JPS59110701A - Stabilization of reduced iron powder for magnetic recording - Google Patents
Stabilization of reduced iron powder for magnetic recordingInfo
- Publication number
- JPS59110701A JPS59110701A JP57219305A JP21930582A JPS59110701A JP S59110701 A JPS59110701 A JP S59110701A JP 57219305 A JP57219305 A JP 57219305A JP 21930582 A JP21930582 A JP 21930582A JP S59110701 A JPS59110701 A JP S59110701A
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- reduced iron
- powder
- magnetic
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 85
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 63
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 230000006641 stabilisation Effects 0.000 title claims abstract description 20
- 238000011105 stabilization Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000007789 gas Substances 0.000 claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 230000000087 stabilizing effect Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 28
- 238000003860 storage Methods 0.000 abstract description 4
- 239000006247 magnetic powder Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 description 48
- 229910052751 metal Inorganic materials 0.000 description 48
- 230000003647 oxidation Effects 0.000 description 24
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 230000005294 ferromagnetic effect Effects 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- -1 organic acid salt Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000010405 reoxidation reaction Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】 するものである。[Detailed description of the invention] It is something to do.
強磁性金属粉末は、磁気特性が従来の酸化物系磁性粉末
よシも優れており、近年、磁気記録密度の一層の高度化
という要請にそった材料として開発が進められているが
、反面、磁気記録用として要求される通常約0. 1μ
ないし1μの粒子径のものでは空気中で非常に酸化を受
けやすいため、粉末の安全な取扱いおよび磁気テープ化
後の磁気性能の経時的劣化という点で問題がある。Ferromagnetic metal powder has better magnetic properties than conventional oxide-based magnetic powder, and in recent years, it has been developed as a material that meets the demand for even higher magnetic recording densities. Usually about 0.0 mm is required for magnetic recording. 1μ
Particles with a particle size of 1 μm to 1 μm are highly susceptible to oxidation in the air, which poses problems in terms of safe handling of the powder and deterioration of magnetic performance over time after forming into a magnetic tape.
この様な問題に対処する方法として、還元により製造し
た金属粉末に酸化物被膜を形成させる方法が知られてい
る。例えば、特開昭48−79153には還元された金
属粉末に慎重に空気を通す方法が、また特開昭5 1
− 112465には金属粉末を過マンガン酸塩の水溶
液中に浸漬することにより酸化物被膜を形成させる方法
が、また特開昭53−114769には金属粉末を水酸
化ナトリウム水溶液に懸濁させた後、酸素含有ガスを通
気する方法が開示されている。As a method for dealing with such problems, a method is known in which an oxide film is formed on metal powder produced by reduction. For example, JP-A-48-79153 describes a method of carefully passing air through reduced metal powder;
- 112465 describes a method of forming an oxide film by immersing metal powder in an aqueous solution of permanganate, and JP-A-53-114769 discloses a method of forming an oxide film by immersing metal powder in an aqueous solution of sodium hydroxide. , discloses a method for venting oxygen-containing gas.
また、還元によシ製造した金属粉末の表面に、該金属よ
りもイオン化傾向の小さい金属を液状媒体より析出させ
て保護被膜を形成させる方法が特公昭5’4−15’5
47に開示されている。In addition, a method was proposed in which a protective film was formed on the surface of a metal powder produced by reduction by precipitating a metal having a smaller ionization tendency than the metal from a liquid medium.
47.
しかし従来法では、次の様な欠点がある。第一に、強性
金属粉末の磁気特性の経時変化が十分に抑制されていガ
いことである。例えば、上記特開昭5 3 − 1 1
j7 6 9による金属粉末では、金属粉末を温度4
5℃、相対湿度90%の雰囲気下に放置すると、80日
経過後では飽和磁化量が120 emu / f以下ま
で下がってしまう。またこの場合、金属粉末を用いて作
製した磁気テープを磁気ヘッドに接触した状態で100
時間走行させた後、温度45℃、相対濁度90チの雰囲
気下に放置すると、100日経過後では残留磁化量が、
60チ程度まで下がってしまう0
第二、強磁性金属粉末が高温下で再酸化を起とし易いこ
とである。例えば、上記特開昭51−112465によ
る金属粉末では、夏期における保存時に保存倉庫内の温
度が40℃を越えると再酸化による自然発火を起こし、
また、磁気テープ製一時の塗布工程で溶剤乾燥のために
80℃に加熱すると発火を起こしてしまう。However, the conventional method has the following drawbacks. First, changes over time in the magnetic properties of the strong metal powder are sufficiently suppressed. For example, the above-mentioned Japanese Patent Application Laid-Open No. 53-11
For metal powder according to j7 6 9, the metal powder is heated to a temperature of 4
If left in an atmosphere of 5° C. and 90% relative humidity, the saturation magnetization will drop to 120 emu/f or less after 80 days. In addition, in this case, a magnetic tape made using metal powder is held in contact with a magnetic head for 100 minutes.
After running for an hour, if left in an atmosphere with a temperature of 45°C and a relative turbidity of 90°C, the amount of residual magnetization will decrease after 100 days.
Second, ferromagnetic metal powder is susceptible to re-oxidation at high temperatures. For example, the metal powder disclosed in JP-A-51-112465 causes spontaneous combustion due to reoxidation when the temperature in the storage warehouse exceeds 40°C during storage in the summer.
Furthermore, if the magnetic tape is heated to 80° C. to dry the solvent during the temporary coating process, it may catch fire.
