JPS6311367B2 - - Google Patents

Info

Publication number
JPS6311367B2
JPS6311367B2 JP15408483A JP15408483A JPS6311367B2 JP S6311367 B2 JPS6311367 B2 JP S6311367B2 JP 15408483 A JP15408483 A JP 15408483A JP 15408483 A JP15408483 A JP 15408483A JP S6311367 B2 JPS6311367 B2 JP S6311367B2
Authority
JP
Japan
Prior art keywords
gas
strength
carbon fiber
carbon fibers
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15408483A
Other languages
Japanese (ja)
Other versions
JPS6047033A (en
Inventor
Akitaka Kikuchi
Keizo Hosoi
Tsutomu Hiseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15408483A priority Critical patent/JPS6047033A/en
Publication of JPS6047033A publication Critical patent/JPS6047033A/en
Publication of JPS6311367B2 publication Critical patent/JPS6311367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、引張破断強度の高い、高強度炭素繊
維の表面処理方法に関するものである。 さらに詳しくは、本発明は高性能炭素繊維を得
るための改良された気相表面処理に関するもので
ある。 一般に炭素繊維は、比強度、比弾性率等の機械
的特性に優れており、そのため、この炭素繊維を
強化材とした複合材料は、航空機の構造材をはじ
め、宇宙開発機器や自動車部品、またスポーツ用
品に至るまで、広く利用されつつある。この複合
材料は、主として炭素繊維で補強したプラスチツ
クより構成されるものであり、従つてこの炭素繊
維とプラスチツクとの接着性は、複合材料の機械
的特性に大きく影響を与える事が知られている。
特に近年、高強度炭素繊維と呼ばれる引張破断強
度が高い炭素繊維の開発が進められ、従来のもの
に比べて、強度に於て約50Kg/mm2以上も向上して
きている。ここに於て、炭素繊維の高強度化の効
果を複合材料として充分に発揮させるにあたつて
炭素繊維とプラスチツクとの接着性を改良させる
ための表面処理方法の研究が、従来にもまして、
重要なものとなつてきている。 炭素繊維とプラスチツクの接着性を向上させる
ための表面処理方法としては、酸化剤を含む溶液
中で酸化する方法(湿式酸化法)、電極ローラー
を介して炭素繊維に直接通電し、電解液中にて電
解酸化する方法(電解酸化法)、そして空気など
の酸化性ガス雰囲気中にて加熱し、酸化する方法
(気相酸化法)等が知られている。これらの方法
のうち、湿式酸化法では、特開昭52−25199号公
報に記載されている様に反応時間は、数時間を要
し、かなり長く、工業的な工程とするには経済的
に不利な面がある。 また、電解酸化法は、特開昭58−104222号公報
に記載されている様に電極ローラーを介して炭素
繊維に通電するため、この炭素繊維の繊維間に電
流差が生じやすく、この為、電流の不十分な繊維
は、表面処理が充分に行なわれず、この炭素繊維
を用いて複合材料を製造した場合は、必ずしも満
足する性能が得られない。さらに、湿式酸化法電
解酸化法、いずれの方法でも、両者とも水溶液中
に一旦浸漬し、表面の酸化処理を施した後、不要
な酸化剤、或は電解質を完全に洗浄し、乾燥させ
ねばならない。これらの洗浄、乾燥の工程は、炭
素繊維中の単糸の切断や単糸間の並びの不規則性
を生じせしめる原因となる。特に単糸間の糸の並
びの不規則性は、複合材料とした場合の機械的特
性を大きく低下させてしまう。また、水溶液の洗
浄に起因する電解質溶液の残留物は、微量であつ
ても、繊維とプラスチツクとの界面に悪影響を及
ぼし、接着性の低下や、不均一性を引き起こし、
機械的特性の低下につながる。 これらの表面処理法に対して、気相酸化法は、
酸化反応を気相で行なうため、工程中に水溶液の
洗浄、乾燥等の操作を必要とせず、また、処理温
度を適当に選択することによつて、非常に短時間
で処理することができる。しかしながら、従来の
気相酸化法では、単に炭素繊維を空気中又は、他
の酸化性雰囲気中で、酸化処理を行うため、局所
的に過度の酸化が起こり易く、そのため、炭素繊
維の表面に、孔状の侵食跡や凹凸の面が生じ、こ
の表面の不均一さのために、炭素繊維の伸度及び
強度の著しい低下を招いていた。例えば、この欠
点を改良する目的を示している特開昭52−53092
公報では、塩素を酸化性雰囲気中に少量混入させ
ている。しかし、該方法では、炭素繊維の引張強
度の低下は殆んどなくなるが、繊維の重量の減少
が著しく、一般にプリカーサーと呼ばれている原
料繊維に対する収率の低下も著しい。 本発明者らは、高強度炭素繊維に対して、気相
にて、極度の重量減少を生じさせず、強度の低下
もなく、かつ表面の均一性を向上させる処理方法
の重要性に着目し、その方法について鋭意研究を
重ねた結果、本発明に到達した。 本発明の要旨とするところは高強度炭素繊維を
ハロゲン化水素ガス、酸素ガス及び、残部が不活
性ガスより構成され、かつ酸素ガスに対するハロ
ゲン化水素ガスの容量比が、0.5以上である雰囲
気中で、加熱処理することを特徴とする高強度炭
素繊維の表面処理方法にある。 以下、本発明を更に詳しく説明する。 本発明は気相にて、高強度炭素繊維を加熱して
表面処理するに際して、ハロゲン化水素ガス0.1
〜10容量%および酸素ガス0.1〜5容量%、及び
残部が窒素ガスやアルゴンガスなどの不活性ガス
から成り、かつ酸素ガスに対するハロゲン化水素
ガスの容量比が0.5以上である雰囲気中にて、加
熱処理を行う事を特徴とする高強度炭素繊維の表
面処理方法である。 本発明でいう高強度炭素繊維とは、ポリアクリ
ロニトリル系繊維を原料とするもの、又は石油系
石炭素のピツチを原料とするものであり、かつ引
張破断強度が250Kg/mm2以上のものをいう。また、
ハロゲン化水素ガスとは、使用温度域で気体状態
であるフツ化水素、塩化水素、臭化水素、ヨウ化
水素をさし、単独又は二種以上の混合ガスとして
も使用しうるが、実用上特に塩化水素が好まし
い。又、酸素ガス源としては純酸素単独で使用し
ても良いし、空気等の酸素と他のガスとの混合物
を使用しても良い。また、ハロゲン化水素ガスの
含有率は全ガス量に対して、容量比で0.1〜10容
量%が好ましく、この中でも0.5〜2容量%が特
に好ましい。ハロゲン化水素ガスの濃度が0.1容
量%以下では、高強度炭素繊維の強度の低下が著
しく、かつ表面の凹凸もはげしくなる。一方10容
量%以上では、強度のより一層の向上も見られ
ず、経済的にも不利となる。 酸素ガスの濃度は全ガス量に対して容量比で
0.05〜5容量%が好ましく、0.1〜1.0容量%が特
に好ましい。0.05容量%以下では接着性向上の効
果が低く、5容量%以上では、強度の低下及び表
面の凹凸がはげしくなる。さらに、この酸素ガス
に対するハロゲン化水素ガスの容量比は、0.5以
上であることが必要で、1.0以上であることが好
ましい。この比が0.5以下である場合、表面の均
