JPS59112029A - Manufacture of carbon fiber - Google Patents

Manufacture of carbon fiber

Info

Publication number
JPS59112029A
JPS59112029A JP22031782A JP22031782A JPS59112029A JP S59112029 A JPS59112029 A JP S59112029A JP 22031782 A JP22031782 A JP 22031782A JP 22031782 A JP22031782 A JP 22031782A JP S59112029 A JPS59112029 A JP S59112029A
Authority
JP
Japan
Prior art keywords
furnace
filament
carbon fiber
temperature
carbonization furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22031782A
Other languages
Japanese (ja)
Inventor
Minoru Yoshinaga
吉永 稔
Ryuichi Yamamoto
隆一 山本
Shizuo Watanabe
渡辺 静男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22031782A priority Critical patent/JPS59112029A/en
Publication of JPS59112029A publication Critical patent/JPS59112029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To manufacture high quality carbon fiber having extremely small amounts of fluffs, end breakages, welds, etc., by preparing an oxide filament from a precursor filament, and carbonizing the oxide filament with a vertical carbonization furnace having a gas vent hole at a specific position. CONSTITUTION:A precursor filament such as acrylic precursor filament is heated in an oxidizing atmosphere, and the obtained oxidized filament is carbonized with a vertical carbonization furnace having a maximum temperature of >=700 deg.C and having a gas vent hole at the central part having a temperature range of 400-600 deg.C. A high quality carbon fiber having remarkably reduced amounts of defects such as fluff, end breakage, welding, etc. can be manufactured by this process.

Description

【発明の詳細な説明】 本発明は炭素繊維の製造法に係り、さらに詳しくは該炭
素繊維製造における排ガス、特にタール状物にJ、る炭
素繊維の物性の低下が少なく、毛羽、糸切れ、融着等の
欠点の著しく少ない高品質炭素繊維の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fibers, and more specifically, the present invention relates to a method for producing carbon fibers, and more specifically, it reduces the deterioration of the physical properties of carbon fibers caused by exhaust gas, particularly tar-like substances, in the production of carbon fibers, and reduces fuzz, thread breakage, and This invention relates to a method for producing high-quality carbon fiber with significantly fewer defects such as fusion.

炭素繊維はその卓越した力学的性質、たとえば比強度、
比弾性率などおよびその仙の優れた化学的、電気的性質
により、航空、宇宙用途からゴルフ・シャツI〜、釣竿
、テニスラケツ1−等用として広い分野に使用されてお
り、さらに船舶、自動車等各種の分野に使用されようと
している。
Carbon fiber has excellent mechanical properties such as specific strength,
Due to its specific modulus of elasticity and its excellent chemical and electrical properties, it is used in a wide range of fields, from aviation and space applications to golf shirts, fishing rods, tennis rackets, etc., as well as ships, automobiles, etc. It is being used in various fields.

従来この炭素繊維は、通常アクリル系繊維やピッチ系繊
維に代表される前駆体1&維(以下、プレカーサという
)を空気等の酸化性カス中で加熱して熱安定化した後、
次いて窒素、ヘリウム、アルゴン等の不活性雰囲気中で
より高温下に加熱して炭素質乃至黒鉛質繊維に転換する
ことにより製造されている。このような炭素繊維の製造
法において、前記プレカーサ、特にアクリル系繊維のよ
うな高分子重合体からなる繊維は、酸化雰囲気中での加
熱によって該プレカーサの製造に際して適用された油剤
等が蒸発あるいは加熱分解、除去されると共に酸化、架
橋等の複雑な化学反応を起し、熱的に安定な酸化繊維に
転換される。
Conventionally, carbon fibers are produced by thermally stabilizing precursor fibers (hereinafter referred to as precursors), typically acrylic fibers or pitch fibers, by heating them in an oxidizing residue such as air.
It is then produced by heating at a higher temperature in an inert atmosphere such as nitrogen, helium, argon, etc. to convert it into carbonaceous or graphite fibers. In such a carbon fiber manufacturing method, the precursor, especially fiber made of a high molecular weight polymer such as acrylic fiber, is heated in an oxidizing atmosphere to evaporate or heat the oil agent applied during the manufacturing of the precursor. As it is decomposed and removed, it undergoes complex chemical reactions such as oxidation and crosslinking, and is converted into thermally stable oxidized fibers.