第三に、強磁性金属粉末に被膜を形成させる工程が複雑
なことである。例えば、上記特公昭54−15547の
方法では、金属粉末の還元後に該金属よりもイオン化傾
向の小さい金属イオンを含む液状媒体中に、金属粉末を
添加する方法が採用されているが、液状媒体の沢過、乾
燥工程が不可避であシ製造工程が複雑となる。Thirdly, the process of forming a coating on ferromagnetic metal powder is complicated. For example, in the method of Japanese Patent Publication No. 54-15547, a method is adopted in which, after reducing the metal powder, the metal powder is added to a liquid medium containing metal ions having a smaller ionization tendency than the metal. The manufacturing process becomes complicated because filtration and drying processes are unavoidable.
第四に、強磁性金属粉末に形成された被膜が剥離しゃす
いことである。例えば、上記特開昭48−79153に
よる金属粉末をボールミルに入れ約4時間振とうした後
、観察してみると、部分的に茶褐色の粉末が混在してい
るが、これより推定できるのは被膜が振とうにより剥離
し酸化が進行してしまうことである。Fourth, the coating formed on the ferromagnetic metal powder is easily peeled off. For example, when the metal powder disclosed in JP-A-48-79153 is placed in a ball mill and shaken for about 4 hours, it is observed that some brown powder is mixed in, but it can be inferred from this that the coating is is peeled off by shaking and oxidation progresses.
さらに実用上重要な特性は、平均値としての磁気特性の
劣化が少ないことの他に、これら磁気特性の劣化度合の
分散値(バラツキ)が許容範囲内に入ることが要求され
、さらにロット間のバラツキも許容範囲内に入るととが
要求される。Furthermore, the practically important characteristics are that in addition to the small average deterioration of the magnetic properties, the dispersion (variation) of the degree of deterioration of these magnetic properties must be within an acceptable range, and It is also required that the variation be within an acceptable range.
ところが、公知の酸化被膜形成技術を用いて、還元鉄粉
を酸素を含むガスで安定化しようとしても、工業的に大
量に処理する場合においては、磁気特性の劣化度合のバ
ラツキが大きい。However, even if an attempt is made to stabilize reduced iron powder with a gas containing oxygen using a known oxide film forming technique, the degree of deterioration of magnetic properties will vary widely when a large amount of reduced iron powder is processed industrially.
換言すれば、実験室内で行う数百グラム以下の小規模で
かつ注意深く安定化処理が行われた場合にのみ所定の劣
化度合を有する金属鉄粉体が得られるのであって、未だ
1バッチ当り胸単位以上の工業規模の量産化技術は完成
されていない。In other words, metallic iron powder with a certain degree of deterioration can only be obtained by careful stabilization treatment on a small scale of a few hundred grams or less in the laboratory, and it is still possible to obtain metallic iron powder with a certain degree of deterioration. The technology for mass production on an industrial scale beyond units has not been perfected.
本発明者らは、以上の様々従来法の欠点について検討し
多数の実験を重ねた結果、工業的に大量の還元鉄粉を安
定化させるには、酸素を含むガスが、一本一本の粒子の
表面に十分浸透し、大量の還元鉄粉をむらカく均一に安
定化させる技術が必要であることを見い出し、本発明を
完成するに到った。The present inventors investigated the drawbacks of the various conventional methods mentioned above and conducted numerous experiments. As a result, the inventors found that in order to industrially stabilize a large amount of reduced iron powder, oxygen-containing gas must be We have discovered that a technology is needed to sufficiently penetrate the surface of particles and stabilize a large amount of reduced iron powder unevenly and uniformly, and we have completed the present invention.
すなわち本発明は、磁気記録用強磁性金属粉末を、酸素
を含むガスを用いて安定化処理する方法において、ゲー
ジ圧0.05〜50初/−の圧力下、90℃以下の温度
にて酸素を含むガスを空塔線速度1〜20 am/ s
ecで通気し、還元鉄粉を流動さiながら安定化処理す
ることを特徴とする磁気記録用還元鉄粉の安定化方法の
発明である。That is, the present invention provides a method for stabilizing ferromagnetic metal powder for magnetic recording using a gas containing oxygen, in which oxygen is stabilized at a temperature of 90° C. or less under a gauge pressure of 0.05 to 50 m/-. gas containing a superficial linear velocity of 1 to 20 am/s
This is an invention of a method for stabilizing reduced iron powder for magnetic recording, which is characterized in that the reduced iron powder is stabilized while being aerated with EC and fluidized.
本発明の方法では原料である還元鉄粉と酸素を含むガス
とを圧力0.05〜50 Kg/aII(ゲージ)、温
度90℃以下の条件下で接触させて安定化処理する。こ
の際、酸素を含むガスを空塔線速度1〜20 cm/
secで通気する必要がある。In the method of the present invention, reduced iron powder, which is a raw material, is brought into contact with a gas containing oxygen under conditions of a pressure of 0.05 to 50 Kg/a II (gauge) and a temperature of 90° C. or lower to carry out stabilization treatment. At this time, the oxygen-containing gas is transported at a superficial linear velocity of 1 to 20 cm/
It is necessary to ventilate at sec.
酸素を含むガスは粉体中に分散保有され、粉体単独に比
べて粘性の大巾に低下した均質表粉体と酸素を含むガス
との混合物が処理の全期間に亘って形成さ姓る。しかし
酸素を含むガスの通気速度を20 cm/ sec以上
にすると粉体中を通過するガスかはりきシとした気泡状
態となシ、しかも気泡同志の合体が起シ微細粒子の飛散
が顕著と々る。また1 cm、/ sec以下の通気速
度にした場合は、粉体中の酸素を含むガスの分散保有I
が減少し、粉体とガスの均質な混合物が形成されない。The oxygen-containing gas is dispersed in the powder, and a mixture of the oxygen-containing gas and the homogeneous powder, whose viscosity is significantly lower than that of the powder alone, is formed throughout the processing period. . However, if the aeration rate of the oxygen-containing gas is set to 20 cm/sec or more, the gas passing through the powder will not form solid bubbles, and the bubbles will coalesce and the scattering of fine particles will become noticeable. That's it. In addition, when the aeration rate is set to 1 cm/sec or less, the dispersion of oxygen-containing gas in the powder increases.
decreases and a homogeneous mixture of powder and gas is not formed.
