JPH04308226A - Heat treatment furnace for carbon fiber - Google Patents
Heat treatment furnace for carbon fiberInfo
- Publication number
- JPH04308226A JPH04308226A JP6849791A JP6849791A JPH04308226A JP H04308226 A JPH04308226 A JP H04308226A JP 6849791 A JP6849791 A JP 6849791A JP 6849791 A JP6849791 A JP 6849791A JP H04308226 A JPH04308226 A JP H04308226A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- carbon fiber
- treating
- gas
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 22
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000010438 heat treatment Methods 0.000 title claims description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 13
- 239000002657 fibrous material Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 25
- 238000007789 sealing Methods 0.000 abstract description 19
- 239000000835 fiber Substances 0.000 abstract description 15
- 239000011261 inert gas Substances 0.000 abstract description 8
- 230000001276 controlling effect Effects 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は熱処理炉、特に炭素繊維
を製造する目的で繊維を不活性雰囲気中で連続的に処理
する装置に関するものであり、さらに詳しくは、ポリア
クリロニトリルもしくはその共重合体を原料とし紡糸し
て得られるPAN系繊維、およびピッチを原料とし紡糸
して得られるピッチ系繊維を予備酸化処理し、ついで不
活性雰囲気中で炭素化する際に、不活性ガスの使用量が
少なく経済的に熱処理出来る炭素化炉に関するものであ
る。[Field of Industrial Application] The present invention relates to a heat treatment furnace, particularly an apparatus for continuously treating fibers in an inert atmosphere for the purpose of producing carbon fibers. When pre-oxidizing PAN-based fibers obtained by spinning Pitch as a raw material and pitch-based fibers obtained by spinning Pitch as a raw material, and then carbonizing them in an inert atmosphere, the amount of inert gas used is The present invention relates to a carbonization furnace that allows economical heat treatment with minimal heat treatment.
【0002】0002
【従来の技術】炭素繊維は、その優れた性質、特に高い
比強度、比弾性率等により複合材料の補強繊維として製
造されている。これら複合材料の用途拡大にともなって
性能、品質の向上とともに、製造コストの低減化が重要
な検討課題となっている。一般に炭素繊維を製造する際
には、プレカーサーを空気中で200〜300℃の温度
で予備酸化し、次いで、窒素ガス等の不活性雰囲気中で
時によっては2000℃以上の温度で処理(炭素化ある
いは黒鉛化処理)を行うことによって製造される。BACKGROUND OF THE INVENTION Carbon fibers are manufactured as reinforcing fibers for composite materials due to their excellent properties, particularly high specific strength and specific modulus. As the applications of these composite materials expand, improvements in performance and quality as well as reduction in manufacturing costs have become important issues to consider. Generally, when manufacturing carbon fibers, the precursor is preoxidized in air at a temperature of 200 to 300°C, and then treated (carbonized) in an inert atmosphere such as nitrogen gas at a temperature of 2000°C or higher. Alternatively, it is manufactured by performing graphitization treatment).
【0003】従来、炭素化炉においては、その不活性雰
囲気を維持するために、炉の前後にシール機構を設ける
必要があり、被処理繊維に機械的損傷を与えないように
、非接触でシールする方法が行なわれている。この非接
触式シールの方法としては、ラビリンス機構を備えたも
のが一般的に用いられている。この方法は、ガスの流れ
と直角に配置された仕切り板と、その間隙の空間から構
成され、流れるガスの圧力損失をできるだけ大きくし抵
抗を与えることによって混入するガス量を低減させるも
のである。したがって、ガスの使用量が多いほどシール
性が高くなるが、炭素繊維のような繊維状物の処理にお
いては、糸の乱れ、バタツキによる毛羽の発生がはなは
だしくなり、品質の低下を招く結果になっていた。Conventionally, in order to maintain the inert atmosphere in a carbonization furnace, it is necessary to provide a sealing mechanism before and after the furnace. A method is being used to do so. As this non-contact sealing method, a method equipped with a labyrinth mechanism is generally used. This method consists of a partition plate placed perpendicular to the gas flow and a space between the partition plates, and reduces the amount of gas mixed in by increasing the pressure loss of the flowing gas as much as possible and providing resistance. Therefore, the greater the amount of gas used, the better the sealing performance will be, but when processing fibrous materials such as carbon fiber, the yarn will become disordered and fluff will be generated due to flapping, resulting in a decrease in quality. was.
