JPS59112616A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59112616A
JPS59112616A JP22193282A JP22193282A JPS59112616A JP S59112616 A JPS59112616 A JP S59112616A JP 22193282 A JP22193282 A JP 22193282A JP 22193282 A JP22193282 A JP 22193282A JP S59112616 A JPS59112616 A JP S59112616A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
heat treatment
polycrystalline
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22193282A
Other languages
Japanese (ja)
Inventor
Shizunori Ooyu
大湯 静憲
Nobuyoshi Kashu
夏秋 信義
Masao Tamura
田村 誠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22193282A priority Critical patent/JPS59112616A/en
Publication of JPS59112616A publication Critical patent/JPS59112616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable to form a shallow junction having high carrier density by heat treating a polycrystalline Si film in a heat treatment temperature range that the various porperties of the film abruptly vary in a short time. CONSTITUTION:After a boron implantation layer 12 is formed on an N type Si substrate 11, an Si oxidized film 13 is formed, the film 13 is then partly removed, and arsenic is implanted to the substrate 11 exposed in a hole and the film 13 in a polycrystalline film 14. Then, a heat treatment is executed at 1,100 deg.C or higher for 1-300sec to diffuse the arsenic in the film 14 into the substrate 11 to form an arsenic diffused layer 15. Then, the boron of the layer 12 is electrically activated to form an N-P-N type transistor. The film 14 indicated in a range 16 at this time is converted into single crystal. Thus, a shallow junction by the arsenic diffusion from the film 14 is formed without almost varying the layer 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に係シ、特にシリコン基
板への浅い接合形成ならびに多結晶シリコン膜の低抵抗
化に好適な半導体装置の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and in particular, a method of manufacturing a semiconductor device suitable for forming a shallow junction on a silicon substrate and reducing the resistance of a polycrystalline silicon film. It is related to.

〔従来技術〕[Prior art]

シリコン基板表面上に不純物を導入した多結晶ンリコン
膜を形成して熱処理によって上記多結晶ンリコン膜中の
不純物をシリコン基板に拡散させて浅い接合を形成する
際には、従来熱処理温度を900〜1000℃とし、1
0分以上の熱処理時間で熱処理を行っていた。このため
シリコン基板ならひに多結晶/リコン膜に発生するキャ
リア濃度か低かった。特に多結晶/リコン膜中のキャリ
ア濃度は熱処理温度に大きく依存するため、900〜1
000°Cで熱処理した場合は多結晶シリコン膜中のキ
ャリア総数が低く、上記多結晶シリコン膜の抵抗が高く
なるという欠点かあった。丑だ近年注目されているレー
ザ・アニール法によって浅い接合形成および多結晶シリ
コン膜の低抵抗化を行った場合には、高いキャリア濃度
が得られることや多結晶7リコン膜の単結晶化等の利点
がある一方2強力なレーザ光を照射することにより素子
構造が破壊される吉いう欠点があった。
When forming a polycrystalline silicon film into which impurities have been introduced on the surface of a silicon substrate and performing heat treatment to diffuse the impurities in the polycrystalline silicon film into the silicon substrate to form a shallow junction, the heat treatment temperature is conventionally set at 900 to 1000 ℃. ℃, 1
The heat treatment was performed for a heat treatment time of 0 minutes or more. For this reason, in the case of a silicon substrate, the carrier concentration generated in the polycrystalline/recon film was low. In particular, the carrier concentration in the polycrystalline/recon film greatly depends on the heat treatment temperature.
In the case of heat treatment at 000° C., the total number of carriers in the polycrystalline silicon film is low and the resistance of the polycrystalline silicon film becomes high. However, when forming shallow junctions and lowering the resistance of polycrystalline silicon films using the laser annealing method, which has been attracting attention in recent years, it is possible to obtain high carrier concentration and to convert polycrystalline silicon films into single crystals. While this method has advantages, it also has the disadvantage that the device structure may be destroyed by irradiation with a powerful laser beam.

