JPH08311723A - Oxidation treatment furnace and production of carbon fiber - Google Patents

Oxidation treatment furnace and production of carbon fiber

Info

Publication number
JPH08311723A
JPH08311723A JP2953896A JP2953896A JPH08311723A JP H08311723 A JPH08311723 A JP H08311723A JP 2953896 A JP2953896 A JP 2953896A JP 2953896 A JP2953896 A JP 2953896A JP H08311723 A JPH08311723 A JP H08311723A
Authority
JP
Japan
Prior art keywords
oxidation treatment
carbon fiber
fan
treatment furnace
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2953896A
Other languages
Japanese (ja)
Other versions
JP3610659B2 (en
Inventor
Ikuo Takeuchi
幾雄 竹内
Takashi Honda
隆 本田
Minoru Yoshinaga
稔 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP02953896A priority Critical patent/JP3610659B2/en
Publication of JPH08311723A publication Critical patent/JPH08311723A/en
Application granted granted Critical
Publication of JP3610659B2 publication Critical patent/JP3610659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE: To enable to easily remove powdery dust in an oxidation treatment furnace and rapidly bring the quality of a carbon fiber to a stable level after stopping the furnace by installing an exhaust outlet and a fan in a circulating duct of an oxidative gas. CONSTITUTION: An exhaust outlet 6 is installed in a part of a circulating duct 10 of this circulative oxidation treatment furnace 1 having a fan 4 for circulating an oxidative gas and powdery dust is discharged by the wind pressure of the fan 4 before operating the furnace. It is preferable to close the exhaust outlet during a usual operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度の炭素繊維
の製造に適した酸化処理炉およびその炉を用いた炭素繊
維の製造方法に関する。
TECHNICAL FIELD The present invention relates to an oxidation treatment furnace suitable for producing high-strength carbon fiber and a method for producing carbon fiber using the furnace.

【0002】[0002]

【従来の技術】炭素繊維はその優れた機械的特性を有し
ているため、航空宇宙用途、レジャー用途、一般産業用
途などに広く使用されている。これらの分野において比
強度、比弾性率が高いことは重要である。特に、かかる
特性を安定して得ることができる技術を確立することは
極めて重要である。
BACKGROUND OF THE INVENTION Carbon fibers are widely used in aerospace applications, leisure applications, general industrial applications, etc. because of their excellent mechanical properties. High specific strength and high specific elastic modulus are important in these fields. In particular, it is extremely important to establish a technique capable of stably obtaining such characteristics.

【0003】炭素繊維の弾性率は主に炭化工程または黒
鉛化工程の温度やかかる工程での糸条の延伸比を変える
こと等により、所望の特性を得るよう制御することがで
きる。
The elastic modulus of carbon fibers can be controlled to obtain desired characteristics mainly by changing the temperature in the carbonization process or graphitization process or the stretching ratio of the yarn in such process.

【0004】一方、炭素繊維の引張強度は、前駆体繊維
に付与する油剤や単繊維径等、前駆体繊維としての特性
や、酸化処理や炭化処理などの焼成工程での温度等が影
響する。又、炭素繊維のような脆性物質の引張強度は欠
陥に支配されやすいので、焼成工程で発生または持ち込
まれる粉塵やガスの滞留をなくすことが重要であり、特
に、空気などの大量の活性雰囲気と接触する酸化処理工
程ではその雰囲気の清浄度は極めて重要である。
On the other hand, the tensile strength of carbon fiber is affected by the properties of the precursor fiber such as the oil agent and the single fiber diameter applied to the precursor fiber, the temperature in the firing process such as the oxidation treatment and the carbonization treatment. In addition, since the tensile strength of brittle substances such as carbon fiber is apt to be dominated by defects, it is important to eliminate the retention of dust and gas generated or introduced in the firing process. The cleanliness of the atmosphere is extremely important in the contact oxidation process.

【0005】通常、炭素繊維の酸化処理炉では、熱エネ
ルギーの損失を小さくするために、加熱機などにより加
熱した空気などの活性気体をファンにより酸化処理炉内
に送気し、それを炉から抜き出して加熱機に送るとい
う、いわゆる循環系を有している。このような炉では、
長期に運転を続けると、例えば前駆体繊維に付与される
ことの多いシリコーン系油剤に起因したシリカ等や、前
駆体繊維や空気が炉外から持ち込む粉塵のため、循環熱
風中の粉塵量が増加していき、やがて得られる炭素繊維
の引張強度が低下するようになる。粉塵のなかで特に炭
素繊維の引張強度に対し有害であるのは鉄、アルミニウ
ム、クロム、マグネシウム等の金属元素であるが、かか
る金属元素は単体で存在するよりもむしろ前記シリカな
どと何らかの結合を伴って存在するものと推定される。
したがって、一定期間運転を続けた炉は、一旦停機し
て、系内の粉塵を取り除いた後、さらに運転を再開せし
めるという手順を踏む必要がある。
Usually, in a carbon fiber oxidation treatment furnace, in order to reduce the loss of thermal energy, an active gas such as air heated by a heater or the like is blown into the oxidation treatment furnace by a fan, and then it is fed from the furnace. It has a so-called circulation system in which it is taken out and sent to a heater. In a furnace like this,
If the operation is continued for a long period of time, the amount of dust in the circulating hot air will increase due to, for example, silica originating from the silicone oil that is often added to the precursor fiber, and the dust that the precursor fiber and air bring from outside the furnace. As a result, the tensile strength of the resulting carbon fiber will decrease. Among the dusts, metal elements such as iron, aluminum, chromium, and magnesium are particularly harmful to the tensile strength of carbon fiber.However, such metal elements are not present as a simple substance but rather form a bond with the silica or the like. It is presumed to be present with it.
Therefore, it is necessary to stop the furnace that has been operating for a certain period of time, remove dust in the system, and then restart the operation.