【0004】これらの問題を回避するために、シール部
の構造を特定化し、被処理繊維に与える損傷を低減化し
たり(例えば特公平1−30947号公報)、あるいは
液体でシールする方法(例えば特公昭60−5683号
公報)が用いられている。この種の熱処理炉の形状とし
ては縦型と横型とがある。縦型炉の場合、炉下部からの
外気の混入を防ぐためには多量のガスが必要となり、前
記したように品質低下がはなはだしくなるため、もっぱ
ら液体シール方法が用いられている。従って、使用する
ガス量は横型炉と比較して少なくすることが出来るが、
液体を乾燥するための設備が必要なこと、被処理繊維を
通したり、トラブルの処置を行う場合など操業性、炉の
メンテナンス性を考慮した場合には横型炉が一般的に有
利であると考えられている。[0004] In order to avoid these problems, the structure of the seal part is specified to reduce damage to the fibers to be treated (for example, Japanese Patent Publication No. 1-30947), or a sealing method using a liquid (for example, Japanese Patent Publication No. 1-30947) is proposed. Publication No. 60-5683) is used. There are two types of heat treatment furnaces: vertical and horizontal. In the case of a vertical furnace, a large amount of gas is required to prevent outside air from entering from the lower part of the furnace, and as described above, the quality deteriorates significantly, so the liquid seal method is mainly used. Therefore, the amount of gas used can be reduced compared to horizontal furnaces, but
Horizontal furnaces are generally considered to be advantageous when considering the need for equipment for drying liquids, operability when passing fibers to be processed, troubleshooting, and maintainability of the furnace. It is being
【0005】横型炉の場合には、前記のようなシール機
構を炉の入口部及び出口部に設け、不活性ガスでシール
する方法が行なわれているが、シール性を高めるために
は多量の不活性ガスを消費し、その結果、炭素繊維の製
造コストの高騰を引き起こし、また前記のように炭素繊
維の品質低下を招く結果となっていた。In the case of a horizontal furnace, a method is used in which the above-mentioned sealing mechanism is installed at the inlet and outlet of the furnace and sealed with inert gas, but in order to improve the sealing performance, a large amount of gas is used. This consumes inert gas, resulting in an increase in the manufacturing cost of carbon fibers, and as described above, this results in a deterioration in the quality of carbon fibers.
【0006】[0006]
【発明が解決しようとする課題】熱処理炉、特に黒鉛を
炉材とする炉において、酸素、水分等の酸化性ガスの混
入は、寿命を短縮させるばかりでなく、得られる炭素繊
維の品質を著しく低下させるという問題がある。すなわ
ち、酸素が混入すると、約300℃以上において酸化反
応が起こり黒鉛材料が消耗し始めるが、特に、炭素繊維
を処理する約1000℃以上の領域においてはその反応
速度は著しく速く、黒鉛材料のみならず炭素繊維そのも
のをも酸化するため、炉内に混入する酸素量をできるだ
け少なくする必要がある。[Problems to be Solved by the Invention] In a heat treatment furnace, especially a furnace using graphite as a furnace material, the mixing of oxidizing gases such as oxygen and moisture not only shortens the life but also significantly deteriorates the quality of the carbon fiber obtained. There is a problem with lowering it. In other words, when oxygen is mixed in, an oxidation reaction occurs at temperatures above about 300°C and the graphite material begins to be consumed, but the reaction rate is particularly fast in the region of about 1000°C or above where carbon fibers are processed. Since the carbon fiber itself is also oxidized, it is necessary to minimize the amount of oxygen that enters the furnace.
【0007】本発明の目的は、熱処理炉において、不活
性ガス雰囲気下で処理する場合の、使用ガス量の低減と
炉の寿命延長による製造コストの低減化、加えて炭素繊
維の品質向上を図ることにある。[0007] The purpose of the present invention is to reduce manufacturing costs by reducing the amount of gas used and extending the life of the furnace when processing under an inert gas atmosphere in a heat treatment furnace, and to improve the quality of carbon fibers. There is a particular thing.