一な処理がなされない。 次に加熱処理の実施態様について述べると、温
度と時間の組み合わせに於て、温度は、1500℃以
下が好ましく、この場合の処理時間は、5〜60
秒、好ましくは10〜40秒である。また、下限温度
については500℃以上が好ましく、この場合の処
理時間は40〜300秒、好ましくは60〜120秒であ
る。1500℃以上の温度となると、高強度炭素繊維
の特性、例えば密度、弾性率などが大幅に変化
し、500℃以下では、接着性向上効果が少ない。
また、処理時間については、該制限時間以下では
接着性向上効果が悪く、該制限時間以上ではより
一層の接着性向上が認められないのみならず、強
度の低下、繊維重量の顕著な減少が起こる場合が
あるので、好ましくない。なお、この中間の温度
領域では、次の様々な温度と時間の組み合わせが
好ましい。即ち1300℃においては10〜90秒、好ま
しくは15〜60秒、1000℃の場合には20〜120秒、
好ましくは30〜90秒となる。 本発明の表面処理方法に当つて使用した装置
を、第1図に示す。第1図に於て、雰囲気ガスの
供給口1より雰囲気の混合ガスを炉心管5内に供
給し、排気ガスを炉内排気ガス出口2より取り出
す。またシール用窒素ガス供給口3より不活性ガ
スを流し、炉芯管5内のガスが炭素繊維の糸道出
入口6から流出する事を防ぐ。炭素繊維4は表面
処理を施す炭素繊維であつて、糸の進行方向は、
炉心管5の炉内に於ける雰囲気ガスの流れる方向
に対して向流でも、並流でもいずれでも良い。ま
た炉芯管5内の温度分布は任意の処理温度に対し
て、第2図に示すように、一定長の均熱部分7が
あるようにし、前述の表面処理に要する時間と
は、この均熱部分7における高強度炭素繊維の滞
在時間を示す。 この第1図に示す炭素繊維表面処理装置を用い
て、従来法である空気酸化を行つた場合、高強度
炭素繊維の強度は、未処理の高伸度炭素繊維に比
べて、大幅に低下し、時には急激な燃焼反応のた
め、この高強度炭素繊維が焼き切れる場合さえも
ある。また、処理後の高強度炭素繊維を走査型電
子顕微鏡を用いて観察すると、繊維表面の各所に
凹凸が見られ空気酸化では局所的に不均一な表面
処理となつてしまう。 これに対し、本発明の方法である表面処理方法
で得られる高強度炭素繊維は驚くべき事に、強度
が向上し、また酸化による重量減少率も少なく、
さらに、表面は凹凸もなく平滑になつており、均
一に表面処理が行なわれ、かつ、単糸間の並びの
規則性も良好である。このため、該高強度炭素繊
維を強化材とする複合材料は、繊維とプラスチツ
クとの接着性に優れており、機械的特性が優れて
いる。 また、本発明の方法は、炭素繊維の強度を向上
させる作用効果を有するので、高伸度(高強度)
炭素繊維(引張破断伸度1.5%以上、引張強度370
Kg/mm2以上)の表面処理方法として、特に有効で
ある。 実施例 1 ポリアクリロニトリル系繊維(単糸デニール
1.3d、フイラメント数12000)を空気中で耐炎化
し、さらに非酸化性雰囲気中、最高処理温度1300
℃で炭素化した。この高強度炭素繊維を用い、雰
囲気として塩化水素ガスが1.0容量%、酸素ガス
が0.5容量%、窒素ガスが98.5容量%から成る混
合ガスを用い、第2図に示す均熱部分7の温度を
1000℃とし、処理時間を40秒として表面処理を行
つた。得られた表面処理糸を、エポキシ樹脂(油
化シエルエポキシ社製エピコート828)100重量
部、無水メチルナジツク酸90重量部及びベンジル
ジメチルアミン2重量部をメチルエチルケトンに
溶解した混合液に含浸し、プレプリブを作成し、
これを金型を用いて積層したのち、加熱硬化させ
る事によつて平板状の複合材料成形物を作製し
た。得られた成形物について炭素繊維と樹脂との
接着性を反映する代表的尺度である層間剪断強度
を測定したところ8.8Kg/mm2と優れたものであつ
た。また処理糸の伸度及び引張強度をJIS―
R7601―3・5・1に記載のストランド法によつ
て、測定したところ伸度1.78%、引張強度426
Kg/mm2であつた。 また第3図Aに示すように、電子顕微鏡観察か
ら炭素繊維表面に凹凸はなく、平滑になつている
事が確認された。一方、表面処理を施さない未処
理の炭素繊維を使つて作製した複合材料について
の結果を第1表に示す。 実施例 2 実施例1において、表面処理の加熱温度を1350
℃で処理時間を30秒とした以外は全て同様な処理
を行ない、同様にして成型物を製作した。得られ
た成型物の層間剪断強度は9.3Kg/mm2、伸度は
1.79%、引張強度は430Kg/mm2であつた。 実施例 3 実施例1において、表面処理の加熱温度を550
℃で処理時間を100秒とした以外は全て同様な処
理を行い、同様にして成型物を製作した。得られ
た成型物の層間剪断強度は8.2Kg/mm2、伸度は
1.72%、引張強度は412Kg/mm2であつた。 比較例 1 実施例2において、表面処理雰囲気を塩化水素
を用いず、酸素ガスを0.3容量%窒素ガスを99.7
容量%とした以外は、全て同様な処理を行なつた
ところ、伸度は0.85%、引張強度は205Kg/mm2
激減し、表面には凹凸が数多く観察された。 比較例 2 実施例2において表面処理雰囲気を塩化水素ガ
ス1.0容量%、酸素ガス2.5容量%、窒素ガス96.5
容量%(HCl/O2=0.4)とした以外は全て同様
な処理を行つたところ伸度1.49%、引張強度357
Kg/mm2で表面には第3図Bに示すように凹凸が認
められた。実施例1,2,3、比較例1,2の値
を第1表に示す。
The present invention relates to a method for surface treatment of high-strength carbon fibers having high tensile strength at break. More particularly, the present invention relates to improved vapor phase surface treatments to obtain high performance carbon fibers. In general, carbon fiber has excellent mechanical properties such as specific strength and specific modulus of elasticity. Therefore, composite materials reinforced with carbon fiber are used as structural materials for aircraft, space development equipment, automobile parts, and other materials. It is becoming widely used in everything from sports equipment. This composite material is mainly composed of plastic reinforced with carbon fibers, and it is therefore known that the adhesion between the carbon fibers and plastic has a large effect on the mechanical properties of the composite material. .