この酸化工程にお(ブるプレカーサの重量減は、後の炭
化工程における重量減に比して少なく、この酸化工程に
は通常多量の酸化性雰囲気ガスか4; lvらかの排カ
ス処理を加されつつ循環利用されるの(、下記油剤等の
熱分解物によるプレ力〜りの汚染等は少ないと云われて
いる。これに対して該配化繊組をより高温の不活性雰囲
気中で加熱し、炭水繊維に転換する工程、特に最高温度
が700〜1000’Cというような低温炭化もしく 
IJ前炭化領域と呼ばれる加熱雰囲気下では該酸化繊維
は人中な重量減を示し、プレカーりの重量減の約50%
はこの領域で発生すると云われ−Cいる。しかもこの炭
化工程に供給される不粘性気体のhiは酸化工程に比べ
て箸しく少ないのか普通て゛あり、該低(ん1炭化領域
にJ3ける不活性気体には多量の熱分解生成物、特にタ
ール状物か含有され、このタール状物による炭化のドラ
フル防止が炭素繊維製造において極めて必要である。た
とえば該竪型炭化炉において、不活性気体を炉上部から
下方に導入し、排カスを炉温下部から抜き出す場合は竪
型炉の煙突ダ」宋に起因しく炉上部にタール状物が付@
蓄積、スケール化するのを防止することが難しく、炉内
の不活性気体の円滑な流れを阻害し、炉内圧の変動を招
いたり、このスクール化した炭化物によって走行する糸
条がIEJ傷され糸切れ、毛羽発生の原因となるし、使
方不活性気体を炉下方から上方に導入し、排カスを炉温
上部から抜き出す場合は、抜き出し口の排ガスの温麿【
よ最高温度近い高温に達しているために、抜き出し口が
熱的に損傷され易く、エネルギーロスも召しい。また糸
条が下から上へと走行づる場合、糸条は分解カスを含ん
だガスと同方行に走行することになるため、走行糸条か
不活性気体に一含まれるタール状物により汚染され、結
果として高品質、高性能の炭素繊維を安定して製造する
ことか難しいという問題がある。
In this oxidation process, the weight loss of the precursor is smaller than the weight loss in the subsequent carbonization process, and this oxidation process usually requires a large amount of oxidizing atmospheric gas or waste gas treatment. It is said that there is little contamination of the pre-load by thermal decomposition products such as oils and the like. The process of heating and converting into carbon fiber, especially low-temperature carbonization with a maximum temperature of 700 to 1000'C.
In the heated atmosphere called the pre-IJ carbonization region, the oxidized fibers show a significant weight loss, about 50% of the weight loss of the pre-carburization.
-C is said to occur in this region. Moreover, the hi of the inviscid gas supplied to this carbonization process is usually much lower than that of the oxidation process, and the inert gas in the low (1) carbonization region contains a large amount of thermal decomposition products, especially It is extremely necessary to prevent carbonization draughts caused by tar-like substances in carbon fiber production.For example, in the vertical carbonization furnace, an inert gas is introduced downward from the top of the furnace, and the waste gas is passed through the furnace. When extracting from the hot section, use the chimney of a vertical furnace.
It is difficult to prevent accumulation and scaling, which obstructs the smooth flow of inert gas in the furnace and causes fluctuations in the furnace pressure. If you introduce an inert gas from the bottom of the furnace to the top and extract the waste from the upper part of the furnace, the temperature of the waste gas at the outlet should be removed.
Since the temperature is close to the maximum temperature, the extraction port is easily damaged by heat, resulting in energy loss. Furthermore, when the thread runs from the bottom to the top, the thread runs in the same direction as the gas containing decomposition residue, so the running thread or the inert gas may be contaminated by tar-like substances. As a result, it is difficult to stably produce high-quality, high-performance carbon fiber.

本発明省ら(よ上記竪型炭化炉を用いた炭素繊到ったも
のである。
The Ministry of the Invention and others have developed a carbon fiber using the above-mentioned vertical carbonization furnace.

すなわち本発明はプレカーサから得られる酸化繊維を炭
化jるに際して、少なくとも700Cの最高温度を右ツ
る竪型炭化炉を用い、かつ該炭化力1のン晶度領域が4
00〜600 ’Cである炉中央部にiJ+カス抜き出
し口を設けることにより前記問題を解消したものである
That is, in the present invention, when carbonizing the oxidized fibers obtained from the precursor, a vertical carbonization furnace with a maximum temperature of at least 700C is used, and the crystallinity range of carbonization power 1 is 4.
The above problem is solved by providing an iJ+ waste extraction port in the central part of the furnace where the temperature is 00 to 600'C.

