JPS59114851A - Diode of high withstand voltage - Google Patents

Diode of high withstand voltage

Info

Publication number
JPS59114851A
JPS59114851A JP57224715A JP22471582A JPS59114851A JP S59114851 A JPS59114851 A JP S59114851A JP 57224715 A JP57224715 A JP 57224715A JP 22471582 A JP22471582 A JP 22471582A JP S59114851 A JPS59114851 A JP S59114851A
Authority
JP
Japan
Prior art keywords
semiconductor
diode
pellets
center
semiconductor pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224715A
Other languages
Japanese (ja)
Inventor
Masayuki Toshima
戸嶋 正征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57224715A priority Critical patent/JPS59114851A/en
Publication of JPS59114851A publication Critical patent/JPS59114851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To make uniform the reverse directional recovery time and thus obtain a diode of a high speed and high withstand voltage which can perform stable high frequency action by a method wherein the forward directional voltage drop of a semiconductor pellet at the center of a laminated body is made lower than those of semiconductor pellets at both ends of this laminated body. CONSTITUTION:A plurality of semiconductor pellets 11-15 wherein the reverse directional recovery time is controlled short for speed-up are laminated by means of solder 2 in order to obtain a high withstand voltage, and further soldered to external lead-out electrodes 3. At this time, the forward directional voltage drop VF11-VF15 of each semiconductor pellet 11-15 is in the relation of VF11>VF12> VF13>VF14>VF15, and the pellets are connected in series. In the case of forward directional conduction, a difference generates to heat generation, the relation that the heat generation is small at the center and heat dissipation is small at the center holds, and accordingly the junction temperature of each semiconductor pellet increases uniformly.

Description

【発明の詳細な説明】 (IJ  発明の属する分野 不発明は高速にして高耐圧なダイオードに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The invention relates to a high-speed, high-voltage diode.

(2)従来の技術の説明 従来のこの種ダイオードは、第1図にその断面構造を示
すように、高速化のために逆方向回復時間が短かくコン
トロールされた半導体ベレッ)1が半田2により高耐圧
を得るために複数個積層されさらに外部引出電極3に半
田付けされている。4は表面安定化機械的強度保持のた
めのガラスである。この様に製作され次ダイオードは次
の欠点を有する。即ちこのダイオードに通電した場合、
各半導体ペレットは通電電流と順方向電圧降下の積に依
存した発熱と抵抗による放熱の差分だけ昇温する。ここ
でこの昇温について詳細に分析してみると、まず発熱は
各半導体ペレットの順方向電圧降下(V’f!’)がほ
ぼ同一であれば、各半導体ペレットについて同一となる
。次に放熱即ち熱抵抗についてみてみると両端部の半導
体ペレットi片面に比較的放熱性のよい金属の外部引出
し電極3が接続されているが中央部の半導体ベレットh
両面に半導体ペレットを介して外部引出し電極3が接続
されているために、熱抵抗としては直列接続では両端部
小さく中央部大きくなる。さらに中央部ペレットは両面
に半導体ペレットが接続され、しかもその半導体ペレッ
トそのものが発熱源となっているためこの分でも放熱し
にくくなり、熱抵抗が大きくなっている。かくして通電
時の各半導体ペレットの接合温度をみると中央部に高く
両端部は低いという温度勾配を持っている。
(2) Description of conventional technology As shown in the cross-sectional structure of this type of diode in Figure 1, the conventional diode is a semiconductor diode whose reverse recovery time is controlled to be short in order to increase speed. In order to obtain a high withstand voltage, a plurality of them are stacked and further soldered to the external lead electrode 3. 4 is glass for surface stabilization and maintenance of mechanical strength. A diode manufactured in this way has the following drawbacks. In other words, when this diode is energized,
Each semiconductor pellet is heated by the difference between the heat generated depending on the product of the applied current and the forward voltage drop and the heat dissipated by the resistance. Here, if we analyze this temperature increase in detail, first, the heat generation will be the same for each semiconductor pellet if the forward voltage drop (V'f!') of each semiconductor pellet is approximately the same. Next, looking at heat dissipation, that is, thermal resistance, the semiconductor pellet i at both ends has an external lead electrode 3 made of metal that has relatively good heat dissipation properties connected to one side, and the semiconductor pellet h at the center.
Since the external lead electrodes 3 are connected to both sides via semiconductor pellets, the thermal resistance is small at both ends and large at the center when connected in series. Furthermore, semiconductor pellets are connected to both sides of the central pellet, and the semiconductor pellet itself is a heat source, making it difficult to dissipate heat and increasing thermal resistance. Thus, when looking at the junction temperature of each semiconductor pellet when energized, there is a temperature gradient where it is high in the center and low at both ends.