【0006】しかし、一旦停機後、系内の粉塵を除去し
たつもりでも、運転を再開すると、運転再開当初に、得
られる炭素繊維の引張強度が大きく低下する現象が起こ
る。
However, even if the dust in the system is intended to be removed after the suspension, once the operation is restarted, the tensile strength of the obtained carbon fiber is greatly reduced at the beginning of the operation restart.

【0007】さらに系内の粉塵の除去を強化するため、
多くの要員、時間をかけることも考えられるが、コスト
の高騰につながるばかりか、大量生産用の大型の設備の
場合には、かかる設備からサブミクロンレベルの粉塵を
効果的に除去せしめることはきわめて困難であった。
To further enhance the removal of dust in the system,
Although it can be considered to take a lot of personnel and time, it not only leads to a high cost, but in the case of large-scale equipment for mass production, it is extremely difficult to effectively remove submicron level dust from such equipment. It was difficult.

【0008】本発明者らは、かかる問題点に鑑み、鋭意
検討の結果、酸化処理炉内に存在する粉塵を効率的に除
去するのに適した方法を見いだし、本発明を完成するに
至ったのである。
In view of such problems, the present inventors have made earnest studies, and as a result, found a method suitable for efficiently removing dust existing in the oxidation treatment furnace, and completed the present invention. Of.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決すること、すなわち一旦停機後、酸化処理
炉に存在する粉塵を容易に除去でき、それにより高強度
の炭素繊維を安定的に製造し得る装置および方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, that is, after stopping once, dust existing in the oxidation treatment furnace can be easily removed, thereby stabilizing high-strength carbon fiber. To provide a device and a method that can be manufactured in a uniform manner.

【0010】[0010]

【課題を解決するための手段】本発明の酸化処理炉は、
上記課題を達成するため次の構成を有する。すなわち、
ファンにより酸化性気体を循環せしめる循環系を有す
る酸化処理炉において、循環系に排気口を設けることを
特徴とする炭素繊維製造用酸化処理炉である。また、本
発明の炭素繊維の製造方法は、上記課題を達成するため
次の構成を有する。すなわち、上記酸化処理炉の運転開
始前にファンの吸引風量の一部を排気口より排気せしめ
て後、前駆体糸条を該酸化処理炉で酸化処理せしめ、つ
いで炭化処理することを特徴とする炭素繊維の製造方法
である。
The oxidation treatment furnace of the present invention comprises:
In order to achieve the above-mentioned subject, it has the following composition. That is,
In an oxidation treatment furnace having a circulation system in which an oxidizing gas is circulated by a fan, an exhaust port is provided in the circulation system. Further, the method for producing carbon fiber of the present invention has the following constitution in order to achieve the above object. That is, before starting the operation of the oxidation treatment furnace, a part of the suctioned air volume of the fan is exhausted from the exhaust port, the precursor yarn is oxidized in the oxidation treatment furnace, and then carbonized. It is a manufacturing method of carbon fiber.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0012】酸化処理炉を一旦停機後、運転を再開する
と、運転再開当初に、得られる炭素繊維の引張強度が低
下するのは、炉内の辺境部に堆積した粉塵が、ファンの
運転開始時の強い突発的な循環風により再浮遊して炉内
の粉塵量が増加するためと考えられる。したがって、フ
ァンの運転開始後に再浮遊した粉塵を除去することが必
要である。
When the operation of the oxidation treatment furnace is stopped and then restarted, the tensile strength of the carbon fiber obtained at the beginning of the restart is that the dust accumulated on the border of the furnace is at the start of the operation of the fan. It is considered that the amount of dust in the furnace increases due to the re-suspension due to the strong and sudden circulating wind of. Therefore, it is necessary to remove the dust that has re-suspended after the operation of the fan is started.

【0013】本発明の酸化処理炉の一例を図1に示す。
炭素繊維の前駆体繊維を酸化処理するのに必要な酸化性
気体を循環せしめるためのファン4を有する循環式の酸
化処理炉であって、その循環系ダクト10の一部に排気
口6を有する。これにより酸化処理炉の運転開始前にフ
ァンの風圧を用いて粉塵を排出できる。通常の運転中
は、酸化性気体を効率よく循環させることができるよう
に、排気口を閉じておけるような開閉機構を有している
ことが好ましい。通常運転時の循環用のファンを粉塵排
出用のファンとして利用するためには、図1のように、
該ファンの排出側の循環系ダクトに排気口を設けるのが
好ましい。
An example of the oxidation treatment furnace of the present invention is shown in FIG.
A circulation type oxidation treatment furnace having a fan 4 for circulating an oxidizing gas necessary for oxidizing a precursor fiber of carbon fiber, and having an exhaust port 6 in a part of a circulation system duct 10 thereof. . As a result, the dust can be discharged using the wind pressure of the fan before the operation of the oxidation treatment furnace is started. During normal operation, it is preferable to have an opening / closing mechanism that allows the exhaust port to be closed so that the oxidizing gas can be efficiently circulated. In order to use the circulation fan during normal operation as a dust discharge fan, as shown in FIG.
An exhaust port is preferably provided in the circulation duct on the exhaust side of the fan.