〔発明の目的〕[Purpose of the invention]

本発明の目的は不純物を導入した多結晶シリコン膜から
の不純物拡散によりシリコン基板にキャリア濃度がより
高い浅い接合を形成し、かつ既存の素子構造をは吉んど
変えることなく、多結晶ノリコン膜の低抵抗化を行うこ
とができる半導体装置の製造方法を得ることにある。
The purpose of the present invention is to form a shallow junction with a higher carrier concentration on a silicon substrate by diffusion of impurities from a polycrystalline silicon film into which impurities have been introduced, and to form a polycrystalline silicon film without changing the existing device structure. An object of the present invention is to obtain a method for manufacturing a semiconductor device that can reduce the resistance of the semiconductor device.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめに9本発明は多結晶シリコン膜
の諸特性が急変する熱処理温度領域で短時間の熱処理を
行い、多結晶シリコン膜からの不純物拡散によりシリコ
ン基板に従来の方法よりもキャリア濃度が高く、かつ浅
い接合を形成し、また既存素子構造をほとんど変えるこ
となく多結晶シリコン膜の抵抗を低下させるものである
In order to achieve the above object, the present invention performs short-time heat treatment in a heat treatment temperature range where the various properties of polycrystalline silicon films suddenly change, and the diffusion of impurities from the polycrystalline silicon film causes the silicon substrate to carry more carriers than conventional methods. This method forms a shallow junction with high concentration and lowers the resistance of a polycrystalline silicon film without changing the existing device structure.

本発明者らはシリコン基板表面上および基板表面の絶縁
膜上に不純物が導入された多結晶シリコン膜を形成し、
熱処理によりシリコン基板内に不純物を拡散させる際、
第1図に示すような熱処理温度分布1で特に熱処理温度
が1100℃以上で。
The present inventors formed a polycrystalline silicon film into which impurities were introduced on the surface of a silicon substrate and an insulating film on the surface of the substrate,
When diffusing impurities into the silicon substrate through heat treatment,
In the heat treatment temperature distribution 1 as shown in FIG. 1, especially when the heat treatment temperature is 1100°C or higher.

かつ熱処理時間が1〜3C1O秒の熱処理を行った場合
にはつぎのような効果が得られることを見出した。
It has also been found that the following effects can be obtained when heat treatment is performed for a heat treatment time of 1 to 3C1O seconds.

p形シリコン基板表面上に0.16μm厚さの多結晶シ
リコン膜を形成し、上記多結晶シリコン膜内に1、5 
X 1016ions/−のひ素をイオン打込みによっ
て導入し第1図に示すよう々熱処理温度分布1で1分間
の熱処理を行った場合、シリコン基板中に形成されるl
〕形拡散層のギヤリア濃度は第2図のキャリア濃度の曲
線2に示すように1100 ′C付近で急激に増加する
。また上記多結晶シリコン膜の層抵抗は第3図に示すよ
うに、シリコン基板上の層抵抗3および絶縁膜上の層抵
抗4か1100°Cを超える付近から低下が急になり、
上記多結晶シリコン膜中のチャリア濃度は第4図に示す
ようにシリコン基板上のキャリア濃度5および絶縁膜上
のキャリア濃度6かともに1100 ’Cを境界として
急激に上昇する。さらに多結晶シリコン膜の結晶粒径は
第5図に示すようにシリコン基板上の結晶粒径7および
絶縁膜上の結晶粒径8が1100°Cを超えると急激に
変化し、特にシリコン基板上の結晶粒径7は1150℃
付近で単結晶化(結晶粒径=の)する0、上記のような
多結晶7リコン膜における層抵抗の低下およびキャリア
濃度の増大は多結晶ノリコン膜の結晶粒径の増大による
ものであ97局に一/リコン基板上の多結晶シリコンの
単結晶化によって層抵抗およびキャリア濃度に急激な変
化を生じる。」−記の現象は第1図に示すような熱処理
温度分布1で、かつ熱処理温度が1100°C以上で顕
著になり、シリコン基板内の既存構造をほとんど変化さ
ぜずに上記現象を生じさせるためには熱処理時間が1〜
300秒であることが必要である。
A polycrystalline silicon film with a thickness of 0.16 μm is formed on the surface of a p-type silicon substrate, and 1,5
When arsenic of
] The gearia concentration of the shaped diffusion layer increases rapidly around 1100'C, as shown by carrier concentration curve 2 in FIG. Furthermore, as shown in FIG. 3, the layer resistance of the polycrystalline silicon film begins to drop sharply when the layer resistance 3 on the silicon substrate and the layer resistance 4 on the insulating film exceed 1100°C.
As shown in FIG. 4, the charge carrier concentration in the polycrystalline silicon film increases rapidly with the boundary of 1100'C as the carrier concentration 5 on the silicon substrate and the carrier concentration 6 on the insulating film. Furthermore, as shown in Figure 5, the crystal grain size of the polycrystalline silicon film changes rapidly when the crystal grain size 7 on the silicon substrate and the crystal grain size 8 on the insulating film exceed 1100°C. The crystal grain size 7 is 1150℃
The decrease in layer resistance and the increase in carrier concentration in the polycrystalline 7 Licon film as described above are due to the increase in the crystal grain size of the polycrystalline 7 Licon film, which becomes single crystallized (crystal grain size = 0) in the vicinity. Single crystallization of polycrystalline silicon on a monolithic silicon substrate causes rapid changes in layer resistance and carrier concentration. The phenomenon described above becomes noticeable when the heat treatment temperature distribution is 1 as shown in Figure 1 and the heat treatment temperature is 1100°C or higher, and the above phenomenon occurs without almost changing the existing structure within the silicon substrate. For this purpose, the heat treatment time is 1~
It is necessary that the time is 300 seconds.

