と第2電極膜の積層体に第2電極膜
側からエッチングを施し、少なくとも前記第2電極膜を
複数の光電変換領域毎に分割すると同時に、光電変換領
域に於ける積層体に分散して少なくとも小面積な第2電
極膜部分を除去する工程と、複数の光電変換領域毎に分
割された第1電極膜と第2電極膜の内、隣接光電変換領
域の光電変換出力が互いに相加されるべく隣接する電極
膜同士を電気的に結合する工程と、を含むことを特徴と
する。
(D) Means for Solving the Problems In order to solve the above problems, the manufacturing method of the present invention has a transparent first electrode film divided and arranged for each of a plurality of photoelectric conversion regions on the insulating surface of the transparent substrate. A step of disposing a semiconductor film on the insulating surface of the substrate including the step of forming a second electrode film on the semiconductor film without dividing the semiconductor film into a plurality of photoelectric conversion regions; At least the second electrode film is divided into a plurality of photoelectric conversion regions by etching the stacked body of the semiconductor film and the second electrode film from the side of the second electrode film in the vicinity of the adjacent space between the electrode films. A step of removing at least a small area of the second electrode film portion dispersed in the stacked body in the photoelectric conversion region, and a step of dividing the plurality of photoelectric conversion regions into the first electrode film and the second electrode film, Photoelectric conversion outputs of adjacent photoelectric conversion areas are added together A step of electrically coupling the electrode film to each other to Ku adjacent, characterized in that it comprises a.

(ホ) 作用 上述の如く、半導体膜と第2電極膜の積層体に第2電
極膜側からエッチングを施し、少なくとも第2電極膜を
複数の光電変換領域毎に分割すると同時に、光電変換領
域に於ける積層体に分散して少なくとも小面積な第2電
極膜部分を除去することによって、第2電極膜の分割工
程で入射光の一部を透過せしめる透孔が形成される。
(E) Action As described above, the stacked body of the semiconductor film and the second electrode film is etched from the second electrode film side, and at least the second electrode film is divided into a plurality of photoelectric conversion regions, and at the same time, the photoelectric conversion region is formed. By removing at least a small area of the second electrode film portion dispersed in the laminated body in the laminated body, a through hole for transmitting a part of incident light is formed in the step of dividing the second electrode film.

(ヘ) 実施例 以下第1図乃至第7図を参照して、本発明光起電力装
置の一実施例につき各工程別に詳述する。
(F) Embodiment An embodiment of the photovoltaic device of the present invention will be described in detail for each step with reference to FIGS. 1 to 7.

第1図の工程では、厚さ1mm〜5mm、面積10cm×10cm〜
50cm×50cm程度の透明なガラス等の絶縁材料からなる基
板(1)上全面に、厚さ約2000Å〜5000Åの酸化錫(Sn
O2)、酸化インジウム錫(ITO)に代表される透光性導
電酸化物(TCO)の単層型或いはそれらの積層型の透明
電極膜が被着された後、隣接間隔部(ab)(bc)がレー
ザビーム(LB)の照射により除去されて、個別の受光面
電極としての第2電極膜(2a)(2b)(2c)…が分離形
成される。使用されるレーザ装置は基板(1)にほとん
ど吸収されることのない波長が適当であり、上記ガラス
に対しては0.35μm〜2.5μmの波長のパルス出力型が
好ましい。斯る好適な実施例は、波長約1.06μmエネル
ギ密度13J/cm2、パルス繰返し周波数3KHzのQスイッチ
付きNd:YAGレーザであり、隣接間隔部(ab)の間隔は約
50〜100μmに設定される。
In the process shown in Fig. 1, the thickness is 1 mm to 5 mm and the area is 10 cm x 10 cm.
Approximately 2000Å ~ 5000Å of tin oxide (Sn
O 2 ), a transparent conductive oxide (TCO) single layer type typified by indium tin oxide (ITO) or a laminated type transparent electrode film thereof is applied, and then the adjacent space (ab) (ab) ( bc) is removed by laser beam (LB) irradiation, and the second electrode films (2a) (2b) (2c) ... As individual light-receiving surface electrodes are formed separately. The laser device used is suitable for a wavelength that is hardly absorbed by the substrate (1), and a pulse output type having a wavelength of 0.35 μm to 2.5 μm is preferable for the above glass. Such a preferred embodiment is a Qd-switched Nd: YAG laser having a wavelength of about 1.06 μm, an energy density of 13 J / cm 2 , and a pulse repetition frequency of 3 KHz, and the interval between adjacent intervals (ab) is about
It is set to 50-100 μm.