【0014】また、図2および図3に示すように、排気
口6だけでなく給気口7を併せて設けておくと、後述す
るように切り替え弁8、8’を用いて循環と排気を繰り
返して行えるのでより好ましい。
Further, as shown in FIG. 2 and FIG. 3, if not only the exhaust port 6 but also the air supply port 7 is provided together, as will be described later, circulation and exhaust are performed by using switching valves 8 and 8 '. It is more preferable because it can be repeated.

【0015】排気口の開口面積は、循環系と排気系の圧
力損失などを考慮して決定することができ、それにより
ファンの吸引風量の13〜100%を排気可能とするこ
とが好ましい。ファンの吸引風量は、ファンの吸引側で
の風速を風速計で測定しそれに循環系ダクトの断面積を
乗じて求める。排気風量は排気口での風量を風速計で測
定し排気口開口面積を乗じて求める。なお、後述する実
施例では、風速計として日本カノマックス製アネモマス
ターモデル6161を用いた。
The opening area of the exhaust port can be determined in consideration of the pressure loss of the circulation system and the exhaust system, so that it is preferable that 13 to 100% of the suctioned air volume of the fan can be exhausted. The suction air volume of the fan is obtained by measuring the wind speed on the suction side of the fan with an anemometer and multiplying it by the cross-sectional area of the circulation system duct. The exhaust air volume is obtained by measuring the air volume at the exhaust port with an anemometer and multiplying it by the exhaust port opening area. In the examples described later, Anemomaster Model 6161 manufactured by Nippon Kanomax was used as the anemometer.

【0016】次に、かかる酸化処理炉を用いた炭素繊維
の製造方法について説明する。
Next, a method for producing carbon fibers using such an oxidation treatment furnace will be described.

【0017】先ず、一旦停機している酸化処理炉の循環
用ファンを駆動し、排気口から空気などの気体を排気す
るとともに粉塵を排出する。かかる排気は、酸化処理の
ための酸化性気体を昇温する前に行うことが、熱エネル
ギー損失を小さくするために好ましい。
First, the circulating fan of the oxidation treatment furnace which has been stopped is driven to exhaust gas such as air from the exhaust port and discharge dust. Such evacuation is preferably performed before raising the temperature of the oxidizing gas for the oxidation treatment in order to reduce heat energy loss.

【0018】排気口から排気するときの排気風量は、フ
ァンの吸引風量の13〜100%とすることにより効率
的に粉塵を排出することができる。
When the amount of exhaust air when exhausting from the exhaust port is 13 to 100% of the amount of suction air of the fan, dust can be efficiently discharged.

【0019】また、酸化処理炉の運転開始前の排気に加
えて、あらかじめ先の運転終了時の炉体が冷却する前に
も排気を行っておくと、ガス化しているタール等も排出
できるため炭素繊維の引張強度を安定的に得る上でより
効果的である。
Further, in addition to the exhaust before the start of the operation of the oxidation treatment furnace, if the exhaust is also performed before the furnace body at the end of the previous operation is cooled, the gasified tar and the like can be discharged. It is more effective in stably obtaining the tensile strength of the carbon fiber.

【0020】さらに、排気に際しては、炉内壁面から粉
塵の剥離を促進し粉塵の排出をより効率的に行うため
に、酸化性気体へ振動を付与することが好ましい。
Further, at the time of evacuation, it is preferable to apply vibration to the oxidizing gas in order to promote separation of dust from the inner wall surface of the furnace and discharge dust more efficiently.

【0021】酸化性気体へ振動を付与するには、排気口
の開閉を繰り返して行うと循環風が乱すのが良い。かか
る観点から、図2および図3に示すように、排気口6だ
けでなく給気口7を併せて設けておくと、切り替え弁
8、8’を用いて循環と排気を繰り返して行え、循環風
を乱して、粉塵の排出効率を良好とすることができるの
でさらに好ましい。
In order to apply vibration to the oxidizing gas, it is preferable that the circulating air is disturbed by repeatedly opening and closing the exhaust port. From this point of view, if not only the exhaust port 6 but also the air supply port 7 is provided as shown in FIGS. 2 and 3, circulation and exhaust can be repeated by using the switching valves 8 and 8 ′. It is more preferable because the wind can be disturbed to improve the dust discharge efficiency.