本発明の方法において、酸素を含むガスの供給方法は、
原料粉体中へ焼結板、多孔板、金網等で構成される分散
板を通して吹き込む方法である。または粉体を攪拌する
ための攪拌翼の付近に取付けた多数の孔を有すめ−ジャ
ーから吹き込んでもよい、攪拌翼を取付ける軸、腕木を
中空構造にしてその内部にガスを貫流させ′、これ等に
設けた多数の孔からガスを噴出させる方法も採用できる
。分散板を介してガスを吹き込まない後者の場合は分散
板である必要はなく無孔の底板でよい。In the method of the present invention, the method for supplying the oxygen-containing gas is as follows:
This is a method in which the powder is blown into the raw material powder through a dispersion plate made of a sintered plate, perforated plate, wire mesh, etc. Or, it has a large number of holes installed near the stirring blade for stirring the powder, which may be blown from a jar.The shaft and arm to which the stirring blade is attached are made into a hollow structure, and the gas flows through the inside thereof. It is also possible to adopt a method in which gas is ejected from a large number of holes provided in the air. In the latter case, where gas is not blown through a distribution plate, a non-porous bottom plate may be used instead of a distribution plate.
本発明において重要なことは、粉体を流動状態下にて処
理することである。What is important in the present invention is that the powder is treated in a fluidized state.
本発明の方法に於ける安定化処理時の加圧量の下限0.
05 Kglctl (ゲージ)は、酸素を含むガスが
サイクロンとかバッグフィルターとかの粉塵捕集器を通
過した後、大気に放出させるに必要な最小圧力である。The lower limit of the amount of pressure applied during stabilization treatment in the method of the present invention is 0.
05 Kglctl (gauge) is the minimum pressure required to release oxygen-containing gas to the atmosphere after passing through a dust collector such as a cyclone or bag filter.
使用したガスの大部分を処理して循環再使用する場合は
、循環プロワ−↓
出口から安定化処理装置、集塵器等の−1の装置を通過
して循環プロワ−人口までの一巡に要する圧力損失を補
うのに最少限必要な圧力である。When most of the used gas is processed and recycled for reuse, the time required for one round from the circulation blower↓ outlet to the circulation blower through the -1 equipment such as the stabilization treatment device and dust collector is required. This is the minimum pressure required to compensate for pressure loss.
50Kq/cr!(ゲージ)圧力以上ノ圧カバ、還元鉄
粉と酸素との反応速度が速くなりすぎ、したがって安定
化処理を行う上での制御が困難となるのでよくない。50Kq/cr! (Gauge) pressure or higher is not good because the reaction rate between the reduced iron powder and oxygen becomes too fast, making it difficult to control the stabilization process.
本発明で使用する酸素を含むガスは、酸素と他のガスで
構成される。他のガスとは、窒、91どの様に金属粉末
にとって不活性なガスをさし、メタン、エタンなどの炭
化水素ガスや窒素酸化物を含んでいてもよい。The oxygen-containing gas used in the present invention is composed of oxygen and other gases. Other gases refer to gases that are inert to the metal powder, such as nitrogen and 91, and may also include hydrocarbon gases such as methane and ethane, and nitrogen oxides.
酸素の含有量としては、接触時の温度、時間、他のガス
の種類によって異々るが、本発明の効果が顕著であると
いう理由で好ましい範囲は、10 ppm−20係(容
量比)の範囲である。The oxygen content varies depending on the temperature, time, and type of other gas during contact, but the preferred range is 10 ppm-20 (capacity ratio) because the effects of the present invention are significant. range.
接触時の温度は、90℃以下が必要である。The temperature at the time of contact must be 90°C or less.
90℃を越える場合は、還元鉄粉の表面に形成される酸
化被膜が粗雑となり、安定性が十分でないばかりか、処
理により得られる鉄粉の磁気特性が低くよくない。If the temperature exceeds 90° C., the oxide film formed on the surface of the reduced iron powder becomes rough and the stability is not sufficient, and the magnetic properties of the iron powder obtained by the treatment are low, which is not good.
接触時間は、接触ガス中の酸素含有量によって変化する
が、30分〜10時間程度で行なわれる。The contact time varies depending on the oxygen content in the contact gas, but is approximately 30 minutes to 10 hours.
本発明における還元鉄粉は磁気記録に使用される金属粉
末であシ、その製造法は特に限定を要しない。例えば、
(1)強磁性金属の有機酸塩を加熱分解し、還元性気体
で還元する方法、(2)針状性を有する含水金属酸化物
またはこれらに他の金属を含有せしめたもの、あるいは
これらの含水金属酸化物から得た針状酸化鉄を還元する
方法、(3)強磁性金属を低圧の不活性ガス中で浄発さ
せる方法、(4)金属カルボニル化合物を熱分解する方
法、(5)強磁性を有する金属の塩を含有する溶液に還
元剤を加えて還元する方法、等が知られているがそのい
ずれであってもよい。The reduced iron powder in the present invention is a metal powder used for magnetic recording, and the manufacturing method thereof is not particularly limited. for example,
(1) A method of thermally decomposing an organic acid salt of a ferromagnetic metal and reducing it with a reducing gas; (2) A method of acicular hydrated metal oxides or acicular metal oxides containing other metals; A method for reducing acicular iron oxide obtained from a hydrous metal oxide, (3) A method for purifying ferromagnetic metals in a low-pressure inert gas, (4) A method for thermally decomposing metal carbonyl compounds, (5) A method is known in which a reducing agent is added to a solution containing a salt of a ferromagnetic metal for reduction, but any of these methods may be used.