第2図の工程では、先の工程で分割配置された第1電
極膜(2a)(2b)(2c)…の一方の隣接間隔部(ab)
(bc)…の近傍に偏って導電部材(3ab)(3bc)…が帯
状に形成される。例えば上記導電部材(3ab)(3bc)…
は銀(Ag)ペーストやその他の金属ペーストをスクリー
ン印刷手法により高さ約10〜20μm、幅約100〜150μm
にパターニングされた後、約550℃の温度にて焼成され
る。
In the step shown in FIG. 2, one of the adjacent electrode portions (ab) of the first electrode films (2a) (2b) (2c) ... Divided and arranged in the previous step.
Conductive members (3ab) (3bc) are formed in a strip shape in the vicinity of (bc). For example, the conductive member (3ab) (3bc) ...
Is a silver (Ag) paste or other metal paste that is screen printed with a height of about 10 to 20 μm and a width of about 100 to 150 μm.
After being patterned, the film is baked at a temperature of about 550 ° C.

第3図の工程では、各第1電極膜(2a)(2b)(2c)
…及び上記導電部材(3ab)(3bc)…の表面を含んで基
板(1)上のほぼ全面に光電変換に有効に寄与する厚さ
4000Å〜7000Åの非晶質シリコン(a−Si)等の非晶質
半導体膜(4)がモノシラン(SiH4)、ジシラン(Si2
6)、四弗化シリコン(SiF4)、モノフロロシラン(S
iH3F)等のシリコン化合物ガスを主ガスとし適宜価電
子制御用のシボラン(B26)、ホスフィン(PH3)の
ドーピングガスが添加された反応ガス中でのプラズマCV
D法や光CVD法により形成される。斯る半導体膜(4)は
上記B26やPH3の添加によりその内部に膜面に平行なp
in接合を含み、従ってより具体的には、上記シリコン化
合物ガスにB26、更にはメタン(CH4)、エタン(C2
6)等の水素化炭素ガスの添加によりプラズマCVD法や
光CVD法によりp型の非晶質シリコンカーバイド(a−S
iC)が被着され、次いでi型(ノンドープ)のa−Si及
びn型のa−Si或いは微結晶シリコン(μc−Si)が順
次積層被着される。
In the process of FIG. 3, each of the first electrode films (2a) (2b) (2c)
... and the thickness of the conductive member (3ab) (3bc), including the surfaces of the conductive member (3ab) (3bc) ...
The amorphous semiconductor film (4) such as 4000 Å to 7000 Å of amorphous silicon (a-Si) is monosilane (SiH 4 ), disilane (Si 2
H 6 ), silicon tetrafluoride (SiF 4 ), monofluorosilane (S
Plasma CV in a reaction gas in which a silicon compound gas such as iH 3 F) is used as a main gas and a doping gas such as silane (B 2 H 6 ) or phosphine (PH 3 ) for controlling valence electrons is appropriately added.
It is formed by the D method or the optical CVD method. Such a semiconductor film (4) has a p-parallel surface parallel to the film surface due to the addition of B 2 H 6 or PH 3 described above.
In-junction, and therefore, more specifically, B 2 H 6 , further methane (CH 4 ), ethane (C 2
H 6 ) or other hydrogenated carbon gas is added to p-type amorphous silicon carbide (a-S) by plasma CVD or photo-CVD.
iC) is deposited, and then i-type (non-doped) a-Si and n-type a-Si or microcrystalline silicon (μc-Si) is sequentially deposited.