熱処理温度が1150°Cを超えると第6図に示すよう
に多結晶シリコン膜−シリコン基板系の層抵抗9が急増
する。これは多結晶シリコン膜表面からひ素が散逸する
からであり、このひ素の散逸を防止するだめに上記多結
晶シリコン膜表面上にシリコン酸化膜やシリコン窒化膜
を被着することにより、115’0°C以上での層抵抗
を第6図の実線10に示すように徐々に低下させること
ができる。
When the heat treatment temperature exceeds 1150 DEG C., the layer resistance 9 of the polycrystalline silicon film-silicon substrate system increases rapidly as shown in FIG. This is because arsenic dissipates from the surface of the polycrystalline silicon film, and in order to prevent this arsenic from dissipating, a silicon oxide film or a silicon nitride film is deposited on the surface of the polycrystalline silicon film. The layer resistance above .degree. C. can be gradually reduced as shown by the solid line 10 in FIG.

上記多結晶シリコン膜中にりんを1.5 x 1016
ions/ci?、iQ人した場合、上記多結晶シリコ
ン膜の層抵抗は第7図、多結晶シリコン膜中のキャリア
濃度は第8図9寸だ多結晶シリコン膜の平均結晶粒径は
第9図に示すように変化し、前記ひ素を多結晶ノリコン
膜中に導入した場合よりも低温側で層抵抗。
1.5 x 1016 phosphorus in the above polycrystalline silicon film
ions/ci? , iQ, the layer resistance of the polycrystalline silicon film is as shown in Figure 7, the carrier concentration in the polycrystalline silicon film is as shown in Figure 8, and the average grain size of the polycrystalline silicon film is as shown in Figure 9. The layer resistance changes at lower temperatures than when the arsenic is introduced into the polycrystalline Noricon film.

ギヤリア濃度か急変し、多結晶・ノリコン膜が単結晶化
する。寸だ、はう素を上記多結晶シリコン膜に導入した
場合に多結晶7リコン膜の諸特性か急変する熱処理温度
分布は、前記りんを導入した場合とひ素を導入した場合
との中間になる。
The gearia concentration suddenly changes, and the polycrystalline/Noricon film turns into a single crystal. Indeed, when boron is introduced into the polycrystalline silicon film, the heat treatment temperature distribution at which various properties of the polycrystalline 7 silicon film suddenly change will be between those when phosphorus is introduced and when arsenic is introduced. .

上記のようにシリコン基板上および絶縁膜上に不純物を
導入した多結晶ノリコン膜を形成して。
As described above, a polycrystalline silicon film doped with impurities is formed on a silicon substrate and an insulating film.