【0022】すでに存在している酸化処理炉に上記の切
り換え弁を設けることは設備が大型であればあるほど改
造にかかる時間、要員、費用がかかるため、かかる場合
などには、酸化性気体へ振動を付与する比較的簡便な方
法として、低周波音波発生装置や気体噴射装置などを用
いることもできる。また、ファンの回転数をプログラミ
ングコントローラーによるインバーター等を用いて変動
させ乱流効果により振動させることもできる このようにして酸化処理炉の運転開始前に排気した酸化
処理炉内の粉塵量を10個/cm3 以下とすることが好
ましい。これにより製造開始当初の炭素繊維の引張強度
を良好なものとすることができる。
[0022] Providing the above-mentioned switching valve in an existing oxidation treatment furnace requires more time, personnel and cost for remodeling as the equipment is larger. As a relatively simple method of applying vibration, a low frequency sound wave generator, a gas jet device, or the like can be used. It is also possible to change the fan speed by using a programming controller, such as an inverter, to oscillate by the turbulent flow effect. / Cm 3 or less is preferable. Thereby, the tensile strength of the carbon fiber at the beginning of the production can be improved.

【0023】ここで、酸化処理炉内の粉塵量とは、循環
風が安定して流れている酸化処理炉内の場所で、光散乱
式自動粒子計数器で測定したときの0.5〜5ミクロン
の粒子数をいう。なお、本発明の実施例中では、光散乱
式自動粒子計数器として、リオン(株)製パーティクル
カウンターKC−03を用いた。
Here, the amount of dust in the oxidation treatment furnace is 0.5 to 5 when measured by a light scattering type automatic particle counter at a place in the oxidation treatment furnace where the circulating air is stably flowing. Refers to the number of micron particles. In the examples of the present invention, a particle counter KC-03 manufactured by Rion Co., Ltd. was used as a light scattering automatic particle counter.

【0024】このようにして酸化処理炉の運転開始前に
排気した酸化処理炉に、酸化性気体を循環せしめ、アク
リル系繊維やピッチ系繊維などの前駆体繊維を通過せし
めて酸化処理を行い、次いで、例えば1100〜200
0℃の、窒素などの不活性雰囲気中で炭化処理を行う。
炭化処理につづいて、例えば2000〜3000℃の、
不活性雰囲気中で黒鉛化処理を行っても良い。
In this way, an oxidizing gas is circulated through the oxidizing furnace exhausted before the operation of the oxidizing furnace, and precursor fibers such as acrylic fibers and pitch fibers are passed through the oxidizing furnace to perform the oxidizing treatment. Then, for example, 1100 to 200
Carbonization is performed in an inert atmosphere such as nitrogen at 0 ° C.
Following the carbonization treatment, for example, at 2000 to 3000 ° C,
Graphitization may be performed in an inert atmosphere.

【0025】これにより、製造開始直後から得られる炭
素繊維の引張強度を良好なものとすることができるだけ
でなく、製造開始から炭素繊維の引張強度が安定するま
での時間を短縮することができる。
As a result, not only the tensile strength of the carbon fiber obtained immediately after the start of the production can be made good, but also the time from the start of the production until the tensile strength of the carbon fiber becomes stable can be shortened.

【0026】[0026]

【実施例】以下、本発明をさらに具体的に実施例に基づ
いて説明する。
EXAMPLES The present invention will now be described more specifically based on examples.

【0027】なお、本実施例中、炭素繊維の物性(強
度)は、JIS R−7601に準じて測定したエポキ
シ樹脂含浸ストランドでの物性であり、測定回数n=1
0の平均から求めたものである。
In this example, the physical properties (strength) of the carbon fiber are the physical properties of the epoxy resin-impregnated strand measured according to JIS R-7601, and the number of measurements n = 1.
It is calculated from the average of 0.

【0028】(実施例1)長期運転で粉塵が堆積した図
1に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、循環用ファン4による風力で
炉内の粉塵を排出した。このときファンの吸引風量の1
5%を排気口から排出した。排気口を閉じ、空気を加熱
循環させてから酸化処理炉内の粉塵量を測定したとこ
ろ、10個/cm3 であった。
(Embodiment 1) In the oxidation treatment furnace shown in FIG. 1 in which dust is accumulated in a long-term operation, before starting the operation and before heating the air by the gas heater 5, the inside of the furnace is blown by the wind by the circulation fan 4. Dust is discharged. At this time, the suction air volume of the fan is 1
5% was discharged from the exhaust port. The exhaust port was closed, air was heated and circulated, and then the amount of dust in the oxidation treatment furnace was measured and found to be 10 particles / cm 3 .

【0029】この後、シリコーン系油剤を付与させた1
2000フィラメントからなるアクリル系繊維を前駆体
繊維として該酸化処理炉を用いて酸化処理し、次いで炭
化処理して炭素繊維を製造した。製造開始直後の炭素繊
維の引張強度は470kgf/mm2 であり、12時間運転後
に500kgf/mm2 になった。
After this, a silicone oil was applied 1
An acrylic fiber composed of 2000 filaments was used as a precursor fiber, subjected to an oxidation treatment using the oxidation treatment furnace, and then a carbonization treatment to produce a carbon fiber. Tensile strength of carbon fibers immediately after production start is 470kgf / mm 2, became 500 kgf / mm 2 after 12 hours of operation.