尚、半導体光活性層として動作する半導体は上記a−
Si系の半導体に限らず硫化カドミウム(CdS)、テルル
化カドミウム(CdTe)、セレン(Se)等の膜状半導体で
あっても良いが、工業的には上記a−Si、a−SiC、更
には非晶質シリコンゲルマニウム(a−SiGe)、非晶質
シリコン錫(a−SiSn)等に代表されるa−Si系半導体
が好ましい。
The semiconductor that operates as the semiconductor photoactive layer is a-
Not limited to Si-based semiconductors, film-shaped semiconductors such as cadmium sulfide (CdS), cadmium telluride (CdTe), and selenium (Se) may be used, but industrially, a-Si, a-SiC, and Is preferably an a-Si semiconductor represented by amorphous silicon germanium (a-SiGe) or amorphous silicon tin (a-SiSn).

第4図の工程では、半導体膜(4)及び透明電極膜
(2a)(2b)(2c)…の各露出部分を含んで基板(1)
上全面に1000Å〜4000Å程度の厚さのアルミニウム単層
構造、或いは該アルミニウムにチタン(Ti)又はチタン
銀合金(TiAg)を積層した二層構造、更には斯る金属の
単層或いは二層構造と半導体膜(4)との界面にTCOを
配挿した二層或いは三層構造の裏面電極としての第2電
極膜(5)が被着される。この工程により、半導体膜
(4)が形成された直後、この半導体膜(4)を分割す
ることなくその全面に第2電極膜(5)が被着されるた
め、該半導体膜(5)面上にほこりが付着すること、ス
クライブ時の飛散物の再付着することによるシート抵抗
の増大を防ぐことができ、さらに半導体膜(4)の酸化
空気中の湿気などによる膜特性の劣化を防ぐことができ
る。
In the step shown in FIG. 4, the substrate (1) including the exposed portions of the semiconductor film (4) and the transparent electrode films (2a) (2b) (2c) ...
An aluminum single layer structure having a thickness of about 1000Å to 4000Å on the entire upper surface, or a two-layer structure in which titanium (Ti) or a titanium-silver alloy (TiAg) is laminated on the aluminum, and a single-layer or two-layer structure of such metal A second electrode film (5) as a back electrode having a two-layer or three-layer structure in which TCO is inserted is applied to the interface between the semiconductor film (4) and the semiconductor film (4). By this step, immediately after the semiconductor film (4) is formed, the second electrode film (5) is deposited on the entire surface of the semiconductor film (4) without dividing the semiconductor film (4). It is possible to prevent dust from adhering to the top and increase in sheet resistance due to redeposition of scattered matter during scribing, and further to prevent deterioration of film characteristics due to moisture in the oxidizing air of the semiconductor film (4). You can

第5図の工程では、第2電極膜(5)上に、当該第2
電極膜(5)及び下層の半導体体膜(4)に対する次工
程のエッチングによるパターニングの際、マスクとして
作用するフォトレジスト(6)が露光、現像処理等を経
て配置される。斯るフォトレジスト(6)のパターンに
おいて注目すべきは、前記半導体膜(4)及び第2電極
膜(5)の積層体を複数の光電変換領域毎に分割するた
めに、隣接間隔部(ab)(bc)…の一方に偏って第1電
極膜(2b)(2c)…上に設けられた導電部材(3ab)(3
bc)…近傍に形成された分割溝(7ab)(7bc)…のみな
らず、多数の小面積な透孔を穿つべく直径0.1〜数mmの
円形の開孔(8)(8)…が分散して設けられていると
ころである。
In the step of FIG. 5, the second electrode film (5) is formed on the second electrode film (5).
At the time of patterning the electrode film (5) and the lower semiconductor film (4) by etching in the next step, a photoresist (6) which acts as a mask is arranged through exposure, development and the like. In the pattern of the photoresist (6), it should be noted that in order to divide the stacked body of the semiconductor film (4) and the second electrode film (5) into a plurality of photoelectric conversion regions, adjacent space portions (ab ) (Bc) ... biased to one side and the conductive members (3ab) (3b) provided on the first electrode films (2b) (2c).
bc) ... Not only the dividing grooves (7ab) (7bc) formed in the vicinity, but also the circular openings (8) (8) ... with a diameter of 0.1 to several mm to form a large number of small area through holes. This is where it is provided.