−万、高周波使用時VCハダイオードの転流特駐即ち逆
方向回復時間が短かい方が良い。この逆方向回復時間は
、半導体ペレットの接合温度に依存し接合温度が高くな
ると長くなる。
- When using a high frequency, it is better for the VC diode to have a shorter commutation specific time, that is, a shorter reverse recovery time. This reverse recovery time depends on the bonding temperature of the semiconductor pellet, and increases as the bonding temperature increases.

以上により、従来のダイオードを高周波電源等に使用し
た場合、直列積層した中央部半導体ペレットの接合温度
が上昇し逆方向回復時間が長くなり、転流時の逆バイア
スが中央部ペレットのみに印加し過電圧破壊を起し転流
失敗するという欠点があった。
As a result, when conventional diodes are used in high-frequency power supplies, etc., the junction temperature of the central semiconductor pellets stacked in series increases, the reverse recovery time becomes longer, and the reverse bias during commutation is applied only to the central pellets. This had the disadvantage of causing overvoltage breakdown and commutation failure.

(3)  発明の目的 本発明はかかる従来構造の欠点を除去するために積層す
る半導体ペレットの順方向電圧降下(VF)を規定した
ものである。
(3) Object of the Invention The present invention defines the forward voltage drop (VF) of stacked semiconductor pellets in order to eliminate the drawbacks of the conventional structure.

(4)  発明の特徴 本発明の特徴に、複数個の半導体ペレットを直列に積層
した高耐圧ダイオードにおいて、積層体の中央部分の半
導体ペレットの順方向電圧降下は、この積層体の両端部
分の半導体ペレットの順方向電圧降下より低い高耐圧ダ
イオードにある。
(4) Features of the Invention A feature of the present invention is that in a high-voltage diode in which a plurality of semiconductor pellets are stacked in series, the forward voltage drop of the semiconductor pellets in the center of the stack is lower than that of the semiconductor pellets at both ends of the stack. It is a high voltage diode that has a lower forward voltage drop than the pellet's forward voltage drop.

(5)笑顔例 以下図面について詳細に説明する。第2図は本発明の笑
顔例であって高速化のために逆方向回復時間が短かくコ
ントロールされた半導体ペレット11,12,13,1
4.15が半田2によp高耐圧を得るために複数個積層
されさらに外部引出電極3Vc半田付されている。この
時。
(5) Smile example The drawings will be explained in detail below. FIG. 2 shows a smiling example of the present invention, in which semiconductor pellets 11, 12, 13, 1 are controlled to have a short reverse recovery time to increase speed.
4.15 is laminated with the solder 2 in order to obtain a high withstand voltage, and is further soldered to the external lead electrode 3Vc. At this time.

各半導体ペレット11.  l 2. 13. 14.
15の各々の順方向電圧降下VFII 、 VP12 
、 VF13 、 VP14  VF15はVPII>
 VF12> VF13 <VF14 <VF15の関
係になって直列接続されている。4に表面安定化9機械
的強度保持のためのガラスである。
Each semiconductor pellet 11. l 2. 13. 14.
15, each of the forward voltage drops VFII, VP12
, VF13, VP14 VF15 is VPII>
They are connected in series with the following relationship: VF12>VF13<VF14<VF15. 4. Surface stabilization 9. Glass for maintaining mechanical strength.

この様に製作されたダイオードに順方向通電した場合、
各半導体ペレットの放熱は従来構造と変らないが発熱に
差が発生し発熱は中央部で小、放熱も中央部で小の関係
が成立し結果的には、各半導体ペレットの接合温度は均
一に上昇する。
When a diode made in this way is energized in the forward direction,
The heat dissipation of each semiconductor pellet is the same as the conventional structure, but there is a difference in heat generation, and a relationship is established in which the heat generation is small in the center and the heat dissipation is also small in the center, and as a result, the bonding temperature of each semiconductor pellet is uniform. Rise.