本発明に用いられる竪型炭化炉は公知の炉であり、特に
限定されないが好ましくは酸化繊維を炉下部から導入し
て炉上部から取り出し、炉の上・下シール部は不活性ガ
スシール機構を有し、小品1iカスは上方と下方の両方
から導入ηることができる型式の炉がよい。
The vertical carbonization furnace used in the present invention is a well-known furnace, and although not particularly limited, oxidized fibers are preferably introduced from the lower part of the furnace and taken out from the upper part of the furnace, and the upper and lower seal parts of the furnace are equipped with an inert gas sealing mechanism. It is preferable to use a furnace of the type in which the scraps can be introduced both from above and from below.

そして本発明においては、該竪型炭化炉内の不話性刀ス
温麿が炉下方から上方に向って高温に保持され、かつ、
その最高温度が少なくとも700℃、り了ましくは70
0〜1000℃であり、しか6堅方向に暫次温度分布を
有していることが必要である。すなわち、本発明者らの
検i・1によると酸化繊維を予かしめこのような温度域
で加熱炭化し、さらに高温で処理することによって得ら
れる炭素繊維まICは黒鉛繊維の物性、品質か著しく改
良されるのみならず、該温度域内である400〜6oo
℃の温度域で酸化繊維の熱分解が急激かつ大半進行し、
かがる酸化繊維の熱分解の進行が箸しい400〜600
 ’Cの温度域を炉中央部に設定し、この中央部に排ガ
ス抜ぎ出し口を設(ブることによって熱分解物の含有量
が大きい排ガスを炉から抜き出すことができる。炉中央
部の400〜6oo℃の温度域にある不活性ガスを排ガ
スとして抜き出すことにより、炭素繊維の物性向上を十
分に反映せしめることができるが、これは前記中央部か
ら排カスを扱き出すことによって、炭化されるNJ&紺
の熱分解物であるタール状物による汚染を著しく低減で
きるからである。
In the present invention, the non-talking gas in the vertical carbonization furnace is maintained at a high temperature from the bottom of the furnace to the top, and
Its maximum temperature is at least 700℃, preferably 70℃
It is necessary that the temperature is 0 to 1000°C, and that there is a temporal temperature distribution in the direction of 6 degrees. In other words, according to the inventors' test i.1, carbon fibers or ICs obtained by pre-stamping oxidized fibers, heating and carbonizing them at such a temperature range, and further treating them at high temperatures have significantly superior physical properties and quality to graphite fibers. Not only improved, but also within the temperature range of 400~6oo
Thermal decomposition of oxidized fibers proceeds rapidly and mostly in the temperature range of ℃.
The progress of thermal decomposition of the oxidized fiber is 400 to 600.
By setting the temperature range of 'C in the center of the furnace and installing an exhaust gas outlet in the center, exhaust gas containing a large content of pyrolysis products can be extracted from the furnace. By extracting inert gas in the temperature range of 400 to 60°C as exhaust gas, it is possible to fully reflect the improvement in the physical properties of carbon fibers. This is because contamination by tar-like substances, which are thermal decomposition products of NJ and navy blue, can be significantly reduced.

尚、該中央部抜き出し口から抜き出される排ガスmは油
剤炉内にイハ給される不活性ガス吊の20〜50容量%
が適当であるが、好ましくは30〜40%がよい。
The exhaust gas m extracted from the central outlet is 20 to 50% by volume of the inert gas supplied to the oil furnace.
is appropriate, but preferably 30 to 40%.

以下本発明の1具体的態様を図面により説明する。One specific embodiment of the present invention will be explained below with reference to the drawings.

第1図は本発明に用いられる竪型炭化炉の概略側面図C
あり、1は竪型炭化炉、2は該炉の子方おJ、び下方の
両方に設(プた不活性ガス供給]]、3は酸化繊組糸条
、4はυ]ガス抜ぎ出し口、5Iよ排ガスを分解あるい
は燃焼する装置、6は吸引10ワーを示す。
Figure 1 is a schematic side view C of the vertical carbonization furnace used in the present invention.
1 is a vertical carbonization furnace, 2 is installed both on the lower side and below the furnace (inert gas supply), 3 is an oxidized fiber braided yarn, and 4 is a gas vent The outlet, 5I, is a device for decomposing or burning exhaust gas, and 6 is a suction 10W.

図にa3い℃、醇化繊維糸条3は炉1の下部から導入さ
れ焼成処理を施した後、炉上部から取り出される。
The fermented fiber yarn 3 is introduced from the lower part of the furnace 1 at a temperature of a3°C in the figure, subjected to firing treatment, and then taken out from the upper part of the furnace.