本発明の効果の第1は、磁気特性の経時安定性の、ロッ
ト内及びロット間においてそのバラツキがきわめて少な
いことがあげられる。本発明の方法を用いれば、従来は
実験室的規模でのみ可能であった還元鉄粉の安定化処理
が工業的規模において可能となり、しかも得られる還元
鉄粉の安定性が優れておシ、かつその品質上のバラツキ
が少い。The first effect of the present invention is that there is very little variation in the temporal stability of magnetic properties within and between lots. By using the method of the present invention, stabilization treatment of reduced iron powder, which was conventionally possible only on a laboratory scale, becomes possible on an industrial scale, and the resulting reduced iron powder has excellent stability. And there is little variation in quality.
従って本発明の方法は還元鉄粉の安定化処理の方法とし
て工業的価値の高いものである。Therefore, the method of the present invention has high industrial value as a method for stabilizing reduced iron powder.
本発明の効果の第2は、磁気特性の経時変化が著しく抑
制されることである。これは飽和磁化率σ5の測定によ
シ評価できるが、本発明による安定化還元鉄粉はσ5の
経時劣化が太きく抑制されている。The second effect of the present invention is that changes in magnetic properties over time are significantly suppressed. This can be evaluated by measuring the saturation magnetic susceptibility σ5, and the stabilized reduced iron powder according to the present invention greatly suppresses the aging deterioration of σ5.
また本発明による安定化還元鉄粉をバインダー、溶剤等
と混合しシートに塗布し磁場配向を行なった後シートを
裁断して磁気テープをつくり、これを丸くつ々ぎ合わせ
、磁気ヘッドに接触した状態で100時間走行させ、そ
の後これを一定温度、一定漫度下に放置した後の残留磁
化率(以下Brという)を測定することによりても評価
できるが、本発明による安定化還元鉄粉を用いてつくら
れる磁気テープはB「の経時変化が著しく抑制されてい
る。Further, the stabilized reduced iron powder according to the present invention was mixed with a binder, a solvent, etc., and applied to a sheet, and after magnetic field orientation was performed, the sheet was cut to make a magnetic tape, which was pieced together into a circle and brought into contact with a magnetic head. The stabilized reduced iron powder according to the present invention can also be evaluated by running the same for 100 hours and then leaving it at a constant temperature and constant temperature to measure the residual magnetic susceptibility (hereinafter referred to as Br). The magnetic tape produced using this method has significantly suppressed changes in B' over time.
本発明は、従来のス準に比して、より苛酷々条件下での
磁気性能の劣化防止を達成したものである。The present invention achieves prevention of deterioration of magnetic performance under more severe conditions than conventional standards.
本発明の効果の第3は、再酸化を起し難いことである。The third effect of the present invention is that reoxidation is difficult to occur.
これは、安定化還元鉄粉を空気流通下で一定速度で昇温
していき、酸化反応による発熱を開始する時点の温度を
酸化点と定義すると、酸化点の高低の比較により評価す
ることができる。本発明による安定化還元鉄粉は酸化点
が大巾に高められておシ、空気中での取扱いにおいて、
夏期における保存、運搬や、磁気テープ製造時の塗布工
程後の乾燥工程での発火危険性を著しく低減させるもの
である。これは、従来技術による酸化安定処理では達成
されなかった新しい性能を付与したものである。また、
酸化点が大巾に高められていることは、形成されている
保護被膜が十分に緻密であることを推測させる。This can be evaluated by comparing the height of the oxidation point, if the stabilized reduced iron powder is heated at a constant rate under air circulation, and the temperature at which the oxidation reaction starts to generate heat is defined as the oxidation point. can. The stabilized reduced iron powder according to the present invention has a greatly increased oxidation point, so when handled in air,
This significantly reduces the risk of ignition during storage and transportation during the summer, and during the drying process after the coating process during magnetic tape manufacturing. This imparts new performance that could not be achieved by oxidation stabilization treatment using conventional techniques. Also,
The fact that the oxidation point is greatly increased suggests that the formed protective film is sufficiently dense.
本発明の効果の第4は、堆積して貯蔵する場合の酸化安
定性に優れていることである。これは、安定化還元鉄粉
を一定量山積みし空気中に貯蔵する時、金属粉末の再酸
化によシ発熱昇温か起とシ、ついには自然発火してしま
うことがないかどうかで判定できる。これは、磁気記録
用金属粉末に従来技術では達成されなかった新しい実用
性能を付与したものである。The fourth effect of the present invention is that it has excellent oxidation stability when deposited and stored. This can be determined by whether or not when a certain amount of stabilized reduced iron powder is piled up and stored in the air, there is no heat generation due to re-oxidation of the metal powder, which eventually causes spontaneous combustion. . This gives magnetic recording metal powder new practical performance that has not been achieved with conventional techniques.
本発明の第5の効果は、被膜が強固で容易に剥離しない
ことである。これは、安定化還元鉄粉をボールミルに入
れ一定時間振とうした後、被膜の剥離による酸化が進ん
でいないかどうかを、酸化物含有量の分析、磁化特性の
測定によシ調べることによって判定できる。この点は、
従来技術での問題点の一つとされていたが、本発明によ
シ実用上満足する程度に改善されたも液相処理の方法で
は不可避である沢過乾燥工程が省略できることがあげら
れる。The fifth effect of the present invention is that the coating is strong and does not peel off easily. This is determined by placing stabilized reduced iron powder in a ball mill and shaking it for a certain period of time, and then checking whether oxidation has progressed due to peeling of the coating by analyzing the oxide content and measuring the magnetization characteristics. can. This point is
This was considered to be one of the problems in the prior art, but the present invention has improved it to a practically satisfactory degree, and it is also possible to omit the over-drying step, which is unavoidable in liquid phase processing methods.