【0030】(実施例2)長期運転で粉塵が堆積した図
2に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、酸化処理炉の循環系ダクトの
一部を切り替え弁8で遮断し、かつ排気口および給気口
の切り替え弁8を開いて、循環用ファン4による風力で
炉内の粉塵を排出した。このときファンの吸引風量のほ
ぼ100%の風量を排気し、ほぼ同量の新鮮な空気を取
り入れた。さらにこのとき、図2の状態からと図3の状
態を、切り換え弁を3回繰り返し切り換えて粉塵を排出
した。排気口および給気口の切り替え弁を閉じ、循環系
ダクトの切り替え弁8を開いて、空気を加熱循環させて
から酸化処理炉内の粉塵数を測定したところ、4個/c
3 であった。
(Embodiment 2) In the oxidation treatment furnace shown in FIG. 2 in which dust is accumulated during long-term operation, a part of the circulation duct of the oxidation treatment furnace is provided before the operation is started and before the air is heated by the gas heater 5. Was switched off by the switching valve 8, the switching valve 8 of the exhaust port and the air supply port was opened, and the dust in the furnace was discharged by the wind force of the circulation fan 4. At this time, almost 100% of the suctioned air volume of the fan was exhausted, and almost the same amount of fresh air was taken in. Further, at this time, the switching valve was repeatedly switched from the state of FIG. 2 to the state of FIG. 3 three times to discharge the dust. When the number of dust particles in the oxidation treatment furnace was measured after the switching valve of the exhaust port and the air supply port was closed and the switching valve 8 of the circulation system duct was opened to circulate air by heating, 4 pieces / c
It was m 3 .

【0031】この後、実施例1と同様のアクリル系繊維
を前駆体繊維として該酸化処理炉を用いて酸化処理し、
次いで炭化処理して炭素繊維を製造した。製造開始直後
の炭素繊維の引張強度は490kgf/mm2 であり、6時間
運転後に510kgf/mm2 となった。
Thereafter, the same acrylic fiber as in Example 1 was used as a precursor fiber and subjected to an oxidation treatment in the oxidation treatment furnace.
Then, carbonization was performed to produce carbon fibers. The tensile strength of the carbon fiber immediately after the start of production was 490 kgf / mm 2 , and after operating for 6 hours, it became 510 kgf / mm 2 .

【0032】(実施例3)切り換え弁を30回繰り返し
て行う以外、実施例2と全く同様にしたところ、製造開
始直後の炭素繊維の引張強度は500kgf/mm2 であり、
6時間後に530kgf/mm2 となった。
(Example 3) Except for repeating the switching valve 30 times, the same procedure as in Example 2 was carried out. The tensile strength of the carbon fiber immediately after the start of production was 500 kgf / mm 2 .
It became 530 kgf / mm 2 after 6 hours.

【0033】(実施例4)長期運転で粉塵が堆積した図
4に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、循環用ファン4による風力で
炉内の粉塵を排出した。このときファンの吸引風量の3
%を排気口から排出した。排気口を閉じ、空気を加熱循
環させてから酸化処理炉内の粉塵数を測定したところ、
100個/cm3 であった。
(Embodiment 4) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before starting the operation and before heating the air by the gas heater 5, the air is blown inside the furnace by the circulation fan 4. Dust is discharged. At this time, the suction air volume of the fan is 3
% Was discharged from the exhaust port. When the exhaust port was closed and the air was heated and circulated, the number of dust particles in the oxidation treatment furnace was measured.
It was 100 pieces / cm 3 .

【0034】この後、実施例1と同様のアクリル系繊維
を前駆体繊維として該酸化処理炉を用いて酸化処理し、
次いで炭化処理して炭素繊維を製造した。製造開始直後
の炭素繊維の引張強度は420kgf/mm2 であり、48時
間運転後470kgf/mm2 になった。
Thereafter, the same acrylic fiber as in Example 1 was used as a precursor fiber for oxidation treatment using the oxidation treatment furnace,
Then, carbonization was performed to produce carbon fibers. The tensile strength of the carbon fiber immediately after the start of production was 420 kgf / mm 2 , and after operating for 48 hours, it became 470 kgf / mm 2 .

【0035】(実施例5)長期運転で粉塵が堆積した図
4に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、低周波音波発生装置(インフ
ラソニック社製インフラホン)により、約20Hzの低
周波音波により酸化性気体を振動させて後、循環用ファ
ン4による風力で炉内の粉塵を排出した。このときファ
ンの吸引風量の15%を排気口から排出した。
(Embodiment 5) In the oxidation treatment furnace shown in FIG. 4 in which dust was accumulated during long-term operation, a low frequency sound wave generator (manufactured by Infrasonic Co., Ltd.) was used before starting the operation and before heating the air with the gas heater 5. The oxidizing gas was vibrated by a low frequency sound wave of about 20 Hz by an infraphone, and then dust in the furnace was discharged by the wind force of the circulation fan 4. At this time, 15% of the suctioned air volume of the fan was discharged from the exhaust port.

【0036】この後、シリコーン系油剤を付与させた1
2000フィラメントからなるアクリル系繊維を前駆体
繊維として該酸化処理炉を用いて酸化処理し、次いで炭
化処理して炭素繊維を製造した。製造開始直後の炭素繊
維の引張強度は520kgf/mm2 であり、6時間運転後に
560kgf/mm2 になった。
After this, a silicone oil was applied 1
An acrylic fiber composed of 2000 filaments was used as a precursor fiber, subjected to an oxidation treatment using the oxidation treatment furnace, and then a carbonization treatment to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 520 kgf / mm 2 , and after operating for 6 hours, it became 560 kgf / mm 2 .