第6図の工程では、前記フォトレジスト(6)に覆わ
れることなく上記分割溝(7ab)(7bc)…及び開孔
(8)(8)…から露出した第2電極膜(5)に対し、
エッチングが施され、次いで露出状態となった半導体膜
(4)に対してもエッチングが施される。例えば上記第
2電極膜(5)がアルミニウムからなる場合、リン酸を
用いたウェットエッチングが行なわれ、a−Si系の半導
体膜(4)にはCF4によるプラズマエッチングが施され
る。斯る両エッチングの結果、半導体膜(4)及び第2
電極膜(5)は各光電変換領域毎に(4a)(4b)(4c)
…及び(5a)(5b)(5c)…として分割されると同時
に、多数の小面積な透孔(9)(9)(9)…が分散し
て穿たれる。
In the step of FIG. 6, the second electrode film (5) exposed from the dividing grooves (7ab) (7bc) and the openings (8) (8) ... without being covered with the photoresist (6) is used. ,
Etching is performed, and then the exposed semiconductor film (4) is also etched. For example, when the second electrode film (5) is made of aluminum, wet etching using phosphoric acid is performed, and the a-Si based semiconductor film (4) is subjected to plasma etching with CF 4 . As a result of both the etchings, the semiconductor film (4) and the second
The electrode film (5) is (4a) (4b) (4c) for each photoelectric conversion area.
, And (5a), (5b), (5c), ... At the same time, a large number of small-area through holes (9), (9), (9), ... Are distributed and punched.

第7図の最終工程では、導電部材(3ab)(3bc)…の
表面上に位置する非晶質半導体膜(5)及び第2電極膜
(6)の積層体部分にこの積層体部分の表面側から例え
ば波長1.06μmQスイッチ付Nd:YAGレーザ装置によるパル
ス出力型のレーザビーム(LB)が照射される。斯る導電
部材(3ab)(3bc)…上の積層体部分に照射されるレー
ザビーム(LB)は、当該照射領域の積層体部分を溶融す
るに足りるエネルギ密度を備えることによって、上記積
層体を溶融し、その溶融により発生した溶融物、即ちシ
リサイド合金は周囲の非晶質半導体膜(5)を貫通した
形でその直下に位置する導電部材(3ab)(3bc)…と当
接する。この導電部材(3ab)(3bc)…はAgペーストや
その他の金属ペーストを焼結せしめた金属であるために
下層の第1電極膜(2b)(2c)…よりも金属を含む溶融
物との接着性が強く、また厚み(高さ)も十分に大きい
(高い)のでレーザビーム(LB)によるダメージを被る
こともなくなる。
In the final step of FIG. 7, in the laminated body portion of the amorphous semiconductor film (5) and the second electrode film (6) located on the surface of the conductive member (3ab) (3bc) ... From the side, for example, a pulse output laser beam (LB) by a Nd: YAG laser device with a wavelength of 1.06 μm Q switch is irradiated. The laser beam (LB) irradiated to the laminated body portion on the conductive members (3ab) (3bc) ... Has an energy density sufficient to melt the laminated body portion in the irradiation region, and thus the laminated body is formed. The melted material generated by the melting, that is, the silicide alloy, comes into contact with the conductive members (3ab) (3bc) located immediately thereunder while penetrating the surrounding amorphous semiconductor film (5). Since the conductive members (3ab) (3bc) are made of a sintered metal of Ag paste or other metal paste, the conductive material (3ab) (3bc) ... The adhesiveness is strong and the thickness (height) is sufficiently large (high) so that it will not be damaged by the laser beam (LB).

この様にして、第2電極膜(5a)(5b)…と第1電極
膜(2b)(2c)…との電気的接続工程が施される。その
結果、相隣り合う光電変換領域(10a)(10b)(10c)
…の第2電極膜(5a)(5b)…と第1電極膜(2b)(2
c)…は分離溝(11ab)(11bc)…より第2電極膜(5
a)(5b)(5c)…の隣接間隔部(ab)(bc)…に近い
側に於いて結合し、上記光電変換領域(10a)(10b)
(10c)…は導電部材(3ab)(3bc)…を介して電気的
に直列接続され、それらの光電変換出力は互いに相加さ
れる。
In this way, the step of electrically connecting the second electrode films (5a) (5b) ... And the first electrode films (2b) (2c). As a result, the adjacent photoelectric conversion regions (10a) (10b) (10c)
Second electrode films (5a) (5b) ... and first electrode films (2b) (2
c) is the second electrode film (5) from the separation groove (11ab) (11bc).
a) (5b) (5c) ... Bonded on the side close to the adjacent spacing (ab) (bc) ..., and the photoelectric conversion regions (10a) (10b)
(10c) are electrically connected in series via the conductive members (3ab), (3bc), and their photoelectric conversion outputs are added to each other.