Particularly in recent years, carbon fibers with high tensile strength at break, called high-strength carbon fibers, have been developed, and their strength has improved by about 50 kg/mm 2 or more compared to conventional ones. In order to fully utilize the effect of increasing the strength of carbon fiber as a composite material, research into surface treatment methods to improve the adhesion between carbon fiber and plastic has become more important than ever.
It is becoming important. Surface treatment methods for improving the adhesion between carbon fibers and plastics include oxidizing in a solution containing an oxidizing agent (wet oxidation method), applying electricity directly to the carbon fibers via an electrode roller, and oxidizing them in an electrolytic solution. A method of performing electrolytic oxidation (electrolytic oxidation method) and a method of heating and oxidizing in an oxidizing gas atmosphere such as air (vapor phase oxidation method) are known. Among these methods, the wet oxidation method, as described in JP-A No. 52-25199, requires a reaction time of several hours, which is quite long, making it economically unsuitable for industrial use. There are disadvantages. In addition, in the electrolytic oxidation method, as described in JP-A-58-104222, since electricity is applied to the carbon fibers via an electrode roller, a current difference is likely to occur between the fibers of the carbon fibers. Fibers with insufficient electric current are not sufficiently surface-treated, and when composite materials are manufactured using these carbon fibers, satisfactory performance cannot necessarily be obtained. Furthermore, in both wet oxidation and electrolytic oxidation methods, after immersing the surface in an aqueous solution and oxidizing the surface, unnecessary oxidizing agents or electrolytes must be completely washed away and drying is required. . These washing and drying steps cause breakage of the single filaments in the carbon fibers and irregularities in the arrangement of the single filaments. In particular, irregularities in the arrangement of single yarns greatly reduce the mechanical properties of the composite material. Furthermore, even a small amount of electrolyte solution residue resulting from washing with an aqueous solution can have an adverse effect on the interface between fibers and plastic, causing reduced adhesion and non-uniformity.
Leads to a decrease in mechanical properties. In contrast to these surface treatment methods, the gas phase oxidation method is
Since the oxidation reaction is carried out in the gas phase, there is no need for operations such as washing and drying the aqueous solution during the process, and by appropriately selecting the treatment temperature, the treatment can be carried out in a very short time. However, in the conventional gas phase oxidation method, carbon fibers are simply oxidized in air or other oxidizing atmospheres, so excessive oxidation tends to occur locally. Pore-like erosion marks and uneven surfaces were generated, and the non-uniformity of the surface caused a significant decrease in the elongation and strength of the carbon fibers. For example, Japanese Patent Application Laid-Open No. 52-53092, which shows the purpose of improving this drawback,