該多結晶ノリコン膜の諸特性が急変する1 100 ’
CJ以上の熱処理温度領域で、従来の熱処理時間の1/
2以下である1〜300秒の熱処理時間で熱処理を行う
ことによって、上記多結晶7リコン膜に接するシリコン
基板中にキャリア濃度が高い浅い接合を形成することが
でき、捷だシリコン基板内の既存の素子構造をほとんど
変化することなく多結晶シリコン膜の低抵抗化が可能に
なる。なお熱処理温度はシリコンの溶融温度以下である
ことが必要であるが、実用的には使用される装置などの
理由により、  1300°C以下に設定する。寸た熱
処理時間が300秒を超える場合は多結晶シリコン膜中
の不純物がシリコン基板中に拡散する程度が犬となシ、
浅い接合を形成するこ吉かでき々くなるとともに、シリ
コン基板内の素子構造に変化を生じさせることになる。
The properties of the polycrystalline Noricon film suddenly change at 1 100'
In the heat treatment temperature range above CJ, 1/1 of the conventional heat treatment time
By performing the heat treatment with a heat treatment time of 1 to 300 seconds, which is less than 2, it is possible to form a shallow junction with a high carrier concentration in the silicon substrate in contact with the polycrystalline 7 silicon film. It becomes possible to lower the resistance of the polycrystalline silicon film without changing the element structure. Note that the heat treatment temperature needs to be below the melting temperature of silicon, but in practice it is set at 1300°C or below due to reasons such as the equipment used. If the heat treatment time exceeds 300 seconds, the extent to which impurities in the polycrystalline silicon film will diffuse into the silicon substrate will be limited.
This results in the formation of shallow junctions that are difficult to achieve, and also causes changes in the device structure within the silicon substrate.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第10図は本発明をnpn トランジスタの製造に適用
した第1の実施例の説明図で、 (aL(bL(C)は
それぞれの製造工程を示すものである。本実施例では第
10図(alに示すように、n形71ノコン基板11に
通常のプロセスにより選択的にほう素を5 X 10I
3ions/dだけ導入してほう素導入層12を形成し
た後、シリコン酸化膜16を形成し、該シリコン酸化膜
13の一部をエツチングにより除去しその開口部に露出
したシリコン基板11および上記シリコン酸化膜16上
にひ素を1.5 X 1016ions/c1?Lだけ
導入した多結晶シリコン膜14を形成した。つぎに前記
第1図に示した熱処理温度分布1にしたがい1150℃
を超えない温度で30秒の熱処理を行い、第10図(b
)に示すように多結晶シリコン膜14中のひ素をシリコ
ン基板11に拡散してひ末拡散層15を形成するととも
に。
FIG. 10 is an explanatory diagram of a first embodiment in which the present invention is applied to the manufacture of an npn transistor, where (aL(bL(C)) indicates each manufacturing process. As shown in FIG.
After forming the boron-introduced layer 12 by introducing 3 ions/d, a silicon oxide film 16 is formed, and a part of the silicon oxide film 13 is removed by etching, and the silicon substrate 11 and the silicon exposed in the opening are removed. Arsenic on the oxide film 16 at 1.5 x 1016 ions/c1? A polycrystalline silicon film 14 into which only L was introduced was formed. Next, according to the heat treatment temperature distribution 1 shown in FIG.
Heat treatment was performed for 30 seconds at a temperature not exceeding
), the arsenic in the polycrystalline silicon film 14 is diffused into the silicon substrate 11 to form the end diffusion layer 15.

はう素導入層12のほう素を電気的に活性化させ。Boron in the boron-introduced layer 12 is electrically activated.

エミッタ深さ01μm、ベース深さ015μmのnpn
 トランジスタ構造を形成した。このさきに領域16で
示すシリコン基板11上の多結晶シリコン膜14は単結
晶化した。さらに第10図(C)に示すように通常のホ
トエノチンク法、CVD法、および蒸着法を用いて、領
域16を残して多結晶シリコン膜14を除去しその跡に
ソリコン酸化膜17を形成しエツチングを行った後、電
極18,19.20を設けてトランジスタを製造した。
npn with emitter depth 01μm and base depth 015μm
A transistor structure was formed. At this point, the polycrystalline silicon film 14 on the silicon substrate 11 indicated by the region 16 was made into a single crystal. Furthermore, as shown in FIG. 10(C), the polycrystalline silicon film 14 is removed leaving a region 16 by using the usual photoenotinking method, CVD method, and vapor deposition method, and a solicon oxide film 17 is formed in its place and then etched. After performing this, electrodes 18, 19, and 20 were provided, and a transistor was manufactured.