【0037】(実施例6)長期運転で粉塵が堆積した図
4に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、気体噴射装置(ガデリウス社
製ダイヤモンドスートブロー)により、8m3 /時間の
加圧気体を連続的に噴射して、酸化性気体を振動させて
後、循環用ファン4による風力で炉内の粉塵を排出し
た。このときファンの吸引風量の15%を排気口から排
出した。
(Embodiment 6) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated during long-term operation, a gas injection device (diamond soot blow manufactured by Gadelius) before starting operation and before heating air by the gas heater 5. Then, a pressurized gas of 8 m 3 / hour was continuously injected to oscillate the oxidizing gas, and then the dust in the furnace was discharged by the wind force of the circulation fan 4. At this time, 15% of the suctioned air volume of the fan was discharged from the exhaust port.

【0038】この後、シリコーン系油剤を付与させた1
2000フィラメントからなるアクリル系繊維を前駆体
繊維として該酸化処理炉を用いて酸化処理し、次いで炭
化処理して炭素繊維を製造した。製造開始直後の炭素繊
維の引張強度は490kgf/mm2 であり、6時間運転後に
510kgf/mm2 になった。
After this, a silicone oil was applied 1
An acrylic fiber composed of 2000 filaments was used as a precursor fiber, subjected to an oxidation treatment using the oxidation treatment furnace, and then a carbonization treatment to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 490 kgf / mm 2 , and after operating for 6 hours, it became 510 kgf / mm 2 .

【0039】(実施例7)長期運転で粉塵が堆積した図
4に示す酸化処理炉において、運転開始前、気体加熱機
5で空気を加熱する前に、ファンの回転数をプログラミ
ングコントローラを用いて断続的に変動させ、酸化性気
体を振動させて後、循環用ファン4による風力で炉内の
粉塵を排出した。このときファンの吸引風量の15%を
排気口から排出した。
(Embodiment 7) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before starting the operation and before heating the air by the gas heater 5, the rotation speed of the fan is controlled by using a programming controller. After fluctuating intermittently to oscillate the oxidizing gas, dust in the furnace was discharged by the wind force of the circulation fan 4. At this time, 15% of the suctioned air volume of the fan was discharged from the exhaust port.

【0040】この後、シリコーン系油剤を付与させた1
2000フィラメントからなるアクリル系繊維を前駆体
繊維として該酸化処理炉を用いて酸化処理し、次いで炭
化処理して炭素繊維を製造した。製造開始直後の炭素繊
維の引張強度は490kgf/mm2 であり、6時間運転後に
530kgf/mm2 になった。
After this, a silicone oil was applied 1
An acrylic fiber composed of 2000 filaments was used as a precursor fiber, subjected to an oxidation treatment using the oxidation treatment furnace, and then a carbonization treatment to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 490 kgf / mm 2 , and after operating for 6 hours, it became 530 kgf / mm 2 .

【0041】(比較例1)長期運転で粉塵が堆積した図
7に示す酸化処理炉において、運転開始前一切の空気を
排出しないで、空気を加熱循環させてから酸化処理炉内
の粉塵数を測定したところ、400個/cm3 であっ
た。
(Comparative Example 1) In the oxidation treatment furnace shown in FIG. 7 in which dust accumulated during long-term operation, air was heated and circulated before starting the operation, and the number of dusts in the oxidation treatment furnace was changed. When measured, it was 400 pieces / cm 3 .

【0042】この後、実施例1と同様のアクリル系繊維
を前駆体繊維として該酸化処理炉を用いて酸化処理し、
次いで炭化処理して炭素繊維を製造した。製造開始直後
の炭素繊維の引張強度は400kgf/mm2 であり、96時
間運転後に460kgf/mm2 になった。
Thereafter, the same acrylic fiber as in Example 1 was used as a precursor fiber for oxidation treatment using the oxidation treatment furnace,
Then, carbonization was performed to produce carbon fibers. The tensile strength of the carbon fiber immediately after the start of production was 400 kgf / mm 2 , and after operating for 96 hours, it became 460 kgf / mm 2 .

【0043】[0043]

【発明の効果】本発明の酸化処理炉は、効率的に炉内の
粉塵を効率的に排気除去して清浄化することができ、か
かる酸化処理炉を用いて炭素繊維を製造することによ
り、製造開始直後から得られる炭素繊維の引張強度を良
好なものとすることができるだけでなく、得られる炭素
繊維の引張強度が安定した水準に達するまでの時間を短
縮することができる。
INDUSTRIAL APPLICABILITY The oxidation treatment furnace of the present invention can efficiently remove dust in the furnace by exhausting and purifying it, and by producing carbon fiber by using such oxidation treatment furnace, Not only can the tensile strength of the carbon fiber obtained immediately after the start of production be made good, but the time until the tensile strength of the obtained carbon fiber reaches a stable level can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様の酸化処理炉を示す概略側
面図である。
FIG. 1 is a schematic side view showing an oxidation treatment furnace according to an embodiment of the present invention.