In the publication, a small amount of chlorine is mixed into the oxidizing atmosphere. However, in this method, although there is almost no decrease in the tensile strength of the carbon fibers, there is a significant decrease in the weight of the fibers, and there is also a significant decrease in the yield with respect to the raw material fibers, which are generally called precursors. The present inventors focused on the importance of a treatment method for high-strength carbon fibers that does not cause extreme weight loss or decrease in strength and improves surface uniformity in the gas phase. As a result of extensive research into this method, we have arrived at the present invention. The gist of the present invention is to manufacture high-strength carbon fibers in an atmosphere composed of hydrogen halide gas, oxygen gas, and the remainder being an inert gas, and in which the volume ratio of hydrogen halide gas to oxygen gas is 0.5 or more. The present invention provides a method for surface treatment of high-strength carbon fiber, which is characterized by heat treatment. The present invention will be explained in more detail below. In the present invention, when heating and surface treating high-strength carbon fibers in the gas phase, hydrogen halide gas is
~10% by volume and oxygen gas 0.1 to 5% by volume, and the remainder is an inert gas such as nitrogen gas or argon gas, and in an atmosphere where the volume ratio of hydrogen halide gas to oxygen gas is 0.5 or more, This is a method for surface treatment of high-strength carbon fibers, which is characterized by carrying out heat treatment. The high-strength carbon fiber used in the present invention refers to fibers made from polyacrylonitrile fibers or petroleum-based stone carbon pitch, and which have a tensile strength at break of 250 kg/mm 2 or more. . Also,
Hydrogen halide gas refers to hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide that are in a gaseous state in the operating temperature range, and can be used alone or as a mixture of two or more types, but in practice Particularly preferred is hydrogen chloride. Further, as the oxygen gas source, pure oxygen alone may be used, or a mixture of oxygen such as air and another gas may be used. Further, the content of the hydrogen halide gas is preferably 0.1 to 10% by volume with respect to the total gas amount, and particularly preferably 0.5 to 2% by volume. When the concentration of the hydrogen halide gas is 0.1% by volume or less, the strength of the high-strength carbon fiber decreases significantly and the surface unevenness becomes severe. On the other hand, if it exceeds 10% by volume, no further improvement in strength will be seen and it will be economically disadvantageous. The concentration of oxygen gas is expressed as a volume ratio to the total gas amount.
0.05 to 5% by volume is preferred, and 0.1 to 1.0% by volume is particularly preferred. If the amount is less than 0.05% by volume, the effect of improving adhesion is low, and if it is more than 5% by volume, the strength will decrease and the surface will become uneven. Furthermore, the volume ratio of hydrogen halide gas to oxygen gas needs to be 0.5 or more, and preferably 1.0 or more. If this ratio is less than 0.5, the surface will not be uniformly treated. Next, describing the embodiment of the heat treatment, in terms of the combination of temperature and time, the temperature is preferably 1500℃ or less, and the treatment time in this case is 5 to 60℃.