以下実施例及び比較例により、本発明を具体的に説明す
る。The present invention will be specifically explained below using Examples and Comparative Examples.
実施例I
A、還元鉄粉の製造
Oro、7%、Zn 0.6%、Ni 6.5%、
Silチを含有する、長軸0.4μ、軸比10:1〜1
5:1の針状ゲーサイト(a −Fe OOH)を、空
気中、400℃にて焼成を行ない、ついで純水素ガスを
用いて350℃にて6 Hr加熱還元を行なったのち、
窒素ガス流通下で室温まで冷却した。得られた金属粉末
をP−1とする。Example I A. Production of reduced iron powder Oro, 7%, Zn 0.6%, Ni 6.5%,
Contains Silchi, long axis 0.4μ, axial ratio 10:1~1
Acicular goethite (a-Fe OOH) with a ratio of 5:1 was calcined at 400°C in air, and then heated and reduced for 6 hours at 350°C using pure hydrogen gas.
It was cooled to room temperature under nitrogen gas flow. The obtained metal powder is designated as P-1.
B、安定化処理
この金属粉末を内径250[i、焼結金属板をガス分散
板とする反応器に仕込んだ。これに温度50℃、圧力2
Kf/i(ゲージ)の条件下で、1.6容量チの酸素ガ
スを含む窒素ガスを通気し、金属粉末を流動させながら
7.5時間安定化処理した。B. Stabilization Treatment This metal powder was charged into a reactor having an inner diameter of 250[i] and using a sintered metal plate as a gas dispersion plate. To this, the temperature is 50℃, the pressure is 2
Under the condition of Kf/i (gauge), nitrogen gas containing 1.6 volumes of oxygen gas was passed through, and the metal powder was stabilized for 7.5 hours while being fluidized.
この安定化処理後の粉体のロットから、無作為に3個所
からサンプリングを行ない、それぞれ8−1、S−2,
8−3とする。From the powder lot after this stabilization treatment, samples were randomly taken from three locations, 8-1, S-2, and S-2, respectively.
The score shall be 8-3.
0、磁気テープの作製
8−1を100 Of、熱可塑型ポリウレタン樹脂25
%メチルエチルケトン溶液600 f。0, Preparation of magnetic tape 8-1 100 Of, thermoplastic polyurethane resin 25
% methyl ethyl ketone solution 600 f.
溶剤としてメチルエチルケトン1500t1平滑化助剤
としてシリコン千添加剤2f及び滑シ性向上助剤として
ステアリン酸アミド209をボールミルに入れ、アルミ
ナ製ボールを分散用媒体に用いて24時間回転させて練
合を行なってミルベースを得た後、上記熱可塑型ボリウ
レタ/樹脂25%′メチルエチルケトン溶液6001を
追加し更にメチルエチルケトンで希釈して粘度を調整し
磁性塗料を得た。Methyl ethyl ketone 1500t as a solvent, silicone additive 2f as a smoothing aid, and stearic acid amide 209 as a lubricity improving aid were placed in a ball mill, and kneaded by rotating for 24 hours using alumina balls as a dispersion medium. After obtaining a mill base, the above thermoplastic polyurethane/resin 25%' methyl ethyl ketone solution 6001 was added and further diluted with methyl ethyl ketone to adjust the viscosity to obtain a magnetic paint.
この磁性塗料を、12P厚の強化ポリエチレンテレフタ
レートフィルムに乾燥膜厚が約4μになるように塗布し
、磁界を通して磁性粒子の配向を行なった後、熱風乾燥
を行ない、カレンダーロールによる平滑化を行なった後
、所定の幅に裁断して評価用の磁気テープ(これをT−
1とする)を得た。This magnetic paint was applied to a 12P thick reinforced polyethylene terephthalate film so that the dry film thickness was approximately 4μ, the magnetic particles were oriented through a magnetic field, and then dried with hot air and smoothed using a calendar roll. After that, cut the magnetic tape to a predetermined width and use it as a T-
1) was obtained.
S−2、S−3についても各々同一の方法で磁気テープ
を作製し、それぞれT−2、T−3とする。Magnetic tapes S-2 and S-3 are also produced by the same method, and named T-2 and T-3, respectively.
D、磁気特性の経時変化および酸化安定性の測定衣1に
は、T−1を丸くつなぎ合わせ、磁気ヘッドに接触した
状態で100時間走行させ、その後45℃、90%相対
湿度の雰囲気下にioo日放置した後の抗磁力Hc 、
残留磁化率Br 1およびBrと卿和磁化率Bmとの比
Br/ Bmの値を示す。D. Measurement of changes in magnetic properties over time and oxidation stability Clothes 1 were made by connecting T-1 pieces together in a circle, running for 100 hours in contact with a magnetic head, and then placing them in an atmosphere of 45°C and 90% relative humidity. Coercive force Hc after being left for ioo days,
The values of the residual magnetic susceptibility Br 1 and the ratio Br/Bm between Br and the sum magnetic susceptibility Bm are shown.
表2には、s−iを45℃、90%相対濁度をDTAに
よシ、空気50m1/m1n1昇温速度10℃/ mi
nの条件下に測定した液化点、およびS−1をボールミ
ルに入れ4時間振とうしだ後の金属粉末の酸化の有無を
、金属粉末の組成分析により判定した結果(これを剥離
テストという)、およびS−1を3 K9山積みして空
気中で貯蔵する場合の自然発火の有無(これを堆積テス
トという)を示す。Table 2 shows s-i at 45℃, 90% relative turbidity by DTA, air 50ml/m1n1 temperature increase rate 10℃/mi
The liquefaction point measured under the conditions of n and the presence or absence of oxidation of the metal powder after S-1 was placed in a ball mill and shaken for 4 hours were determined by composition analysis of the metal powder (this is called a peel test). , and S-1 are piled up in 3K9 piles and stored in the air (this is referred to as a deposition test).
T−2、T−3及びS−2、S−3についても、上記と
同一の方法で、磁気特性の経時変化及び酸化安定性の測
定を行なった結果をそれぞれ表1、表2、表3に示す。For T-2, T-3, S-2, and S-3, the changes in magnetic properties over time and oxidation stability were measured using the same method as above, and the results are shown in Tables 1, 2, and 3, respectively. Shown below.
これよりS−1、S−2、S−3はいずれも酸化安定性
が高く、T−1、T−2、T−3はいずれも磁気特性の
経時変化が少々いことがわかる。また、3サンプルの間
で、特性上のバラツキがきわめて少ないことがわかる。From this, it can be seen that S-1, S-2, and S-3 all have high oxidation stability, and that T-1, T-2, and T-3 all show a slight change in magnetic properties over time. Furthermore, it can be seen that there is very little variation in characteristics among the three samples.
実施例2
直径1000龍、全高4000鵠、ガス分散板として多
孔板と金網を重ねた構造をもち、翼径soosmの攪拌
翼を備えた反応器に、実施例1で用いた金属粉末P−1
を30Kg仕込み、ガス流速10 cm / see
、温度70℃、圧力I Kg/1vl(ゲージ)で、0
2 を0.05容量チ、CH4を2容量係、CO2を0
.1容量ヂ含む窒素を用いて流動下にて10時間安定化
処理した。これをS−4とする。Example 2 The metal powder P-1 used in Example 1 was placed in a reactor having a diameter of 1,000 mm, a total height of 4,000 mm, a structure in which a perforated plate and a wire mesh were stacked as a gas distribution plate, and a stirring blade with a blade diameter of soosm.
30kg of gas was charged, gas flow rate was 10cm/see
, temperature 70℃, pressure I Kg/1vl (gauge), 0
2 is 0.05 capacity, CH4 is 2 capacity, CO2 is 0.
.. Stabilization was carried out using 1 volume of nitrogen under flowing conditions for 10 hours. This is designated as S-4.
S−4を用い、実施例1.0と同一の方法により得られ
た磁気テープをT−4とする。T−4とS−4を実施例
1.Dと同一の方法により磁気特性の経時変化及び酸化
安定性の測定を行なった結果もそれぞれ表1、表2、表
3に示す。A magnetic tape obtained using S-4 in the same manner as in Example 1.0 is designated as T-4. T-4 and S-4 in Example 1. The results of measuring changes in magnetic properties over time and oxidation stability using the same method as in D are also shown in Tables 1, 2, and 3, respectively.
これより8−4は酸化安定性が高く、T−4は磁気特性
の経時変化が少々いことがわかる0比較例1
実施例1と同じ反応器に、実施例1と同じ金属粉末P−
1を同一量仕込み、窒素を含むガスの空塔線速度を0.
57 secで通気し還元鉄粉が流動しない状態にした
以外は、実施例1と同じ条件で安定化処理した。安定化
処理後の金属粉末を8−5とする。From this, it can be seen that 8-4 has high oxidation stability, and T-4 has a slight change in magnetic properties over time. 0 Comparative Example 1 In the same reactor as Example 1, the same metal powder P-
1 was charged in the same amount, and the superficial linear velocity of the nitrogen-containing gas was set to 0.
Stabilization treatment was carried out under the same conditions as in Example 1, except that the reduced iron powder was aerated for 57 seconds to prevent it from flowing. The metal powder after stabilization treatment is designated as 8-5.
S−5を用いて、実施例1.0と同一の方法により磁気
テープ(これをT−5とする)を得たのち、実施例1.
Dと同一の方法により磁気特性の経時変化および酸績安
定性の測定を行々つだ結果もそれぞれ表1、表2、表3
に示す。これよ、!1)S−5は酸化安定性が低く、T
−5はいずれも磁気特性の経時変化が大きいことがわか
る。After obtaining a magnetic tape (referred to as T-5) using the same method as in Example 1.0 using S-5, Example 1.
The results of measuring changes in magnetic properties over time and acid stability using the same method as in D are also shown in Tables 1, 2, and 3, respectively.
Shown below. This is it! 1) S-5 has low oxidation stability and T
It can be seen that in all cases of -5, the magnetic properties change significantly over time.
比較例2
直径250朋、ガス分散板として焼結金属板を用いた固
定層式反応器に実施例1と同じ金属粉末P−1を5.2
Kg(層厚み150sTR)を充填し、酸素含有窒素
ガスの流速を5 cm/ secとし、金属粉末の流動
が認められない状態であった外は実施例−1と同じよう
に安定化処理を行なった0
この流速ではガスの流れ方向に金属粉末層の温度が上昇
し、100℃以上となる個所が発生した。層の上、中、
下(層厚みの方向で3等分)の位置ごとにサンプリング
したサンプルをそれぞれS−6、S−7、S−Sとする
。金属粉末層の温度は、それぞれのサンプリング個所に
おいて、108℃、91℃、72℃であった08−6、
S−7、S−8を用い、実施例1.0と同一の方法によ
シ得られた磁気テープをそれぞれT−6、T−7、T−
8とする。T−6〜T−8と、S−6〜S−8を、実施
例1.Dと同一の方法により磁気特性の経時変化および
酸化安定性の測定を行なった結果もそれぞれ表1、表2
、表3に示す。Comparative Example 2 5.2 mm of the same metal powder P-1 as in Example 1 was placed in a fixed bed reactor having a diameter of 250 mm and using a sintered metal plate as a gas distribution plate.
Stabilization treatment was carried out in the same manner as in Example 1, except that the cell was filled with 1.5 kg (layer thickness: 150 sTR), the flow rate of oxygen-containing nitrogen gas was 5 cm/sec, and no flow of metal powder was observed. At this flow rate, the temperature of the metal powder layer increased in the gas flow direction, and there were places where the temperature reached 100°C or higher. on top of the layer, inside the layer,
Samples sampled at each lower position (divided into three in the direction of layer thickness) are designated as S-6, S-7, and SS, respectively. In 08-6, the temperature of the metal powder layer was 108°C, 91°C, and 72°C at each sampling location.
Magnetic tapes obtained by the same method as Example 1.0 using S-7 and S-8 were respectively T-6, T-7 and T-
8. T-6 to T-8 and S-6 to S-8 were prepared in Example 1. The results of measuring changes in magnetic properties over time and oxidation stability using the same method as in D are also shown in Tables 1 and 2, respectively.
, shown in Table 3.
各表よりS−6,8−7、S−8はいずれも酸化安定性
が低く、T−6、T−7、T−8はいずれも磁気特性の
経時変化が大きいことがわかる。また、3種のサンプル
の間で、特性上のバラツキがきわめて大きいことがわか
る。From each table, it can be seen that S-6, 8-7, and S-8 all have low oxidation stability, and that T-6, T-7, and T-8 all have large changes in magnetic properties over time. Furthermore, it can be seen that there are extremely large variations in characteristics among the three types of samples.
実施例3
Oro、7%、Zn0.6%、Ni6.5%、S+1%
を含有する、長軸0.4μ、軸比10:1〜15:1の
針状レピドクロサイト(α−FeOOH)を、実施例1
.Aと同一の方法で焼成、還元して得られた金属粉末を
P−2とする。Example 3 Oro, 7%, Zn0.6%, Ni6.5%, S+1%
Example 1
.. The metal powder obtained by firing and reducing in the same manner as A is designated as P-2.
P−2を実施例1.Bと同一の方法で安定化処理して安
定化還元鉄粉S−9とする。P-2 in Example 1. Stabilization treatment was performed in the same manner as B to obtain stabilized reduced iron powder S-9.
8−9を用い、実施例1.0と同一の方法により得た磁
気テープをT−9とする。T−9と、8−9を、実施例
1.Dと同一の方法により磁気特性の経時変化および酸
化安定性の測定を行々つた結果もそれぞれ表1、表2、
表3に示す。A magnetic tape obtained by the same method as in Example 1.0 using T-8-9 is referred to as T-9. T-9 and 8-9 in Example 1. The results of measuring changes in magnetic properties over time and oxidation stability using the same method as in D are also shown in Tables 1 and 2, respectively.
It is shown in Table 3.
これより8−9は、酸化安定性が高く、T−9は磁気特
性の経時変化が少ないことがわかる。It can be seen from this that 8-9 has high oxidation stability, and T-9 shows little change in magnetic properties over time.
実施例4゜
B1.5%、Oro、6%、Zn2.0%、Si 4
チを含有する、長軸0.1μ、軸比6:1〜8:1の針
状ゲーサイトを用い、実施例1.Aと同様の条件により
焼成・還元して得られた金属粉末をP−3とする。Example 4゜B1.5%, Oro, 6%, Zn2.0%, Si 4
Example 1. The metal powder obtained by firing and reducing under the same conditions as A is designated as P-3.
P−3を実施例1. Bと同二の方法で安定化処理して
安定化還元鉄粉を8−10とする。P-3 in Example 1. Stabilization treatment is performed in the same manner as B to obtain a stabilized reduced iron powder of 8-10.
5−10を用い、実施例1.0と同一の方法により得た
磁気テープをT−10とする。T−10と、5−10を
、実施例LDと同一の方法によシ磁気特性の経時変化お
よび酸化安定性の測定を行なった結果をそれぞれ表1、
表2、表3に示す。5-10, and a magnetic tape obtained by the same method as in Example 1.0 is designated as T-10. T-10 and 5-10 were measured for changes in magnetic properties over time and oxidation stability using the same method as in Example LD. The results are shown in Table 1, respectively.
It is shown in Table 2 and Table 3.
これより8−10は酸化安定性が高く、T−10はいず
れも磁気特性の経時変化が少ないことがわかる。It can be seen from this that 8-10 has high oxidation stability, and both T-10 have little change in magnetic properties over time.
9
表−1
実施例5゜
塩化第1鉄30部と塩化コバルト5部を水に溶解し、非
磁性容器に入れて、その容器を最大15000eの直流
磁界中に置き、ゆるやかに攪拌しながら、水素化ホウ素
ナトリウムの1.3モル/ノ水溶液を少しずつ滴下し、
5分後、黒色の強磁性金属粉末を得た。この粉末を反応
母液と分離し、アセトンで洗浄後、熱風乾燥器で乾燥し
て金属粉末を得た。これをP−4とする。9 Table-1 Example 5 30 parts of ferrous chloride and 5 parts of cobalt chloride were dissolved in water, placed in a non-magnetic container, placed in a DC magnetic field of up to 15,000 e, and stirred gently. Add a 1.3 mol/no aqueous solution of sodium borohydride little by little,
After 5 minutes, black ferromagnetic metal powder was obtained. This powder was separated from the reaction mother liquor, washed with acetone, and dried in a hot air dryer to obtain metal powder. This is designated as P-4.
P−4を実施例1.Bと同一の方法で安定化処理して安
定化還元鉄粉5−11とする。P-4 in Example 1. Stabilization treatment is performed in the same manner as B to obtain stabilized reduced iron powder 5-11.
5−11を用い、実施例1.0と同一の方法によシ得た
磁気テープをT−11とする。T−11と8−11を実
施例1.Dと同一の方法によシ磁気特性の経時変化及び
酸化安定性の測定を行なった結果もそれぞれ表1、表2
、表3に示す。5-11, and a magnetic tape obtained by the same method as in Example 1.0 is designated as T-11. T-11 and 8-11 in Example 1. The results of measuring changes in magnetic properties over time and oxidation stability using the same method as in D are also shown in Tables 1 and 2, respectively.
, shown in Table 3.
これより5−11は酸化安定性が高く、T−11は磁気
特性の経時変化が少ないことがわかる。From this, it can be seen that 5-11 has high oxidation stability, and T-11 has little change in magnetic properties over time.
00
Claims (1)
処理する方法において、ゲージ圧0.05〜50119
/cr7Hの圧力下、90℃以下の温度にて、酸素を含
むガスを空塔線速度1〜20cm/ s e c で
通気し、還元鉄粉を流動させながら安定化処理すること
を特徴とする、磁気記録用還元鉄粉の安定化方法。In a method of stabilizing reduced iron powder for magnetic recording using a gas containing oxygen, the gauge pressure is 0.05 to 50119.
The method is characterized in that a gas containing oxygen is aerated at a superficial linear velocity of 1 to 20 cm/sec under a pressure of /cr7H at a temperature of 90°C or less, and stabilization treatment is carried out while flowing the reduced iron powder. , Method for stabilizing reduced iron powder for magnetic recording.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219305A JPS59110701A (en) | 1982-12-16 | 1982-12-16 | Stabilization of reduced iron powder for magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219305A JPS59110701A (en) | 1982-12-16 | 1982-12-16 | Stabilization of reduced iron powder for magnetic recording |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59110701A true JPS59110701A (en) | 1984-06-26 |
Family
ID=16733405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57219305A Pending JPS59110701A (en) | 1982-12-16 | 1982-12-16 | Stabilization of reduced iron powder for magnetic recording |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59110701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470374A (en) * | 1992-09-10 | 1995-11-28 | Kao Corporation | Method for production of magnetic metal particles and apparatus therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655503A (en) * | 1979-10-05 | 1981-05-16 | Hitachi Ltd | Production of metal magnetic powder of superior corrosion resistance |
JPS5789401A (en) * | 1980-11-25 | 1982-06-03 | Sony Corp | Preparation of acicular magnetic metallic particle |
JPS57181301A (en) * | 1981-04-25 | 1982-11-08 | Basf Ag | Stabilization of spontaneously ignitable highly magnetic needle-like metal particle consisting of iron substantially |
JPS58161702A (en) * | 1982-03-18 | 1983-09-26 | Hitachi Maxell Ltd | Production of magnetic metallic powder |
-
1982
- 1982-12-16 JP JP57219305A patent/JPS59110701A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655503A (en) * | 1979-10-05 | 1981-05-16 | Hitachi Ltd | Production of metal magnetic powder of superior corrosion resistance |
JPS5789401A (en) * | 1980-11-25 | 1982-06-03 | Sony Corp | Preparation of acicular magnetic metallic particle |
JPS57181301A (en) * | 1981-04-25 | 1982-11-08 | Basf Ag | Stabilization of spontaneously ignitable highly magnetic needle-like metal particle consisting of iron substantially |
JPS58161702A (en) * | 1982-03-18 | 1983-09-26 | Hitachi Maxell Ltd | Production of magnetic metallic powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470374A (en) * | 1992-09-10 | 1995-11-28 | Kao Corporation | Method for production of magnetic metal particles and apparatus therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0313647B2 (en) | ||
US4073977A (en) | Stabilization of pyrophoric metal powders with alkylene oxide polymers | |
JPS59110701A (en) | Stabilization of reduced iron powder for magnetic recording | |
CA1148417A (en) | Process for production of magnetic recording elements | |
JPS6136044B2 (en) | ||
JPS6130001B2 (en) | ||
JPH0572084B2 (en) | ||
JPS6133241B2 (en) | ||
US4481253A (en) | Process for preparing ferromagnetic metal powder and a magnetic recording medium including the powder | |
JPH01172501A (en) | Manufacture of metal magnetic powder | |
JPS6258604A (en) | Manufacture of magnetic iron powder for magnetic recording | |
JPH01309903A (en) | Method for stabilizing ferromagnetic iron powder | |
JP2898679B2 (en) | Stabilization method for metal with active surface | |
CN1444236A (en) | Strong magnetic iron alloy powder for magnetic recording medium and mfg. method thereof | |
JPH03126801A (en) | Method for stabilizing metal magnetic powder | |
JPS5927505A (en) | Ferromagnetic metal powder | |
JPH08153613A (en) | Stabilizing method for metal magnetic powder | |
JP3057823B2 (en) | Ferromagnetic metal particles for magnetic recording media | |
JPH0623402B2 (en) | Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron | |
JPS6028050B2 (en) | magnetic recording medium | |
JPS60149701A (en) | Method for stabilizing reduced iron powder for magnetic recording | |
JPS62156201A (en) | Ferromagnetic metallic powder treated with carbon dioxide | |
JPS62112703A (en) | Production of ferromagnetic metallic powder having oxide film | |
JPH01246302A (en) | Method for treating surface of ferromagnetic iron powder | |
JPH0148323B2 (en) |