第8図は、前記第1図乃至第7図の製造工程を経て製
造された光起電力装置の一部分を光入射方向とは逆の背
面側から臨んだ斜視図である。このように、各光電変換
領域(10b)(10c)…には入射光の一部を透過するため
の多数の透孔(9)(9)…が分散して穿たれている。
斯る実施例にあっては、前記多数の透孔(9)(9)…
は第2電極(5b)(5c)…のみならず半導体膜(4b)
(4c)…にも達しているので、これら透孔(9)(9)
…を透過して背面に到達する入射光の一部は着色のない
自然光となる。
FIG. 8 is a perspective view of a part of the photovoltaic device manufactured through the manufacturing process of FIGS. 1 to 7 as viewed from the back side opposite to the light incident direction. As described above, a large number of through holes (9) (9) for transmitting a part of incident light are perforated in each photoelectric conversion region (10b) (10c).
In such an embodiment, the large number of through holes (9) (9) ...
Is not only the second electrode (5b) (5c) ... but also the semiconductor film (4b)
(4c) ..., so these through holes (9) (9)
Part of the incident light that passes through the light and reaches the back surface is natural light without coloring.

尚、上記実施例の如く透孔(9)(9)…が半導体膜
(4b)(4c)…中にも達すると、該透孔(9)(9)…
部分は発電に寄与することのない発電無効部となり、出
力低下が著しい場合には、第6図のエッチング工程にお
いて、第2電極膜(5)にのみエッチングを施し、半導
体膜(4)に対する透孔(9)(9)…の形成を中止し
ても良い。
When the through holes (9) (9) ... Also reach the inside of the semiconductor films (4b) (4c) ... as in the above embodiment, the through holes (9) (9).
The portion becomes a power generation ineffective portion that does not contribute to power generation, and when the output is significantly reduced, only the second electrode film (5) is etched in the etching process of FIG. The formation of the holes (9) (9) may be stopped.