上記実施例では多結晶シリコン膜14からのひ素拡散に
よる浅い接合形成がシリコン基板11のほう素導入層1
2をほとんど変化させずにできること9才たエミッタ電
極19の下の多結晶シリコン膜14が単結晶化するため
上記エミノ二名の活性領域として用いることができると
いう効果がある。さらにシリコン基板11に接した多結
晶シリコン膜14の領域16だけが単結晶化するために
In the above embodiment, shallow junction formation by arsenic diffusion from the polycrystalline silicon film 14 is performed in the boron-introduced layer 1 of the silicon substrate 11.
Since the polycrystalline silicon film 14 under the emitter electrode 19 becomes monocrystalline, it can be used as the active region of the two emitters. Furthermore, only the region 16 of the polycrystalline silicon film 14 in contact with the silicon substrate 11 becomes monocrystalline.

HF/HNO3系のエツチング速度に対して多結晶シリ
コンと単結晶シリコンの比か大きくなp、多結晶シリコ
ン膜14の7リコン基板11に接した領域16の単結晶
化しだ7リコン膜をは吉んどエツチングすることなく、
他の多結晶シリコン膜14をエツチングできるので多結
晶シリコン膜14のホトエツチング上程を簡略化するこ
とができる。
The ratio of polycrystalline silicon to single crystal silicon is higher than the etching rate of the HF/HNO3 system, and the polycrystalline silicon film 14 is made into a monocrystalline region 16 in contact with the silicon substrate 11. without etching,
Since the other polycrystalline silicon film 14 can be etched, the process of photoetching the polycrystalline silicon film 14 can be simplified.

第11図は上記実施例の熱処理における他の実施例の説
明図である。第10図(a)に示す工程を経た後に多結
晶シリコン膜14上に7リコン酸化膜(甘たけシリコン
窒化膜)21を01μm被着し、第1図に示す熱処理温
度分布1により上記実施例よりもさらに高温の1200
°Cで15秒の熱処理を行った。本実施例では1200
°Cの高温熱処理にもかかわらず。
FIG. 11 is an explanatory diagram of another embodiment of the heat treatment of the above embodiment. After the process shown in FIG. 10(a), a 01 μm thick silicon oxide film (Amatake silicon nitride film) 21 was deposited on the polycrystalline silicon film 14, and the heat treatment temperature distribution 1 shown in FIG. 1200 which is even hotter than
Heat treatment was performed at °C for 15 seconds. In this example, 1200
Despite the high temperature heat treatment of °C.

シリコン酸化膜(またはシリコン窒化膜)21を被着し
たことによって、上記多結晶シリコン膜14の表面から
ひ素が散逸するのを防ぎ、多結晶シリコン膜−シリコン
基板系の層抵抗を小さくするととができ、15秒の短時
間の熱処理で上記第10図に示す実施例と同じ効果が得
られた6、第12図は上記第10図および第11図に示
す実施例よりさらに浅い接合を形成した別の実施例の説
明図である。n形シリコン基板11のほう素導入層12
′を上記実施例のほう素導入層12よりも浅く形成し、
その上にひ素を導入した多結晶シリコン膜14を形成し
た後。
By depositing the silicon oxide film (or silicon nitride film) 21, it is possible to prevent arsenic from escaping from the surface of the polycrystalline silicon film 14 and to reduce the layer resistance of the polycrystalline silicon film-silicon substrate system. The same effect as in the example shown in Fig. 10 above was obtained with a short heat treatment of 15 seconds. 6. In Fig. 12, a shallower bond was formed than in the example shown in Figs. 10 and 11 above. It is an explanatory view of another example. Boron-introduced layer 12 of n-type silicon substrate 11
' is formed shallower than the boron-introduced layer 12 of the above embodiment,
After forming a polycrystalline silicon film 14 doped with arsenic thereon.