炭化炉の炉内温度分布としては、たζえば鋭線で区分し
て示すCブロックが300〜400℃、BブI]ツク4
00〜600℃、Aブロック600〜1000″Cが挙
げられる。この場合、炉内最高温度が少なくとも700
 ”Cの雰囲気でないと1業的に炭素繊維を製造するこ
とができない。そして、炉中央部抜き出し口4から抜き
出された排ガスは、分解あるいは燃焼せしめる装置5で
処理し、次いで吸引ブロワ−6を通じて大気中に放出さ
れる。
As for the temperature distribution inside the carbonization furnace, for example, block C shown by sharp lines is 300 to 400°C, block I] 4
00~600℃, A block 600~1000''C. In this case, the maximum temperature inside the furnace is at least 700
It is not possible to produce carbon fiber in an industrial manner unless the atmosphere is ``C''.The exhaust gas extracted from the outlet 4 in the center of the furnace is treated in a decomposition or combustion device 5, and then passed through a suction blower 6. released into the atmosphere through

本発明に用いる炭化炉で炭化される酸化繊維としては特
に限定されるものではないが、たとえばプレカーサがア
クリル系[[の場合、比重が1.34〜1 、 ’45
、水分率が5〜9%で強伸度がそれぞれ2〜5g/dお
よび5〜12%のものを挙げることができる。
The oxidized fibers carbonized in the carbonization furnace used in the present invention are not particularly limited, but for example, if the precursor is acrylic [[, the specific gravity is 1.34 to 1, '45
, a moisture content of 5 to 9%, and a strength and elongation of 2 to 5 g/d and 5 to 12%, respectively.

また上記炭化炉で炭化された炭素繊維はざらに高温の不
活性雰囲気、たとえば1000〜2000 ’Cに加熱
してより完全に炭化乃至黒鉛化することとができる。
Further, the carbon fibers carbonized in the carbonization furnace can be heated in an inert atmosphere at a relatively high temperature, for example, 1000 to 2000'C, to more completely carbonize or graphitize the fibers.

本発明によれば最高温度が少なくとも700℃の低温予
備炭化を採用して得られる炭素繊維の高物性化を図ると
きのトラブル、特に、その熱分解物であるタール状物に
よるトラブルを解消し、得られる炭素繊維の品質安定化
、操業性、物性を大きく向上させることができる。
According to the present invention, troubles when trying to improve the physical properties of carbon fiber obtained by employing low-temperature preliminary carbonization with a maximum temperature of at least 700 ° C., especially troubles caused by tar-like substances that are thermal decomposition products thereof, are solved, The quality stabilization, operability, and physical properties of the resulting carbon fibers can be greatly improved.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 アクリル系前駆体糸条(1d/フイラメント、フィラメ
ント数10.000本)を最高温度260℃の酸化性雰
囲気下(゛加熱処理し酸化繊維を得た。
Example 1 Acrylic precursor yarn (1 d/filament, 10,000 filaments) was heat-treated in an oxidizing atmosphere at a maximum temperature of 260° C. to obtain oxidized fibers.

この酸化繊維は比重1.38、水分率8.0%、強度3
.bす/d、伸度10.0%てあつlこ 。
This oxidized fiber has a specific gravity of 1.38, a moisture content of 8.0%, and a strength of 3.
.. b/d, elongation 10.0%.

次いで該酸化繊組糸条を第1図に示す竪型く低温)炭化
炉に5m/分の速度で導入し、焼成処理を施した。なa
3、この際不活竹刀ス(窒素カス)供給量は12ONT
11″/hr、排ガス抜き出しfJ)4は40 N T
11’/ br、抜き出しI+A Iuは450′Cで
あった。
Next, the oxidized fiber braid was introduced into a vertical (low temperature) carbonization furnace shown in FIG. 1 at a speed of 5 m/min and subjected to firing treatment. Naa
3. At this time, the supply amount of inactive Shinai su (nitrogen scum) is 12 ONT
11″/hr, exhaust gas extraction fJ) 4 is 40 N T
11'/br, extraction I+A Iu was 450'C.

炉」一部から取り出された糸条は次いで1400℃の窒
素カス雰囲気下で処理した。
The yarn taken out from a part of the furnace was then treated in a nitrogen gas atmosphere at 1400°C.

かくして得られた炭素繊維の操業性、品質・品位につい
て調べた結果を第1表に示す。
Table 1 shows the results of investigating the workability, quality and quality of the carbon fiber thus obtained.

第1表 比較例1 実施例1において、排ガス抜き出しをAブロック(温度
800℃)またはCブロック(温度350℃)に変更し
たほかは実施例1と同様にして炭素繊維を得た。
Table 1 Comparative Example 1 Carbon fibers were obtained in the same manner as in Example 1 except that the exhaust gas extraction was changed to A block (temperature 800°C) or C block (temperature 350°C).