【0008】[0008]
【課題を解決するための手段】上記の目的は、不活性雰
囲気中、繊維状物質を連続的に処理する熱処理炉におい
て、該炉の入口部及び出口部周囲を囲むようにボックス
を設け、両ボックス内の圧力を実質的に同一になるよう
制御しながらボックス内のガスを吸引することによって
達成できることを見いだし、本発明は該知見に基づいて
完成した。すなわち本発明は、繊維状物質を不活性雰囲
気中で連続的に熱処理する製造装置において、該炉の入
口部及び出口部に圧力制御用のボックス、およびそれに
結合される吸引機構を備えることを特徴とする炭素繊維
用熱処理炉を提供する。[Means for Solving the Problems] The above object is to provide a heat treatment furnace for continuously treating fibrous materials in an inert atmosphere with a box surrounding the inlet and outlet of the furnace. It was discovered that this can be achieved by suctioning the gas inside the box while controlling the pressure inside the box to be substantially the same, and the present invention was completed based on this finding. That is, the present invention provides a manufacturing apparatus for continuously heat-treating a fibrous material in an inert atmosphere, which is characterized by comprising a pressure control box at the inlet and outlet of the furnace, and a suction mechanism coupled to the box. The present invention provides a heat treatment furnace for carbon fiber.
【0009】以下、図面を参照しながら本発明を具体的
に説明する。図1は、本発明による横型熱処理炉の概略
図である。図において、1は被処理繊維であり、2の炉
の入口から出口に向かって進行する。炉の出口には3の
シール機構を備えてあり、不活性ガス流はこの場合被処
理繊維と向流に流れる。4は本発明の特徴である圧力制
御用のボックスである。The present invention will be specifically explained below with reference to the drawings. FIG. 1 is a schematic diagram of a horizontal heat treatment furnace according to the present invention. In the figure, 1 is a fiber to be treated, which progresses from the inlet to the outlet of the furnace 2. The outlet of the furnace is equipped with three sealing mechanisms, in which case the inert gas flow flows countercurrently to the fibers to be treated. 4 is a box for pressure control, which is a feature of the present invention.
【0010】本発明の熱処理炉は、横型炉の入口部及び
出口部に圧力制御用のボックスを設けることに特徴があ
るが、さらにシール機構を入口あるいは出口のいずれか
一方として使用するガス量を低減化させることもできる
、本発明におけるこのシール機構は一般的に用いられる
ラビリンス構造のもので十分目的を達成することが出来
る。[0010] The heat treatment furnace of the present invention is characterized in that pressure control boxes are provided at the inlet and outlet of the horizontal furnace, and furthermore, the sealing mechanism is used as either the inlet or the outlet to control the amount of gas. This sealing mechanism in the present invention, which can also reduce the amount of damage, can sufficiently achieve the purpose with a commonly used labyrinth structure.
【0011】次に、圧力制御用ボックスについて説明す
る。このボックスは被処理繊維が通過する開口部(7)
以外は密閉とする必要があり、その長さは、炉の入口あ
るいは炉の出口のシール機構の先端から300〜100
0ミリメートルの範囲内に開口部を設置することが重要
である。すなわち、300ミリメートルより小さい場合
には、外気の圧力が変動した場合など炉内へ酸素が混入
し、本発明の目的とする安定したシール性が得られない
。また、1000ミリメートル以上の場合には、被処理
繊維を通すときや、トラブルが発生したときの操作性が
悪くなり、さらに、設備が大型化するなど好ましくない
。Next, the pressure control box will be explained. This box has an opening (7) through which the fibers to be treated pass.
The length must be 300 to 100 mm from the tip of the sealing mechanism at the furnace inlet or furnace outlet.
It is important to place the opening within 0 mm. That is, if the diameter is smaller than 300 mm, oxygen will enter the furnace when the pressure of the outside air fluctuates, and the stable sealing performance that is the object of the present invention cannot be obtained. Moreover, if the diameter is 1000 mm or more, the operability becomes poor when passing the fiber to be treated or when trouble occurs, and furthermore, the equipment becomes larger, which is undesirable.
【0012】また、この図において炉の入口に設けた圧
力制御用ボックスは、2から排気される炉内ガスの補集
も兼ねており、9の吸引機構により8の排ガス処理装置
へと導かれる。従って、炉内ガスがプラント屋内へ漏洩
しないように吸引量を決める必要があるが、この場合、
炉の出口に設けたボックス内の圧力を、入口のボックス
内圧力と実質的に同じ圧力にすることが重要である。In addition, in this figure, the pressure control box installed at the inlet of the furnace also serves to collect the furnace gas exhausted from 2, and is led to the exhaust gas treatment device 8 by the suction mechanism 9. . Therefore, it is necessary to determine the amount of suction so that the gas inside the furnace does not leak into the plant.
It is important that the pressure in the box at the outlet of the furnace is substantially the same as the pressure in the box at the inlet.