(6)効果の説明 以上説明した様に1通電した場合の各半導体ペレットの
温度上昇が均一になるために、高周波動作をさせた場合
でも各半導体ペレットの逆方向回復時間も均一になシ転
流時の逆バイアスが単一半導体ペレットに集中すること
なく安定した高周波動作が可能な高速−高耐圧ダイオー
ドが提供される。
(6) Explanation of Effects As explained above, since the temperature rise of each semiconductor pellet is uniform when one current is applied, the reverse recovery time of each semiconductor pellet is also uniform even when high frequency operation is performed. A high-speed, high-voltage diode capable of stable high-frequency operation without concentrating reverse bias on a single semiconductor pellet during flow is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の断面図、第2図は不発m装
置の一英施例の断面図、である。 なお図において、  1. 11. 12. 13. 
14゜15・・・・・・半導体ペレット、2・・・半田
、3・・・外部引出し電極、4・・・ガラス、である。
FIG. 1 is a sectional view of a conventional semiconductor device, and FIG. 2 is a sectional view of an example of a non-explosion device. In the figure, 1. 11. 12. 13.
14°15...Semiconductor pellet, 2...Solder, 3...External extraction electrode, 4...Glass.

Claims (1)

【特許請求の範囲】[Claims] 複数個の半導体ペレットを直列に積層した高耐圧ダイオ
ードにおいて、積層体の中央部分の前記半導体ペレット
の順方向電圧降下は該積層体の両端部分の前記半導体ペ
レットの順方向電圧降下より低いことを特徴とする高耐
圧ダイオード。
A high voltage diode in which a plurality of semiconductor pellets are stacked in series, characterized in that a forward voltage drop of the semiconductor pellets at the center of the stack is lower than a forward voltage drop of the semiconductor pellets at both ends of the stack. High voltage diode.
JP57224715A 1982-12-21 1982-12-21 Diode of high withstand voltage Pending JPS59114851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224715A JPS59114851A (en) 1982-12-21 1982-12-21 Diode of high withstand voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224715A JPS59114851A (en) 1982-12-21 1982-12-21 Diode of high withstand voltage

Publications (1)

Publication Number Publication Date
JPS59114851A true JPS59114851A (en) 1984-07-03

Family

ID=16818109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224715A Pending JPS59114851A (en) 1982-12-21 1982-12-21 Diode of high withstand voltage

Country Status (1)

Country Link
JP (1) JPS59114851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961326A1 (en) * 1998-05-27 1999-12-01 STMicroelectronics S.A. Association of series diodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961326A1 (en) * 1998-05-27 1999-12-01 STMicroelectronics S.A. Association of series diodes
FR2779292A1 (en) * 1998-05-27 1999-12-03 Sgs Thomson Microelectronics ASSOCIATION OF DIODES IN SERIES
US6107673A (en) * 1998-05-27 2000-08-22 Stmicroelectronics S.A. Series connection of diodes

Similar Documents

Publication Publication Date Title
JP4741630B2 (en) Operation method of semiconductor device
JP2006149195A (en) Converter circuit, and circuit having at least one switching device, and circuit module
JP3869467B2 (en) Semiconductor laser source
JP2015177142A (en) Semiconductor and power converter using the same
CA1145059A (en) Light-firable thyristor
US3686541A (en) A flexible resilient member for applying a clamping force to thyristor units
JPS59114851A (en) Diode of high withstand voltage
JP2005175074A (en) Semiconductor device
US2717343A (en) P-n junction transistor
JP6540563B2 (en) Semiconductor device
JPS5984849U (en) Semiconductor and heat sink assemblies
US3409811A (en) Four-zone semiconductor rectifier with spaced regions in one outer zone
JPS58148469A (en) Schottky diode
JP2019067976A (en) Semiconductor device
CN217544627U (en) Stable silicon carbide diode device
JP3898525B2 (en) Integrated bipolar semiconductor device
JPS586312B2 (en) handmade seaweed
CN220710302U (en) TVS diode with cooling structure
JPS5871657A (en) Gate turn-off thyristor
Matsuda et al. 2.5 kV-800A Monolithic Reverse Conducting Gate Turn-Off Thyristor
JPS631757B2 (en)
JP2679292B2 (en) Method for manufacturing semiconductor device
CN106876452B (en) Integrated gate pole commutation thyristor
JPS61119068A (en) Snubber circuit of semiconductor switch
Crees et al. THYRISTORS FOR PULSE MODULATION AT HIGH PEAK AND AVERAGE POWRS