得られた炭素繊維の操業性、品質・品位について調べた
結果を第2表に示づ。
Table 2 shows the results of investigating the operability, quality, and grade of the obtained carbon fibers.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様を示す竪型炭化炉の概略側
面図である。 1゛竪型炭化炉 2、小品性カス供給口 3:酸化繊組糸条 4:刊カス抜ぎ出し口 5:排ガスを分解あるいは燃焼する装置6:排ガス吸引
10ワー 特許出願人 東し株式会社
FIG. 1 is a schematic side view of a vertical carbonization furnace showing one embodiment of the present invention. 1 Vertical carbonization furnace 2, small waste supply port 3: Oxidized fiber braided yarn 4: Paper waste removal port 5: Exhaust gas decomposition or combustion device 6: Exhaust gas suction 10W Patent applicant Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 前駆体縁@1糸条から得られた酸化繊維糸条を少なくと
も700℃の最高温度を有する竪型炭化炉で炭化りるに
際して、該炭化炉の中央部の400〜600 ’Cの温
度領域に排ガス抜き出し口を「1シリた炭化炉を用いる
ことを特徴とする炭素繊組の製造法。
When carbonizing the oxidized fiber yarn obtained from the precursor edge @1 yarn in a vertical carbonization furnace having a maximum temperature of at least 700°C, the temperature range of 400 to 600'C in the center of the carbonization furnace is A method for producing carbon fiber assembly, characterized by using a carbonization furnace with one exhaust gas outlet.
JP22031782A 1982-12-17 1982-12-17 Manufacture of carbon fiber Pending JPS59112029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22031782A JPS59112029A (en) 1982-12-17 1982-12-17 Manufacture of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22031782A JPS59112029A (en) 1982-12-17 1982-12-17 Manufacture of carbon fiber

Publications (1)

Publication Number Publication Date
JPS59112029A true JPS59112029A (en) 1984-06-28

Family

ID=16749243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22031782A Pending JPS59112029A (en) 1982-12-17 1982-12-17 Manufacture of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59112029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285029A (en) * 1985-10-09 1987-04-18 Toray Ind Inc Production of carbon fiber
JPS63120114A (en) * 1986-11-07 1988-05-24 Toray Ind Inc High-temperature calcining furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042126A (en) * 1973-08-17 1975-04-17
JPS53134927A (en) * 1977-04-28 1978-11-25 Showa Denko Kk Production of carbon fibers
JPS5742926A (en) * 1980-08-22 1982-03-10 Mitsubishi Rayon Co Ltd Continuous production of carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042126A (en) * 1973-08-17 1975-04-17
JPS53134927A (en) * 1977-04-28 1978-11-25 Showa Denko Kk Production of carbon fibers
JPS5742926A (en) * 1980-08-22 1982-03-10 Mitsubishi Rayon Co Ltd Continuous production of carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285029A (en) * 1985-10-09 1987-04-18 Toray Ind Inc Production of carbon fiber
JPS63120114A (en) * 1986-11-07 1988-05-24 Toray Ind Inc High-temperature calcining furnace

Similar Documents

Publication Publication Date Title
GB911542A (en) Improvements in or relating to the manufacture of heat resistant and corrosion resistant polyacrylonitrile fibres
US3116975A (en) Artificial graphite process
US3656904A (en) Graphitization process
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
US4552743A (en) Process for producing carbon fiber
JPS59112029A (en) Manufacture of carbon fiber
KR880002095B1 (en) Carbon fiber pitch
US3333926A (en) Process for carbonizing cellulosic textile materials
US4574077A (en) Process for producing pitch based graphite fibers
RU2520982C1 (en) Method of carbonisation of viscose fibrous materials in process of obtaining carbon fibres
US3723605A (en) Process for the production of a continuous length of graphitic fibrous material
JPH0314624A (en) Production of carbon yarn
US3337301A (en) Process for carbonizing fibrous cellulosic materials
JPS63295476A (en) Production of carbon fiber reinforced carbonaceous material
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
KR100337963B1 (en) High temperature, low oxidation stabilization of pitch fibers
US539838A (en) Konrad otto eduard trobach
JPS62250228A (en) Carbon fiber of high strength and high elasticity
JPH04308226A (en) Heat treatment furnace for carbon fiber
JPS60151316A (en) Production of carbon fiber from pitch
JPS6433215A (en) Production of carbon fiber
GB1477035A (en) Process for producing carbonaceous fibrous material
JPS6254889B2 (en)
JPS58156022A (en) Carbonization of pitch carbon fiber