【図2】排気状態にある、本発明の一実施態様の酸化処
理炉を示す概略側面図である。
FIG. 2 is a schematic side view showing an oxidation treatment furnace according to an embodiment of the present invention in an exhaust state.

【図3】循環状態にある、本発明の一実施態様の酸化処
理炉を示す概略側面図である。
FIG. 3 is a schematic side view showing an oxidation treatment furnace of one embodiment of the present invention in a circulating state.

【図4】本発明の一実施態様の酸化処理炉を示す概略側
面図である。
FIG. 4 is a schematic side view showing an oxidation treatment furnace according to an embodiment of the present invention.

【図5】実施例7で用いるファン回転数制御装置のシス
テム構成概念図である。
FIG. 5 is a conceptual diagram of a system configuration of a fan rotation speed control device used in a seventh embodiment.

【図6】実施例7で用いるプログラミングコントローラ
の制御パターンである。
FIG. 6 is a control pattern of the programming controller used in the seventh embodiment.

【図7】従来の酸化処理炉を示す概略側面図である。FIG. 7 is a schematic side view showing a conventional oxidation treatment furnace.

【符号の説明】[Explanation of symbols]

1:酸化処理炉 2:ローラー 3:糸条 4:循環用ファン 5:気体加熱機 6:排気口 7:給気口 8:排気口、給気口の切り替え弁 8’:循環系ダクトの切り替え弁 9:気体の流れ 10:循環系ダクト 11:ファン用モーター 12:インバーター 13:プログラミングコントローラー 1: Oxidation treatment furnace 2: Roller 3: Thread 4: Circulation fan 5: Gas heating device 6: Exhaust port 7: Air inlet port 8: Exhaust port / air inlet port switching valve 8 ': Circulation system duct switching Valve 9: Gas flow 10: Circulation duct 11: Fan motor 12: Inverter 13: Programming controller

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ファンにより酸化性気体を循環せしめる循
環系を有する酸化処理炉において、循環系に排気口を設
けることを特徴とする炭素繊維製造用酸化処理炉。
Claim: What is claimed is: 1. An oxidation treatment furnace having a circulation system in which an oxidizing gas is circulated by a fan, wherein an exhaust port is provided in the circulation system.
【請求項2】ファンの排出側に排気口を設けることを特
徴とする請求項1記載の炭素繊維製造用酸化処理炉。
2. The oxidation treatment furnace for producing carbon fiber according to claim 1, wherein an exhaust port is provided on the discharge side of the fan.
【請求項3】ファンの吸引風量の13〜100%の風量
を排気可能な排気口を設けることを特徴とする請求項1
記載の炭素繊維製造用酸化処理炉。
3. An exhaust port capable of exhausting an air volume of 13 to 100% of the suctioned air volume of the fan.
Oxidation treatment furnace for producing the carbon fiber described.
【請求項4】請求項1記載の酸化処理炉の運転開始前に
ファンの吸引風量の一部を排気口より排気せしめて後、
前駆体糸条を該酸化処理炉で酸化処理せしめ、ついで炭
化処理することを特徴とする炭素繊維の製造方法。
4. A part of the suction air volume of the fan is exhausted from an exhaust port before the operation of the oxidation treatment furnace according to claim 1 is started,
A method for producing a carbon fiber, which comprises subjecting a precursor yarn to an oxidization treatment in the oxidation treatment furnace, and then performing a carbonization treatment.
【請求項5】ファンの吸引風量の13〜100%の風量
を排気口より排気することを特徴とする請求項4記載の
炭素繊維の製造方法。
5. The method for producing carbon fiber according to claim 4, wherein 13 to 100% of the suctioned air volume of the fan is exhausted from the exhaust port.
【請求項6】ファンの吸引風量の一部を排気口より排気
せしめることにより、酸化処理炉内の粉塵量を10個/
cm3 以下とすることを特徴とする請求項4記載の炭素
繊維の製造方法。
6. The amount of dust in the oxidation treatment furnace is reduced to 10 per minute by exhausting a part of the suction air volume of the fan from an exhaust port.
The method for producing carbon fiber according to claim 4, wherein the carbon fiber has a diameter of 3 cm 3 or less.
【請求項7】ファンの吸引風量の一部を排気口より排気
せしめるに際して、酸化性気体に振動を付与しつつ排気
せしめることを特徴とする請求項4記載の炭素繊維の製
造方法。
7. The method for producing carbon fiber according to claim 4, wherein when a part of the suction air volume of the fan is exhausted from the exhaust port, the oxidizing gas is exhausted while vibrating.
【請求項8】低周波音波により酸化性気体に振動を付与
することを特徴とする請求項7記載の炭素繊維の製造方
法。
8. The method for producing a carbon fiber according to claim 7, wherein the oxidizing gas is vibrated by a low frequency sound wave.
【請求項9】気体を噴射して酸化性気体に振動を付与す
ることを特徴とする請求項7記載の炭素繊維の製造方
法。
9. The method for producing a carbon fiber according to claim 7, wherein a gas is jetted to give vibration to the oxidizing gas.
【請求項10】ファンの回転数を変動させて酸化性気体
に振動を付与することを特徴とする請求項7記載の炭素
繊維の製造方法。
10. The method for producing carbon fiber according to claim 7, wherein the oxidizing gas is vibrated by changing the rotation speed of the fan.
JP02953896A 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method Expired - Lifetime JP3610659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02953896A JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5272095 1995-03-13
JP7-52720 1995-03-13
JP02953896A JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH08311723A true JPH08311723A (en) 1996-11-26
JP3610659B2 JP3610659B2 (en) 2005-01-19