seconds, preferably 10 to 40 seconds. Further, the lower limit temperature is preferably 500°C or higher, and the treatment time in this case is 40 to 300 seconds, preferably 60 to 120 seconds. At temperatures above 1500°C, the properties of high-strength carbon fibers, such as density and modulus of elasticity, change significantly, and below 500°C, there is little effect on improving adhesion.
Regarding the treatment time, if the treatment time is less than the time limit, the effect of improving adhesion is poor, and if the time is longer than the time limit, not only no further improvement in adhesion is observed, but also a decrease in strength and a noticeable decrease in fiber weight occur. This is not preferable because there are cases where this is the case. In addition, in this intermediate temperature range, the following various combinations of temperature and time are preferable. That is, at 1300°C, 10 to 90 seconds, preferably 15 to 60 seconds, and at 1000°C, 20 to 120 seconds,
Preferably it is 30 to 90 seconds. The apparatus used in the surface treatment method of the present invention is shown in FIG. In FIG. 1, an atmospheric mixed gas is supplied into a furnace core tube 5 through an atmospheric gas supply port 1, and exhaust gas is taken out through an in-furnace exhaust gas outlet 2. In addition, an inert gas is flowed through the sealing nitrogen gas supply port 3 to prevent the gas in the furnace core tube 5 from flowing out from the carbon fiber yarn path entrance and exit port 6. The carbon fiber 4 is a surface-treated carbon fiber, and the direction of yarn travel is as follows:
The flow direction of the atmospheric gas in the furnace of the furnace tube 5 may be countercurrent or parallel to the flow direction. Furthermore, the temperature distribution inside the furnace core tube 5 is such that there is a uniform heating section 7 of a certain length for any given treatment temperature, as shown in FIG. The residence time of high-strength carbon fibers in the hot section 7 is shown. When the conventional method of air oxidation is performed using the carbon fiber surface treatment equipment shown in Figure 1, the strength of high-strength carbon fibers is significantly lower than that of untreated high-elongation carbon fibers. In some cases, this high-strength carbon fiber can even be burned out due to the rapid combustion reaction. Furthermore, when the treated high-strength carbon fiber is observed using a scanning electron microscope, irregularities can be seen at various locations on the fiber surface, and air oxidation results in locally uneven surface treatment. In contrast, the high-strength carbon fibers obtained by the surface treatment method of the present invention surprisingly have improved strength and less weight loss due to oxidation.
Furthermore, the surface is smooth with no irregularities, the surface treatment is uniform, and the regularity of the arrangement of the single yarns is also good. Therefore, a composite material using the high-strength carbon fiber as a reinforcing material has excellent adhesion between the fiber and plastic, and has excellent mechanical properties. In addition, the method of the present invention has the effect of improving the strength of carbon fibers, so that high elongation (high strength) can be achieved.
Carbon fiber (tensile elongation at break 1.5% or more, tensile strength 370