前記第1図に示す熱処理温度分布1により熱処理i′晶
度が1150’Cを超え々い温度で10秒の熱処理を行
い、上F n形/リコン基板11にひ素を拡散しひ末拡
散層15を形成した。このさきにトランジスタ構造のエ
ミッタ深さは0.05μm、ベース深さは01μmとな
り、シリコン基板11上の多結晶シリコン膜14が単結
晶化した領域16′を活性エミッタ領域とすることがで
き、極めて浅い接合が形成されるので半導体素子の高速
化を行うことかできる。
According to the heat treatment temperature distribution 1 shown in FIG. 1, heat treatment is performed for 10 seconds at a temperature where the crystallinity of the heat treatment i' exceeds 1150'C, and arsenic is diffused into the upper F n-type/recon board 11 to form a deep diffusion layer. 15 was formed. At this point, the emitter depth of the transistor structure is 0.05 μm, the base depth is 0.01 μm, and the region 16' where the polycrystalline silicon film 14 on the silicon substrate 11 is made into a single crystal can be used as the active emitter region. Since shallow junctions are formed, the speed of semiconductor devices can be increased.

第16図は本発明をMOSトラン−/スタの製造に適用
した第2の実施例の説明図で、 (a)、(b)、(C
)はそれぞれの製造工程を示すものである。第13図(
a)に示すようKp形シリコン基板22の上にケート酸
化膜(005μm厚さ)23およびフィールド酸化膜(
O,allm厚さ)24を形成した後、  3 X 1
0” 1ons/(7)ひ素を導入した多結晶シリコン
膜25を031Lm厚さに形成した。つぎに第16図(
b)に示すように第1図に示す熱処理温度分布1にょシ
1150 ℃を起えない熱処理温度で60秒の熱処理を
行い7 多結晶シリコン膜25中のひ素をシリコン基板
22に拡散して深さ02Bmのソース、ドレイン領域2
6を形成し、ゲートさなる多結晶ンリコン膜27の低抵
抗化を行った。
FIG. 16 is an explanatory diagram of a second embodiment in which the present invention is applied to the manufacture of MOS transistors, (a), (b), (C
) indicates each manufacturing process. Figure 13 (
As shown in a), a gate oxide film (005 μm thick) 23 and a field oxide film (
After forming O, allm thickness) 24, 3 X 1
A polycrystalline silicon film 25 doped with 0" 1 ons/(7) arsenic was formed to a thickness of 0.31 Lm. Next, as shown in FIG.
As shown in b), heat treatment is performed for 60 seconds at a heat treatment temperature that does not cause the heat treatment temperature distribution 1 to 1150°C as shown in FIG. S02Bm source and drain region 2
6 was formed, and the resistance of the polycrystalline silicon film 27, which is the gate, was lowered.

このさきのゲート酸化膜23上の多結晶ソリコン膜27
の抵抗は5Ω/口であった。さらにエツチングを行って
ゲート酸化膜26上の多結晶ノリコンゲ=1・27を残
し、他の多結晶シリコン膜25を除去した後、第13図
(c)に示すようにパッソベーンヨン膜28を形成し、
ホトエツチング法および蒸着法を用いて電極29を形成
しMosトランジスタを製造した。
Polycrystalline soric film 27 on gate oxide film 23
The resistance was 5Ω/mouth. Further etching is performed to leave the polycrystalline silicon layer 1.27 on the gate oxide film 26, and after removing the other polycrystalline silicon film 25, a passover film 28 is formed as shown in FIG. 13(c). death,
An electrode 29 was formed using a photoetching method and a vapor deposition method to manufacture a Mos transistor.