Family

ID=26367750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02953896A Expired - Lifetime JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3610659B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065926A (en) * 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd Porous carbon electrode base material and its manufacturing method
CN102051712A (en) * 2011-01-12 2011-05-11 蓝星(北京)化工机械有限公司 Preoxidation device for PAN (polyacrylonitrile) precursor connector
CN102094262A (en) * 2010-12-08 2011-06-15 北京化工机械厂 Device for carrying out preoxidation on PAN (polyacrylonitrile) precursor joint
WO2014081015A1 (en) 2012-11-22 2014-05-30 三菱レイヨン株式会社 Method for production of carbon fiber bundle
WO2016136814A1 (en) * 2015-02-25 2016-09-01 三菱レイヨン株式会社 Heat treatment furnace device and method for producing carbon fiber bundle
JP6354926B1 (en) * 2017-02-08 2018-07-11 東レ株式会社 Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
WO2018147107A1 (en) 2017-02-08 2018-08-16 東レ株式会社 Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber
CN108950741A (en) * 2018-07-01 2018-12-07 周柳含 For producing the continuous carbonization device of carbon fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065926A (en) * 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd Porous carbon electrode base material and its manufacturing method
CN102094262A (en) * 2010-12-08 2011-06-15 北京化工机械厂 Device for carrying out preoxidation on PAN (polyacrylonitrile) precursor joint
CN102051712A (en) * 2011-01-12 2011-05-11 蓝星(北京)化工机械有限公司 Preoxidation device for PAN (polyacrylonitrile) precursor connector
WO2014081015A1 (en) 2012-11-22 2014-05-30 三菱レイヨン株式会社 Method for production of carbon fiber bundle
US9890481B2 (en) 2012-11-22 2018-02-13 Mitsubishi Chemical Corporation Method for production of carbon fiber bundle
JP2017218720A (en) * 2015-02-25 2017-12-14 三菱ケミカル株式会社 Production method of oxydation fiber bundle, and production method of carbon fiber bundle
JPWO2016136814A1 (en) * 2015-02-25 2017-04-27 三菱レイヨン株式会社 Heat treatment furnace apparatus and carbon fiber bundle manufacturing method
WO2016136814A1 (en) * 2015-02-25 2016-09-01 三菱レイヨン株式会社 Heat treatment furnace device and method for producing carbon fiber bundle
US10940400B2 (en) 2015-02-25 2021-03-09 Mitsubishi Chemical Corporation Heat treatment furnace device and method for producing carbon fiber bundle
JP6354926B1 (en) * 2017-02-08 2018-07-11 東レ株式会社 Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
WO2018147107A1 (en) 2017-02-08 2018-08-16 東レ株式会社 Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber
KR20190059994A (en) 2017-02-08 2019-05-31 도레이 카부시키가이샤 METHOD FOR REMOVING CHEMICAL CHARACTERISTICS AND METHOD FOR MANUFACTURING CHEMICAL CHARATED FIBERS
US10612164B2 (en) 2017-02-08 2020-04-07 Toray Industries, Inc. Method of cleaning oxidation oven and method of producing oxidized fiber, carbon fiber, and graphitized fiber
CN108950741A (en) * 2018-07-01 2018-12-07 周柳含 For producing the continuous carbonization device of carbon fiber

Also Published As

Publication number Publication date
JP3610659B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
EP2460915B1 (en) Method for stabilizing a carbon-containing fibre and method for producing a carbon fibre
JPH08311723A (en) Oxidation treatment furnace and production of carbon fiber
TWI649469B (en) Continuous carbonization process and system for producing carbon fiber
JP5682714B2 (en) Carbon fiber bundle manufacturing method
GB2148866A (en) Method and system for producing carbon fibers
WO2018147107A1 (en) Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber
JP4377007B2 (en) Carbon fiber manufacturing method
JP2008144293A (en) Heat treatment apparatus for flame resistance and method for producing flame-resistant fiber bundle
JP2012201997A (en) Flameproofing furnace apparatus
JP2008202158A (en) Heat-treating furnace and heat-treating method
CN207313677U (en) A kind of pit carburizing furnace
JP6354926B1 (en) Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
JP2002088588A (en) Apparatus for producing activated carbon fiber
JP4386426B2 (en) Carbonization furnace
JP4212297B2 (en) Carbon fiber manufacturing method
JP2001234434A (en) Method for producing carbon fiber
JP2004019053A (en) Horizontal type carbonization furnace for producing carbon fiber and method for producing carbon fiber by using the same
JPH04241162A (en) Method for removing powder and granule
JPH03104928A (en) Device for thermal treatment
RU1791691C (en) Gas seal of furnace for thermal treatment of filamentary porous material
JPS6311367B2 (en)
JP4209963B2 (en) Carbonization furnace for carbon fiber firing
JP4159792B2 (en) Method for producing graphitized fiber
JPS6285029A (en) Production of carbon fiber
JPH04308226A (en) Heat treatment furnace for carbon fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term