This method is particularly effective as a surface treatment method (kg/mm 2 or more). Example 1 Polyacrylonitrile fiber (single denier
1.3d, 12000 filaments) in air, and the maximum processing temperature is 1300 in a non-oxidizing atmosphere.
Carbonized at ℃. Using this high-strength carbon fiber and using a mixed gas consisting of 1.0% by volume of hydrogen chloride gas, 0.5% by volume of oxygen gas, and 98.5% by volume of nitrogen gas as the atmosphere, the temperature of the soaking part 7 shown in Fig. 2 was adjusted.
Surface treatment was carried out at 1000°C and for a treatment time of 40 seconds. The obtained surface-treated yarn was impregnated with a mixture of 100 parts by weight of an epoxy resin (Epicoat 828, manufactured by Yuka Ciel Epoxy Co., Ltd.), 90 parts by weight of methylnadic anhydride, and 2 parts by weight of benzyldimethylamine dissolved in methyl ethyl ketone, and preprebs were prepared. make,
This was laminated using a mold, and then heated and hardened to produce a flat composite material molded product. The interlaminar shear strength, which is a typical measure reflecting the adhesiveness between carbon fiber and resin, of the obtained molded product was measured and was found to be excellent at 8.8 Kg/mm 2 . In addition, the elongation and tensile strength of the treated yarn are determined by JIS
As measured by the strand method described in R7601-3.5.1, the elongation was 1.78% and the tensile strength was 426.
It was Kg/ mm2 . Further, as shown in FIG. 3A, it was confirmed by electron microscope observation that the carbon fiber surface had no irregularities and was smooth. On the other hand, Table 1 shows the results for composite materials produced using untreated carbon fibers that were not subjected to surface treatment. Example 2 In Example 1, the heating temperature for surface treatment was set to 1350°C.
A molded article was produced in the same manner, except that the treatment time was 30 seconds at ℃. The interlaminar shear strength of the obtained molded product was 9.3Kg/mm 2 and the elongation was
The tensile strength was 1.79% and the tensile strength was 430Kg/ mm2 . Example 3 In Example 1, the heating temperature for surface treatment was set to 550°C.
A molded article was produced in the same manner, except that the treatment time was 100 seconds at ℃. The interlaminar shear strength of the obtained molded product was 8.2Kg/mm 2 and the elongation was
1.72%, and the tensile strength was 412 Kg/mm 2 . Comparative Example 1 In Example 2, the surface treatment atmosphere was changed to 0.3% by volume oxygen gas and 99.7% nitrogen gas without using hydrogen chloride.
When all the same treatments were carried out except for volume %, the elongation was 0.85%, the tensile strength was drastically reduced to 205 Kg/mm 2 , and many irregularities were observed on the surface. Comparative Example 2 In Example 2, the surface treatment atmosphere was hydrogen chloride gas 1.0% by volume, oxygen gas 2.5% by volume, and nitrogen gas 96.5% by volume.
When the same treatment was performed except that the volume was changed to % (HCl/O 2 = 0.4), the elongation was 1.49% and the tensile strength was 357.
Kg/mm 2 and unevenness was observed on the surface as shown in Figure 3B. Table 1 shows the values of Examples 1, 2, and 3 and Comparative Examples 1 and 2.