上記のようにMos+−ランジスタの製造に本発明を用
イh Id: 、 キャリアが高濃度で浅いソース、ド
レイン領域が形成できるとともに多結晶シリコンゲート
27の抵抗を小さクシ、さらに多結晶シリコン膜からの
不純物拡散によってシリコン基板へのノース、トレイン
形成に自己整合性を有するなどの効果かある。
As described above, the present invention can be used to manufacture a Mos+- transistor. In addition to forming shallow source and drain regions with a high carrier concentration, the resistance of the polycrystalline silicon gate 27 can be reduced, and furthermore, the resistance of the polycrystalline silicon gate 27 can be reduced. The diffusion of impurities into the silicon substrate has the effect of providing self-alignment in the formation of north and train formations in the silicon substrate.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明はソリコン基板表面上および該基板
表面に堆積した絶縁膜上の、不純物が導入されている多
結晶シリコン膜の特性が急変する熱処理温度領域である
1 1 D D ’C以上の温度で1〜500秒の熱処
理を行うため、多結晶シリコン膜が単゛結晶化しキャリ
ア濃度が高く浅い接合を形成することが可能となり、高
速で特性が良い半導体素子を製造することができる。ま
たシリコン基板上の多結晶シ1.コン膜の単結晶化は、
その部分を活性領域とすることかできるので半導体素子
製造上の応用範囲が広く々る。さらに絶縁膜上の多結晶
ンリコン膜の抵抗を既存素子の構造をほとんど変えない
で低下させることができるので、抵抗が小さい多結晶シ
リコン配線および電極に利用できる等の効果がある。
As described above, the present invention is applied to a heat treatment temperature range of 1 1 D D 'C or above, where the characteristics of the polycrystalline silicon film into which impurities are introduced, on the surface of the solicon substrate and on the insulating film deposited on the surface of the substrate, suddenly change. Since the heat treatment is carried out at a temperature of 1 to 500 seconds, the polycrystalline silicon film becomes single crystallized, making it possible to form a shallow junction with a high carrier concentration, thereby making it possible to manufacture a semiconductor element with good characteristics at high speed. Also, polycrystalline silicon on a silicon substrate1. The single crystallization of the con film is
Since that portion can be used as an active region, it has a wide range of applications in semiconductor device manufacturing. Furthermore, since the resistance of the polycrystalline silicon film on the insulating film can be lowered without changing the structure of the existing element, the present invention has the advantage that it can be used for polycrystalline silicon wiring and electrodes with low resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不純物拡散を行う際の熱処理温度分布を示す図
、第2図は熱処理温度に対するシリコン基板中のキャリ
ア濃度の変化を示す図7第6図は同じくひ素を導入した
多結晶シリコン膜の層抵抗の変化を示す図、第4図は同
じく上記多結晶ソリコン膜中のキャリア濃度の変化を示
す図、第5図は同じく上記多結晶シリコン膜の5V均結
晶粒径の変化を示す図、第6図は同じく多結晶シリコン
膜−シリコン基板系の層抵抗の変化を示す図、第7図は
同じくりんを導入した多結晶/リコン膜の層抵抗の変化
を示す1ス、第8図は同じく上記多結晶シリコン膜中の
キャリア濃度の変化を示す図、第9図は同じく上記多結
晶シリコン膜の平均結晶粒径の変化を示す図、第10図
は本発明をnpn )ランジスタの製造に適用した第1
の実施例の説明図で(a) 、 (b) 、 (C)は
それぞれの製造工程を示す図、第11図は7リコン酸化
膜捷たはシリコン窒化膜を多結晶シリコン膜上に形成し
た他の実施例の説明図。 第12図は上記実施例よりさらに浅い接合を、睡成する
別の実施例の説明図、第13図は本発明をMO8I−ラ
ンシスタの製造に適用した第2の実施例の説明図で(a
) 、 (b) 、 (C)はそれぞれの製造工程を示
す図である。 11.22・・・/リコン基板 15.25.24・・・絶縁膜(酸化・/リコン膜)1
4.25・多結晶シリコン膜 代理人弁理士 中村純之助 f′″1 図 や2図 林%理渫農(=C) ?3図 1、′4 図 才5図 渇%裸羞度(°C) 矛6図 勢匁狸眉崖(°C) 177図 麹力裡蓬度〔°C〕 オ9− 軌急理遥度(°C) +5    1412 才11図 才12図
Figure 1 shows the heat treatment temperature distribution during impurity diffusion, Figure 2 shows the change in carrier concentration in the silicon substrate with respect to the heat treatment temperature, and Figure 6 shows the polycrystalline silicon film into which arsenic is introduced. FIG. 4 is a diagram showing changes in layer resistance, FIG. 4 is a diagram showing changes in carrier concentration in the polycrystalline silicon film, and FIG. 5 is a diagram showing changes in 5V average grain size of the polycrystalline silicon film. FIG. 6 is a diagram showing the change in layer resistance of the polycrystalline silicon film-silicon substrate system, FIG. Similarly, FIG. 9 is a diagram showing changes in the carrier concentration in the polycrystalline silicon film, FIG. 9 is a diagram similarly showing changes in the average crystal grain size of the polycrystalline silicon film, and FIG. The first applied
(a), (b), and (C) are diagrams showing the respective manufacturing steps, and FIG. 11 is a diagram showing the manufacturing process in which a silicon oxide film or a silicon nitride film is formed on a polycrystalline silicon film. Explanatory diagram of another example. FIG. 12 is an explanatory diagram of another embodiment in which a shallower junction than that of the above embodiment is formed, and FIG. 13 is an explanatory diagram of a second embodiment in which the present invention is applied to the manufacture of MO8I-Lancistor (a
), (b), and (C) are diagrams showing the respective manufacturing steps. 11.22.../recon board 15.25.24...insulating film (oxidation/recon film) 1
4.25 Polycrystalline silicon film representative patent attorney Junnosuke Nakamura ) 6th figure of the dragonfly cliff (°C) 177th figure of the koji force [°C]