【0013】圧力の制御方法としては、ボックス内の圧
力を微圧計等(11)により検出し、配管に設けたダン
パー等(10)を開閉することにより行うことが出来る
。なお、これらの制御方式を自動化することによって、
炉内排ガスが変動した場合など即座に対応できるので、
炭素繊維の品質維持の面からもより一層確実な操業が可
能となる。The pressure can be controlled by detecting the pressure inside the box with a micropressure gauge (11) and opening/closing a damper (10) provided in the pipe. Furthermore, by automating these control methods,
We can respond immediately when the flue gas inside the furnace fluctuates.
This enables even more reliable operation in terms of maintaining the quality of carbon fiber.
【0014】図2は、シールガス量と炉内の酸素濃度の
関係である。一般的に炉の維持管理の面から炉内の酸素
濃度は10ppm以下にする必要があるが、本発明の圧
力制御用ボックスを用いて前記のような圧力制御を行っ
た場合には、少ないシールガス量で炉内の酸素濃度を1
0ppm以下にすることができる。一方、出口側にボッ
クスを設けない場合には、酸素濃度を10ppm以下に
するために、多くのシールガス量を必要とするばかりで
なく、図3に示すように、急激に炉内の酸素濃度が変動
する場合があることが明らかとなった。FIG. 2 shows the relationship between the amount of sealing gas and the oxygen concentration in the furnace. Generally, the oxygen concentration in the furnace must be kept below 10 ppm from the viewpoint of furnace maintenance and management, but if the pressure control box of the present invention is used to control the pressure as described above, it is possible to reduce the number of seals. The oxygen concentration in the furnace is 1 with the amount of gas.
It can be reduced to 0 ppm or less. On the other hand, if a box is not provided on the outlet side, not only will a large amount of sealing gas be required to reduce the oxygen concentration to 10 ppm or less, but the oxygen concentration in the furnace will rapidly increase, as shown in Figure 3. It has become clear that there may be fluctuations.
【0015】[0015]
【実施例】以下、実施例により本発明の効果を具体的に
説明する。[Examples] The effects of the present invention will be specifically explained below with reference to Examples.
【0016】[0016]
【実施例1】常法に従って処理した酸化繊維を、図1に
示す熱処理炉を用いて、ボックス内圧力を−0.5mm
Aq、シールガス量を0.4Nm3/Hr/cm2 (
シール開口部単位断面積当り)とし最高処理温度140
0℃にて炭素化処理を行った。得られた炭素繊維は毛羽
も少なく優れた物性を示し、さらに、炉材は2年以上使
用することが可能であった。[Example 1] Oxidized fibers treated according to a conventional method were heated using a heat treatment furnace shown in Fig. 1, and the pressure inside the box was set to -0.5 mm.
Aq, seal gas amount 0.4Nm3/Hr/cm2 (
(per unit cross-sectional area of seal opening) maximum processing temperature 140
Carbonization treatment was performed at 0°C. The obtained carbon fiber showed excellent physical properties with little fuzz, and furthermore, the furnace material could be used for more than two years.
【0017】[0017]
【比較例1】図1に示す熱処理炉の出口部ボックスを設
けずに、シールガス量を0.4Nm3 /Hr/cm2
とし、上記実施例1と同様に最高処理温度1400℃
にて炭素化処理を行った。炭素繊維の物性はロットごと
に変動し、さらに、炉材は酸化消耗し2カ月で使用不可
能となった。[Comparative Example 1] Without installing the outlet box of the heat treatment furnace shown in Fig. 1, the sealing gas amount was reduced to 0.4Nm3/Hr/cm2.
The maximum treatment temperature was 1400°C as in Example 1 above.
Carbonization treatment was performed at. The physical properties of the carbon fiber varied from lot to lot, and the furnace material was consumed by oxidation and became unusable within two months.
【0018】[0018]
【発明の効果】以上に述べたように、本発明の熱処理炉
は、炉の入口部及び出口部に圧力制御用のボックスを設
けることによって、炉内へ混入する酸素量を少ないガス
量で遮断させることができ、炉材質である黒鉛材料の寿
命が延長され、炭素繊維の品質が向上する。また混入す
る酸素量の変動を少なくすることができるので、炭素繊
維の品質維持の面からもより一層確実な操業が可能とな
る。Effects of the Invention As described above, the heat treatment furnace of the present invention can cut off the amount of oxygen mixed into the furnace with a small amount of gas by providing pressure control boxes at the inlet and outlet of the furnace. This can extend the life of graphite material, which is the furnace material, and improve the quality of carbon fiber. Furthermore, since fluctuations in the amount of oxygen mixed in can be reduced, even more reliable operation is possible in terms of maintaining the quality of carbon fibers.