(ト) 発明の効果 本発明製造方法は以上の説明から明らかな如く、第2
電極膜を複数の光電変換領域毎に分割するためのエッチ
ングを利用して同時に入射光の一部を透過せしめる透孔
が形成されるので、透孔を形成すべき専用の工程を経る
ことなくシースルー型の光起電力装置を製造することが
できる。
(G) Effect of the Invention As is clear from the above description, the production method of the present invention is the second method.
A through-hole is formed to simultaneously transmit a part of the incident light by using the etching for dividing the electrode film into multiple photoelectric conversion regions, so see-through is not required through a dedicated process for forming the through-hole. A type of photovoltaic device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第7図は本発明製造方法の一実施例を工程別
に示す断面図、第8図は本発明製造方法により製造され
た光起電力装置を背面方向から臨んだ斜視図、を夫々示
している。 (1)……基板、(2a)(2b)(2c)……第1電極膜、
(4)(4a)(4b)(4c)……半導体膜、(5)(5a)
(5b)(5c)……第2電極膜、(6)……フォトレジス
ト、(9)……透孔、(10a)(10b)(10c)……光電
変換領域。
1 to 7 are cross-sectional views showing an embodiment of the manufacturing method of the present invention for each step, and FIG. 8 is a perspective view of a photovoltaic device manufactured by the manufacturing method of the present invention as viewed from the rear side. Shows. (1) ... substrate, (2a) (2b) (2c) ... first electrode film,
(4) (4a) (4b) (4c) ... semiconductor film, (5) (5a)
(5b) (5c) ... second electrode film, (6) ... photoresist, (9) ... through hole, (10a) (10b) (10c) ... photoelectric conversion region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透光性基板の絶縁表面の複数の光電変換領
域毎に分割配置された透光性第1電極膜を含んで前記基
板の絶縁表面に半導体膜を配置する工程と、この半導体
膜を複数の光電変換領域毎に分割することなく当該半導
体膜上に第2電極膜を形成する工程と、前記第1電極膜
の隣接間隔部の近傍に於いて前記半導体膜と第2電極膜
の積層体に第2電極膜側からエッチングを施し、少なく
とも前記第2電極膜を複数の光電変換領域毎に分割する
と同時に、光電変換領域に於ける積層体に分散して少な
くとも小面積な第2電極膜部分を除去する工程と、複数
の光電変換領域毎に分割された第1電極膜と第2電極膜
の内、隣接光電変換領域の光電変換出力が互いに相加さ
れるべく隣接する電極膜同士を電気的に結合する工程
と、を含むことを特徴とした光起電力装置の製造方法。
1. A step of disposing a semiconductor film on an insulating surface of a substrate including a transparent first electrode film divided and arranged for each of a plurality of photoelectric conversion regions on an insulating surface of the transparent substrate, and the semiconductor. A step of forming a second electrode film on the semiconductor film without dividing the film into a plurality of photoelectric conversion regions, and the semiconductor film and the second electrode film in the vicinity of a space adjacent to the first electrode film. Is subjected to etching from the side of the second electrode film, at least the second electrode film is divided into a plurality of photoelectric conversion regions, and at the same time, the second electrode film is dispersed in the photoelectric conversion region to form a laminate having at least a small area. The step of removing the electrode film portion, and the adjacent electrode film so that the photoelectric conversion outputs of the adjacent photoelectric conversion regions among the first electrode film and the second electrode film divided for each of the plurality of photoelectric conversion regions are added to each other. And a step of electrically coupling the two with each other. Method of manufacturing and the photovoltaic device.
JP62026721A 1987-02-06 1987-02-06 Photovoltaic device manufacturing method Expired - Lifetime JPH0831610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026721A JPH0831610B2 (en) 1987-02-06 1987-02-06 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026721A JPH0831610B2 (en) 1987-02-06 1987-02-06 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPS63194370A JPS63194370A (en) 1988-08-11
JPH0831610B2 true JPH0831610B2 (en) 1996-03-27

Family

ID=12201199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026721A Expired - Lifetime JPH0831610B2 (en) 1987-02-06 1987-02-06 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JPH0831610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011525A1 (en) * 2004-07-28 2006-02-02 Sharp Kabushiki Kaisha Light-emitting module and light-emitting system
JP2007073745A (en) * 2005-09-07 2007-03-22 Sharp Corp Integrated thin film solar cell and its manufacturing method

Also Published As

Publication number Publication date
JPS63194370A (en) 1988-08-11

Similar Documents

Publication Publication Date Title
EP0422511B1 (en) Photovoltaic device and process for manufacturing the same
US4726849A (en) Photovoltaic device and a method of manufacturing thereof
US20060112987A1 (en) Transparent thin-film solar cell module and its manufacturing method
WO2011115206A1 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
US4808242A (en) Photovoltaic device and a method of manufacturing thereof
JPH0695577B2 (en) Photovoltaic device manufacturing method
JP2008294080A (en) Solar cell and manufacturing method of same
JP2986875B2 (en) Integrated solar cell
KR100999797B1 (en) Solar cell and method of fabricating the same
JP2005277113A (en) Stacked solar cell module
JPH0851229A (en) Integrated solar battery and its manufacture
JP3721620B2 (en) Parallel integrated solar cell
JP2798774B2 (en) Optical sensor and manufacturing method thereof
JPH05251723A (en) Integrated solar battery module
JPH0831610B2 (en) Photovoltaic device manufacturing method
JPH0455352B2 (en)
JPS62242371A (en) Manufacture of photovoltaic device
JPS6213829B2 (en)
JPH0758351A (en) Manufacture of thin film solar cell
JP2000049371A (en) Photovoltaic device and its manufacture
JP4201457B2 (en) Manufacturing method of integrated photovoltaic device
JP2808005B2 (en) Manufacturing method of amorphous solar cell
KR20090069416A (en) Thin film type solar cell and method for manufacturing the same
JP2014135319A (en) Solar battery and solar battery module
JP2004260013A (en) Photoelectric converter and its manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term