Claims (1)

【特許請求の範囲】[Claims] シリコン基板表面上およびシリコン基板表面に堆積した
絶縁膜上に、不純物が導入されている多結晶シリコン膜
を形成したのち、上記シリコン基板および多結晶シリコ
ン膜に熱処理を施して、多結晶ンリコン膜に接するシリ
コン基板に不純物拡散を行い半導体装置を製造する際、
上記シリコン基板および多結晶シリコン膜の熱処理温度
を1100℃以上さし、熱処理時間を1〜300秒とす
ることを特徴とする半導体装置の製造方法。
After forming a polycrystalline silicon film into which impurities are introduced on the silicon substrate surface and an insulating film deposited on the silicon substrate surface, heat treatment is performed on the silicon substrate and polycrystalline silicon film to form a polycrystalline silicon film. When manufacturing semiconductor devices by diffusing impurities into the adjacent silicon substrate,
A method for manufacturing a semiconductor device, characterized in that the silicon substrate and the polycrystalline silicon film are heat-treated at a temperature of 1100° C. or higher and for a heat-treating time of 1 to 300 seconds.
JP22193282A 1982-12-20 1982-12-20 Manufacture of semiconductor device Pending JPS59112616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22193282A JPS59112616A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22193282A JPS59112616A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59112616A true JPS59112616A (en) 1984-06-29

Family

ID=16774414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22193282A Pending JPS59112616A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59112616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246325A (en) * 1989-02-13 1990-10-02 Internatl Business Mach Corp <Ibm> Manufacture of transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246325A (en) * 1989-02-13 1990-10-02 Internatl Business Mach Corp <Ibm> Manufacture of transistor

Similar Documents

Publication Publication Date Title
US4749441A (en) Semiconductor mushroom structure fabrication
US4875085A (en) Semiconductor device with shallow n-type region with arsenic or antimony and phosphorus
JPS62570B2 (en)
JPH0521448A (en) Manufacture of semiconductor device
JPS5982768A (en) Manufacture of semiconductor device
JPS59112616A (en) Manufacture of semiconductor device
JPS59189677A (en) Manufacture of semiconductor device
JPS6155250B2 (en)
JPS60213019A (en) Manufacture of semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JP3041886B2 (en) Method for manufacturing semiconductor device
JPH0546097B2 (en)
JPH01108772A (en) Manufacture of bipolar transistor
JPH04137619A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH0750416A (en) Manufacturing method of semiconductor device
JPS60137072A (en) Manufacture of junction type field effect transistor
JPH04168764A (en) Manufacture of semiconductor device
JPS6020570A (en) Manufacture of semiconductor device
JPH02187035A (en) Manufacture of semiconductor device
JPH0418460B2 (en)
JPS605554A (en) Manufacture of semiconductor integrated circuit device
JPS60257572A (en) Manufacture of semiconductor device
JPS59113619A (en) Manufacture of semiconductor device
JPS6058581B2 (en) Manufacturing method of semiconductor device