【表】 * 未処理炭素繊維に対する収率
[Table] *Yield based on untreated carbon fiber

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素繊維の表面処理装置の断面図を示
す。第2図は第1図に示す炭素繊維の表面処理装
置の炉芯管内温度分布を示す。第3図は炭素繊維
表面の電子顕微鏡写真であり、第3図Aは実施例
1で得た炭素繊維表面、第3図Bは比較例2で得
た炭素繊維表面を示す。 1……雰囲気ガスの供給口、2……炉内排ガス
出口、3……シール用窒素ガス供給口、4……炭
素繊維、5……炉芯管、6……炭素繊維出入口、
7……炉芯管内温度分布。
FIG. 1 shows a sectional view of a carbon fiber surface treatment apparatus. FIG. 2 shows the temperature distribution within the furnace core tube of the carbon fiber surface treatment apparatus shown in FIG. FIG. 3 is an electron micrograph of the carbon fiber surface, FIG. 3A shows the carbon fiber surface obtained in Example 1, and FIG. 3B shows the carbon fiber surface obtained in Comparative Example 2. 1...Atmospheric gas supply port, 2...Furnace exhaust gas outlet, 3...Nitrogen gas supply port for sealing, 4...Carbon fiber, 5...Furnace core tube, 6...Carbon fiber inlet/outlet,
7...Temperature distribution inside the furnace core tube.

Claims (1)

【特許請求の範囲】[Claims] 1 高強度炭素繊維をハロゲン化水素ガス、酸素
ガス及び、残部が不活性ガスより構成され、かつ
酸素ガスに対するハロゲン化水素ガスの容量比
が、0.5以上である雰囲気中で、加熱処理するこ
とを特徴とする高強度炭素繊維の表面処理方法。
1 Heat-treating high-strength carbon fibers in an atmosphere consisting of hydrogen halide gas, oxygen gas, and the remainder being an inert gas, and in which the volume ratio of hydrogen halide gas to oxygen gas is 0.5 or more. Features a surface treatment method for high-strength carbon fiber.
JP15408483A 1983-08-25 1983-08-25 Surface treatment of high-strength carbon fiber Granted JPS6047033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15408483A JPS6047033A (en) 1983-08-25 1983-08-25 Surface treatment of high-strength carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15408483A JPS6047033A (en) 1983-08-25 1983-08-25 Surface treatment of high-strength carbon fiber

Publications (2)

Publication Number Publication Date
JPS6047033A JPS6047033A (en) 1985-03-14
JPS6311367B2 true JPS6311367B2 (en) 1988-03-14

Family

ID=15576537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15408483A Granted JPS6047033A (en) 1983-08-25 1983-08-25 Surface treatment of high-strength carbon fiber

Country Status (1)

Country Link
JP (1) JPS6047033A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231072A (en) * 1986-03-28 1987-10-09 旭化成株式会社 Production of high strength carbon fiber
JP2003064199A (en) * 2001-08-28 2003-03-05 Toray Ind Inc Prepreg and tubular body made of fiber-reinforced composite material
DE102010040533A1 (en) 2010-09-10 2012-03-15 Robert Bosch Gmbh Device cover for a portable mixer

Also Published As

Publication number Publication date
JPS6047033A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
AU2015355369B2 (en) Continuous carbonization process and system for producing carbon fibers
KR102461416B1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
US3972984A (en) Process for the preparation of carbon fiber
US4526770A (en) Method of producing carbon fiber and product thereof
JPS6311367B2 (en)
CN112695412B (en) Rapid pre-oxidation method for large-tow carbon fiber
EP0178890A2 (en) A proces for preparing a carbon fiber of high strength
JP6667567B2 (en) Fiber pre-oxidation equipment
KR910003351B1 (en) Method for after-treatment of carbon fiber
JPH0229766B2 (en)
JP3216683U (en) Oxidized fiber structure
JP2001248025A (en) Method for producing carbon fiber
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JPH0116927B2 (en)
JPH0544155A (en) Surface treatment of carbon fiber
CN118459241B (en) Preparation method of carbon/carbon PECVD (plasma enhanced chemical vapor deposition) bearing frame
JPH03287860A (en) Production of carbon fiber
JP2001336063A (en) Method for producing metal-carbon fiber composite material
JP4919410B2 (en) Carbon fiber manufacturing method
JPH02259118A (en) Graphite fiber having high tensile strength
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JP2007332498A (en) Method for producing carbon fiber bundle
JPH07150420A (en) Heating furnace for producing graphite fiber and production of graphite fiber
JPS602711A (en) Preparation of graphite yarn