【図1】本発明による熱処理炉を示す概略図である。FIG. 1 is a schematic diagram showing a heat treatment furnace according to the present invention.
【図2】シールガス量と炉内酸素濃度の関係である。FIG. 2 shows the relationship between the amount of sealing gas and the oxygen concentration in the furnace.
【図3】炉内酸素濃度の経時変化の例である。FIG. 3 is an example of changes in oxygen concentration in the furnace over time.
1 被処理繊維 2 炉出口 3 シール部 4 圧力制御用ボックス 5 不活性ガス供給口 6 熱処理炉本体 7 ボックス開口部 8 排ガス処理装置 9 吸引装置 10 ダンパー 11 圧力計 1. Fiber to be treated 2 Furnace outlet 3 Seal part 4 Pressure control box 5 Inert gas supply port 6 Heat treatment furnace body 7 Box opening 8 Exhaust gas treatment equipment 9 Suction device 10 Damper 11 Pressure gauge
Claims (1)
に熱処理する装置において、該炉の入口部及び出口部に
圧力制御用のボックス、およびそれに結合される吸引機
構を備えることを特徴とする炭素繊維用熱処理炉。1. An apparatus for continuously heat-treating fibrous materials in an inert atmosphere, characterized by comprising a pressure control box at an inlet and an outlet of the furnace, and a suction mechanism coupled to the box. A heat treatment furnace for carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6849791A JPH04308226A (en) | 1991-04-01 | 1991-04-01 | Heat treatment furnace for carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6849791A JPH04308226A (en) | 1991-04-01 | 1991-04-01 | Heat treatment furnace for carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04308226A true JPH04308226A (en) | 1992-10-30 |
Family
ID=13375394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6849791A Withdrawn JPH04308226A (en) | 1991-04-01 | 1991-04-01 | Heat treatment furnace for carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04308226A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103882560A (en) * | 2014-04-07 | 2014-06-25 | 北京化工大学 | Online dehumidification and deoxidation device for continuous production of carbon fibers |
-
1991
- 1991-04-01 JP JP6849791A patent/JPH04308226A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103882560A (en) * | 2014-04-07 | 2014-06-25 | 北京化工大学 | Online dehumidification and deoxidation device for continuous production of carbon fibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1094764A (en) | Process and apparatus for producing carbon fibers | |
US4610860A (en) | Method and system for producing carbon fibers | |
EP0516051B1 (en) | Method for continuous production of carbon fiber using calcining furnace | |
CN114481366B (en) | Preparation method of low-defect polyacrylonitrile-based carbon fiber | |
US5193996A (en) | Method and system for producing carbon fibers | |
JP4961235B2 (en) | Carbon fiber manufacturing apparatus and carbon fiber manufacturing method | |
US4559010A (en) | Apparatus for producing oxidized filaments | |
GB2184819A (en) | System for producing carbon fibers | |
JPH04308226A (en) | Heat treatment furnace for carbon fiber | |
EP0118616B1 (en) | Process for producing carbon fiber | |
EP3540101B1 (en) | Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber | |
CN114395825B (en) | Pre-oxidation furnace suitable for multi-specification fibers and control method thereof | |
JPS59116423A (en) | Manufacture of flame resistant fiber or carbon fiber | |
JP2008045227A (en) | Carbonization furnace and method for producing carbonized fiber | |
JPH08311723A (en) | Oxidation treatment furnace and production of carbon fiber | |
US20020061266A1 (en) | Apparatus for manufacturing activated carbon fiber | |
JP2001234434A (en) | Method for producing carbon fiber | |
CN115434042B (en) | Atmosphere control method for polyacrylonitrile-based carbon fiber pre-oxidized fiber in carbonization process | |
JPS608640Y2 (en) | Gas seal device for firing furnace for carbon fiber production | |
JPS59112029A (en) | Manufacture of carbon fiber | |
JP2998354B2 (en) | Flame-resistant fiber manufacturing equipment | |
JP2004124297A (en) | Filament yarn baking apparatus | |
JPH06166911A (en) | Production of carbon fiber | |
JPH03104928A (en) | Device for thermal treatment | |
JPS63120115A (en) | Heat-treating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |