JPS6258604A - Manufacture of magnetic iron powder for magnetic recording - Google Patents

Manufacture of magnetic iron powder for magnetic recording

Info

Publication number
JPS6258604A
JPS6258604A JP60197778A JP19777885A JPS6258604A JP S6258604 A JPS6258604 A JP S6258604A JP 60197778 A JP60197778 A JP 60197778A JP 19777885 A JP19777885 A JP 19777885A JP S6258604 A JPS6258604 A JP S6258604A
Authority
JP
Japan
Prior art keywords
gas
ferromagnetic
magnetic
reaction
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197778A
Other languages
Japanese (ja)
Inventor
Toshinori Ishibashi
石橋 俊則
Masanobu Hiramatsu
平松 雅伸
Kazufuyu Sudou
須藤 和冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60197778A priority Critical patent/JPS6258604A/en
Publication of JPS6258604A publication Critical patent/JPS6258604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain excellent needle-like ferromagnetic fine powder containing iron carbide by a method wherein a vapor phase contact carbonizing reaction is performed under the state in which the mixed gas of carbon monoxide and reducing gas is flowing at the linear speed of 2cm/sec. or more. CONSTITUTION:The needle-like iron oxyhydroxide fine particles deposited and modified on a configulation retaining part are formed into ferromagnetic reducing iron powder by performing a vapor phase reducing reaction using the reducing gas having hydrogen as the main component. Then, said iron powder is formed into ferromagnetic cementite by the vapor phase contact carbonic reaction using the mixed gas of carbon monoxide and reducing gas. The above- mentioned vapor phase contact carbonic reaction is performed under the state wherein the flow speed of the mixed gas of carbon monoxide and reducing gas is maintained at the linear speed of 2cm/sec. or more using an agitative fludized floor or the reactor of a fluidized substance system. As a result, excellent cementite containing needle-like ferromagnetic fine particles can be obtained.

Description

【発明の詳細な説明】 本発明は、磁性素材及びその製造方法に関する。[Detailed description of the invention] The present invention relates to a magnetic material and a method for manufacturing the same.

該木材は音声及び映像を主対象とした高密度記録に適し
た磁気記録媒体に於ける磁性素材として好適に使用でき
る。
The wood can be suitably used as a magnetic material in magnetic recording media suitable for high-density recording mainly for audio and video.

磁気テープ、磁気記録媒体として有用な磁性粉末は、か
って r−酸化鉄が主体であった。近年、■TR用や高
級オーディオ用の高密度記録媒体が望まれるようになり
、オキシ水酸化鉄あるいは酸化鉄を主体とする粉末を還
元性ガスによる気相接触還元反応によって得られる金属
鉄もしくはコバルト或いはニッケルと鉄との合金を主体
とする高い保磁力を有する磁性粉末が用いられる様にな
ってきた。金属磁性微粒子の保磁力は形状異方性が強い
為、粒子サイズ、針状性等に依存するが、テープ記録用
としては再生ヘッド、消去ヘッドの能力との兼合いで適
正な保磁力が必要である。磁気記録用媒体はオーディオ
用、ビデオ用を問わず広い記録周波数帯域での高出力化
、低ノイズ化が要求される。即ち磁性粉末としてはその
形状は微細化の傾向にある。加えて、塗料用樹脂との親
和性や分散性、塗膜の配向性や充填性を更に向上させる
事が望まれ、バインダー樹脂、各種添加剤の改良及び塗
料分散、媒体加工技術の改良研究が成されている[例え
ば、明石丘部[磁気テープの進歩J、日本応用磁気学会
誌、7 (3)、185 (1983)]。
Magnetic powders useful for magnetic tapes and magnetic recording media were once mainly composed of r-iron oxide. In recent years, there has been a demand for high-density recording media for TR and high-end audio, and metallic iron or cobalt, which is obtained by gas-phase catalytic reduction reaction of iron oxyhydroxide or iron oxide-based powder with reducing gas, has become desirable. Alternatively, magnetic powders having a high coercive force and mainly composed of an alloy of nickel and iron have come to be used. The coercive force of metal magnetic fine particles has strong shape anisotropy, so it depends on the particle size, acicularity, etc., but for tape recording, it is necessary to have an appropriate coercive force in balance with the capabilities of the playback head and erase head. It is. Magnetic recording media, whether used for audio or video, are required to have high output and low noise over a wide recording frequency band. That is, the shape of magnetic powder tends to become finer. In addition, it is desired to further improve the affinity and dispersibility with paint resins, as well as the orientation and filling properties of coating films, and research is needed to improve binder resins and various additives, as well as paint dispersion and media processing technology. [For example, Akashi Okabe [Advances in Magnetic Tape J, Japanese Journal of Applied Magnetics, 7 (3), 185 (1983)]].

従って、磁性粉の許容馳囲内での可及的な)−1cm値
の増大及び微細化が高密度記録実現の為の極めて律速的
な要素技術となっている。
Therefore, increasing the (-1 cm) value and making the magnetic powder as fine as possible within the allowable range are extremely rate-limiting elemental technologies for realizing high-density recording.

鉄を主要成分とした針状性金属粉微粒子の場合、その製
造方法によっても大きく変わり得る余地があるものの、
大局的には長軸径(L)及び短軸径(D>或いはその軸
比(L/D)の値で既述の)−1c−値はほぼ決まって
しまい、例えばL/D :10前後以上の針状性微粒子
系では、L:1μ前後で)−1c−値:500乃至70
00e程度、L二0゜5μ前後テHc−値: 1000
乃至12000e程度、又はL:0.1μ前後で140
0乃至160000程度が通常は実用されている。
In the case of acicular metal powder particles containing iron as the main component, although there is room for large variations depending on the manufacturing method,
Overall, the long axis diameter (L) and short axis diameter (D > or the value of the axial ratio (L/D)) -1c- value are almost fixed, for example, L/D: around 10. In the above acicular fine particle system, L: around 1 μ) -1c- value: 500 to 70
About 00e, L20° around 5μ Te Hc-value: 1000
About 12000e or L: 140 at around 0.1μ
A value of about 0 to 160,000 is usually put into practical use.

従来、磁性粉の形状を保持し、又適正な保持力を有しつ
つ、粒子サイズを微細化する技術とじては、 (1)軸比を極度に低く設計する方法、(2)多量のN
i−成分の導入に基づく合金化微粒子の方法、 更に、 (3)Si 、B、P、C及UN等の導入に基づく半金
属合金化微粒子の方法、 等が知られている。
Conventionally, the techniques for reducing the particle size while maintaining the shape of magnetic powder and having an appropriate holding force were: (1) designing an extremely low axial ratio; (2) using a large amount of N.
A method for producing alloyed fine particles based on the introduction of an i-component, and (3) a method for producing semimetallic alloyed particles based on the introduction of Si, B, P, C, UN, etc. are known.

(1)に於いては形状異方性を低下させる事によって、
強磁性発現機構を抑制する事が原理であり、また〈2)
に於いてはNi にょるFe成分の形成している体心立
方品(bcc)の格子置換化に伴なう磁気的希釈によっ
て磁気異方性が低下する事を積極的に利用する方法であ
るが、テープ媒体に加工すると充分な配向化が達成でき
ず、媒体の残留磁束密度(Sr )と最大磁束密度(B
m )との比(Br /Bm−値)即ちその角型比が大
きく低下してしまう欠点がある。
In (1), by reducing the shape anisotropy,
The principle is to suppress the ferromagnetism expression mechanism, and also <2)
This is a method that actively utilizes the fact that the magnetic anisotropy decreases due to magnetic dilution caused by lattice substitution of the body-centered cubic (BCC) formed by the Ni and Fe components. However, when processed into a tape medium, sufficient orientation cannot be achieved, and the residual magnetic flux density (Sr) and maximum magnetic flux density (B
There is a drawback that the ratio (Br/Bm-value), that is, the squareness ratio, is greatly reduced.

(3)に於いてはその出発物質を各種オキシ水酸化鉄と
し、B、Si及びPを含む化合物を表面変成しても水素
ガスを主体とする気相接触反応によっては該酸化物迄に
停まりそれらの導入は不可能である。高価なボランガス
、シランガス、ホスフィンガスによる気相接触反応を行
う事となる。
In (3), the starting material is various iron oxyhydroxides, and even if a compound containing B, Si, and P is surface-modified, the gas-phase catalytic reaction mainly using hydrogen gas will stop the reaction until the oxide is reached. Therefore, their introduction is impossible. A gas phase catalytic reaction using expensive borane gas, silane gas, and phosphine gas will be performed.

残るN及びCのみが廉価であり、気相接触反応によって
鉄中に導入する事が可能であるが、Nの導入には窒化剤
にアンモニアを使用する事となるので、製造設備上の特
殊な腐食対策を講する必要があり、工業的な生産を考え
た場合は実際的ではなかった。
Only the remaining N and C are inexpensive and can be introduced into iron by gas phase catalytic reaction, but since ammonia is used as a nitriding agent to introduce N, special manufacturing equipment is required. It was necessary to take measures against corrosion, which was impractical when considering industrial production.

音声及び映像を主対象とした高密度磁気記録媒体用の磁
性素材としての針状性磁性粉に対して、その粒子ナイス
と磁気特性、特に保磁力1−(c−値とを独立に制御す
る設81技術は、磁性粉に関する究極の要素技術の一つ
である。これは高密度化の為の最も持ち望まれている工
業技術の一つと位置づける事が出来る。
To independently control the particle niceness and magnetic properties, especially the coercive force 1-(c-value), of acicular magnetic powder as a magnetic material for high-density magnetic recording media mainly used for audio and video. The 81 technology is one of the ultimate elemental technologies related to magnetic powder.It can be positioned as one of the most desired industrial technologies for increasing density.

既に、本発明者等によって[還元鉄を炭化性ガスで気相
接触反応により炭化鉄微粒子をR#逸する方法」が提案
されている。しかしながら、この技術に於いては炭化反
応の前工程で可能な限り、オキシ水酸化鉄の還元を完結
してあく必要があった。
The inventors of the present invention have already proposed a method for removing iron carbide fine particles by subjecting reduced iron to a gas phase catalytic reaction with a carbonizing gas. However, in this technique, it was necessary to complete the reduction of iron oxyhydroxide as much as possible in a step prior to the carbonization reaction.

該還元が未了では炭化工程で未還元のオキシ水酸化鉄に
より炭化反応中に酸化鉄及び炭素の生成が副反応として
起り、σSを高く保持しつつ、効率良く保磁力を下げる
事ができない場合があった。
If the reduction is not completed, iron oxide and carbon are generated as a side reaction during the carbonization reaction due to unreduced iron oxyhydroxide in the carbonization process, and it is not possible to efficiently lower the coercive force while maintaining a high σS. was there.

又、還元未了を恐れる余り、還元温度を高めたり、還元
時間を長くすると金属微粒子間の焼結が起り、テープ特
性(Sr /Bm >の低下等の原因となり、極めて好
ましくない。
Furthermore, if the reduction temperature is increased or the reduction time is prolonged due to fear of incomplete reduction, sintering between metal fine particles will occur, causing a decrease in tape properties (Sr /Bm >), which is extremely undesirable.

本発明者等は、上記の問題点の解決を計る為(こ、種々
の検討を加え、その特性の改良を研究し続けている間に
炭化工程に於いて炭化性ガスと共に還元性ガスをも同伴
させる事により酸化鉄及び炭素の生成量の少ない磁性素
材として好適な炭化鉄を製造することができることを見
い出し、その技術を特願昭60−36533で提示した
。この方法によって効率良く炭化反応が進むので保磁力
(HC)は炭化度に応じて8000e程度)2低下でき
、尚且飽和磁化くσS)も高く保持する事が可能になっ
た。即ち、より微細な粒子を適正なHCまで低下制御し
ても、媒体テープの電磁変換特性の出力の低下は最小限
に抑えつつ、ノイズは飛躍的に低下させる事の可能な画
期的な技術を見い出したわけである。
In order to solve the above-mentioned problems, the present inventors conducted various studies and while continuing to research improvements in the characteristics, they decided to use a reducing gas in addition to the carbonizing gas in the carbonization process. It was discovered that by entraining iron carbide, it was possible to produce iron carbide suitable as a magnetic material with a small amount of iron oxide and carbon produced, and the technology was proposed in Japanese Patent Application No. 60-36533.This method allows the carbonization reaction to be carried out efficiently. As a result, the coercive force (HC) can be lowered by about 8000 e)2 depending on the degree of carbonization, and the saturation magnetization (σS) can also be kept high. In other words, even if finer particles are controlled to be reduced to an appropriate HC level, the output of the electromagnetic conversion characteristics of the media tape can be minimized, while noise can be dramatically reduced. This is what we found.

即ち、該発明の要旨は、第一段階として磁気記録用の鉄
を主要成分とした針状性金属粉微粒子を製造し、次いで
第二段階として該金属粉微粉子を炭化する工程と還元す
る工程を設ける事から構成される。
That is, the gist of the invention is that, as a first step, acicular metal powder particles containing iron as a main component for magnetic recording are produced, and then, as a second step, the metal powder particles are carbonized and reduced. It consists of establishing a

この場合、第一段階の磁気記録用の鉄を主要成分とした
針状性金属粉微粒子の製造は基本的に充分公知となって
いる方法により得られる。例えば比表面積20〜150
m2/c+r、のα−オキシ水酸化鉄、もしは<Al 
、Ti 、Cr 、Mn 、Co、Ni、Zn等の元素
から選ばれた少くとも一種の元素が共沈したα−オキシ
水酸化鉄に、焼結回避・形状保持・保磁力制御・耐蝕性
の向上等の為に、B、Al 、Si、P、Ti、Zn、
Cr、Mn、Co 、Ni 、Cu 、Zr 、Sn 
、Pb 、Ca、3a等の元素から選ばれた少なくとも
一種の元素を表面被着し、乾燥した表面変性α−オキシ
水酸化鉄を粉砕し必要に応じて300〜800℃におい
て仮焼し表面変性α−酸化鉄とした後、水素ガスを主体
とする還元性ガスにより、300〜500℃程度の温度
において気相接触還元反応に供して結晶学的には体心立
方晶系(: bcc )を形成するα−Fe粉を製造す
る事が出来る。
In this case, the first step of producing acicular metal powder particles containing iron as a main component for magnetic recording is basically obtained by a well-known method. For example, specific surface area 20-150
m2/c+r, α-iron oxyhydroxide, if <Al
, Ti, Cr, Mn, Co, Ni, Zn, etc. are co-precipitated into α-iron oxyhydroxide, which has properties such as sintering avoidance, shape retention, coercive force control, and corrosion resistance. For improvement etc., B, Al, Si, P, Ti, Zn,
Cr, Mn, Co, Ni, Cu, Zr, Sn
The dried surface-modified α-iron oxyhydroxide is coated with at least one element selected from elements such as , Pb, Ca, and 3a, and the dried surface-modified α-iron oxyhydroxide is pulverized and, if necessary, calcined at 300 to 800°C to surface-modify the surface. After forming α-iron oxide, it is subjected to a gas phase catalytic reduction reaction at a temperature of about 300 to 500°C using a reducing gas mainly composed of hydrogen gas to form a body-centered cubic system (bcc) crystallographically. It is possible to produce α-Fe powder.

該還元反応の終了は水素流通温度及び時間を設定するか
、或いは反応器系排出ガスの水分濃度の分析、例えば露
点測定で判定するのが通常である。
The completion of the reduction reaction is usually determined by setting the hydrogen flow temperature and time, or by analyzing the water concentration of the exhaust gas from the reactor system, for example, by measuring the dew point.

還元停止後窒素ガス雰囲気下で一部扱き出して、磁気特
性を測定すると飽和磁化(σS)は150〜200 e
mu /(lr、程度の値となり、純鉄の飽和磁化(σ
S ) 217. Oemu /gr、よりは低い値を
示す。
After stopping the reduction, a portion of the material was taken out in a nitrogen gas atmosphere and the magnetic properties were measured. The saturation magnetization (σS) was 150 to 200 e.
mu / (lr), and the saturation magnetization of pure iron (σ
S) 217. Oemu/gr indicates a lower value.

次に、第二段階として、炭化反応工程に於いて一酸化炭
素ガスと水素ガスの混合ガスの導入、或いは一酸化炭素
ガス、水素ガス及び不活性ガスとの混合ガスの導入を行
い、炭化及び還元反応を同時に進行させる事により、酸
化鉄及び炭素の生成を抑制する事が可能となり、炭化鉄
含有強磁性微粒子が得られる。−酸化炭素と水素ガスと
の混合比(CO:Hと)は1:30000を■限としで
、それよりも多めのCOを添加すれば良い。該混合ガス
と同伴させる不活性ガスとしてはヘリウムガス、アルゴ
ンガス及び二酸化炭素ガスを使用する事も可能であるが
比較的廉fiffiな窒素ガスが最も好ましい。該混合
ガスの体積比(CO:Nりは1:]〜1:500が適当
であり、主として炭化反応の反応速度を制御する事が目
的である。炭化反応の反応速度が速過ぎるとM離の炭素
が生成するし、又余りに遅いと経済的でなく、該組成領
域が適当である。
Next, in the second step, a mixed gas of carbon monoxide gas and hydrogen gas is introduced in the carbonization reaction process, or a mixed gas of carbon monoxide gas, hydrogen gas, and an inert gas is introduced, and the carbonization and By allowing the reduction reaction to proceed simultaneously, it becomes possible to suppress the production of iron oxide and carbon, and iron carbide-containing ferromagnetic fine particles can be obtained. - The mixing ratio of carbon oxide and hydrogen gas (CO:H) is limited to 1:30000, and a larger amount of CO may be added. Although it is possible to use helium gas, argon gas, and carbon dioxide gas as the inert gas to be entrained with the mixed gas, nitrogen gas, which is relatively inexpensive and fiffi, is most preferable. The volume ratio of the mixed gas (CO:N ratio of 1:] to 1:500 is appropriate, and the purpose is mainly to control the reaction rate of the carbonization reaction. If the reaction rate of the carbonization reaction is too fast, M separation will occur. of carbon is produced, and if it is too slow, it is not economical, so this composition range is appropriate.

該発明は、以上に説明した様に、針状性磁性粉に於てそ
の粒子サイズと磁気特性、特に保持力H+値とを独立に
制御できる有望な工業技術の一つと位置づける事が出来
、量産化の検討を進めたが、該発明の第二段階の金属粉
微粒子の炭化反応においてはCOの活性が極めて大ぎく
て金属粉微粒子の炭化反応が不均一になりやすいという
問題点を見出した。
As explained above, this invention can be positioned as a promising industrial technology that can independently control the particle size and magnetic properties of acicular magnetic powder, especially the coercive force H+ value, and is suitable for mass production. However, in the second stage of the carbonization reaction of metal powder particles of the present invention, we found that the activity of CO is extremely large and the carbonization reaction of metal powder particles tends to be non-uniform.

本発明者等は、上記の問題点を解消するべく、金属粉微
粒子のCOによる炭化反応を工業的規模で均一に進行さ
せる方法につき検討し、本発明を完成させた。
In order to solve the above-mentioned problems, the present inventors investigated a method for uniformly proceeding the carbonization reaction of metal powder particles with CO on an industrial scale, and completed the present invention.

本発明によれば、形状保持成分で被着変成された針状オ
キシ水酸化鉄微粒子を水素を主体とする還元性ガスで気
相接触還元反応によって強磁性還元鉄粉とし、次いで一
酸化炭素と還元性ガスとの混合ガスによる気相接触炭化
反応によって強磁性炭化鉄とすることから成る炭化鉄含
有針状強磁性微粒子の製造方法において、気相接触炭化
反応を撹拌流動床もしくは流動床方式の反応器を用いて
一酸化炭素と還元性ガスとの混合ガスの流速を20m/
 580以上の線速度とする条件下で行なうことを特徴
とする炭化鉄含有針状強磁性微粒子の製造方法が提供さ
れる。
According to the present invention, acicular iron oxyhydroxide fine particles that have been deposited and modified with a shape-retaining component are made into ferromagnetic reduced iron powder by a gas phase catalytic reduction reaction using a reducing gas mainly composed of hydrogen, and then converted into ferromagnetic reduced iron powder with carbon monoxide. In a method for producing acicular ferromagnetic particles containing iron carbide, which involves producing ferromagnetic iron carbide through a vapor phase catalytic carbonization reaction using a mixed gas with a reducing gas, the vapor phase catalytic carbonization reaction is carried out using a stirred fluidized bed or a fluidized bed method. Using a reactor, the flow rate of the mixed gas of carbon monoxide and reducing gas was set at 20 m/
A method for producing iron carbide-containing acicular ferromagnetic particles is provided, which is characterized in that the production is carried out under conditions of a linear velocity of 580 or higher.

本発明者等は、固定床式の反応器を用いて強磁性還元鉄
粉の気相接触炭化反応のスケールアップについて検討を
行なった。この場合、H2気流中300〜500℃の条
件ド″C−C0淵度1000ppm以下の条件ではほぼ
全量が炭化反応に奇与し、反応器出口ガス中のCO碧度
は殆んど0であり、炭化反応はきわめて高活性であるこ
とを認めた。
The present inventors conducted a study on scaling up the gas phase catalytic carbonization reaction of ferromagnetic reduced iron powder using a fixed bed reactor. In this case, under the conditions of 300 to 500°C in a H2 gas flow and a C-C0 deepness of 1000 ppm or less, almost all of the amount of CO contributes to the carbonization reaction, and the CO deepness in the reactor outlet gas is almost 0. It was recognized that the carbonization reaction was extremely active.

更に、固定床反応器では、比較例4に示すように、カス
の上流側に炭化が集中し、均一な反応はきわめて困難で
あることを知った。一方、′e、vJ床反応器を用いて
強磁性還元鉄粉を流動させながら炭化反応を行なえば、
固定床反応器における炭化反応の不均一の問題を回避で
きることを知った。
Furthermore, it was found that in a fixed bed reactor, as shown in Comparative Example 4, carbonization concentrates on the upstream side of the scum, making it extremely difficult to carry out a uniform reaction. On the other hand, if the carbonization reaction is carried out while fluidizing the ferromagnetic reduced iron powder using a 'e, vJ bed reactor,
It was found that the problem of non-uniformity of carbonization reaction in fixed bed reactor can be avoided.

流動床反応器で強磁性還元鉄粉を均一に流動させるため
には、2 cm/ sec以上のガス線速度が必要であ
る。また、2 cm/ sec以上のガス線速度で流動
させつつ攪拌翼を用いて2〜12Orpmで機械的に強
磁性還元鉄粉を攪拌すると更に好ましい。
In order to uniformly fluidize ferromagnetic reduced iron powder in a fluidized bed reactor, a gas linear velocity of 2 cm/sec or more is required. Further, it is more preferable to mechanically stir the ferromagnetic reduced iron powder at 2 to 12 Orpm using a stirring blade while flowing the gas at a linear gas velocity of 2 cm/sec or more.

強磁性)!元鉄粉の層高には特に制限は無く、基本的に
は、強磁性還元鉄粉の流動開始速度以上のガス線速を与
えればよく、具体的には2 cm/ sec以上の線速
とすればよい。流動床又は撹拌流動床反応器の構造には
特に制限は無いが、5〜50μ程度の微細孔から構成さ
れた金属もしくはセラミックの焼結板からなる分散板を
設置してガスの分散及び強磁性還元鉄粉保持の両機能を
もたらすことが好ましい。分散板としては、このほかに
、1〜5 111/m程度の穴を適当なピッチで多数設
けたものを用いても良い。この場合、穴のピッチは20
mm程度が操作しやすい。
Ferromagnetic)! There is no particular limit to the layer height of the original iron powder, and basically it is sufficient to provide a gas linear velocity that is higher than the flow start velocity of the ferromagnetic reduced iron powder, specifically a linear velocity of 2 cm/sec or higher. do it. There are no particular restrictions on the structure of the fluidized bed or stirred fluidized bed reactor, but a dispersion plate made of a sintered metal or ceramic plate with micropores of about 5 to 50 μm is installed to disperse gas and improve ferromagnetic properties. It is preferable to provide both functions of retaining reduced iron powder. In addition to the above, a dispersion plate having a large number of holes of about 1 to 5 111/m at an appropriate pitch may also be used. In this case, the hole pitch is 20
It is easy to operate around mm.

以下、実施例及び比較例によって本発明を具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例 1 (1)ゲーサイト合成 Fe SOa ・7H2050kfJを水10001に
溶融し、液温を40°C(、:調整したくこれを溶液T
とする)。また、NaOH’1.5に!Jを水5001
に溶解して液温を35℃に調整した(これを溶液■とす
る)。
Example 1 (1) Goethite synthesis Fe SOa 7H 2050 kfJ was melted in 10001 water, and the liquid temperature was 40°C (,: To adjust, this was dissolved in solution T.
). Also, NaOH'1.5! J water 5001
The solution temperature was adjusted to 35° C. (this will be referred to as solution ①).

攪拌機付き内容積3M3の反応器に溶液■を仕込み、次
いで溶液■を一括投入し、5分間攪拌混合して中和反応
を完結さじた後、15M3/minの供給速度で空気を
吹込み酸化を行なうことにより、黄褐色のゲーサイトが
沈殿粒子として得られた。
A reactor with an internal volume of 3M3 equipped with a stirrer was charged with the solution (2), and then the solution (2) was added all at once, stirred and mixed for 5 minutes to complete the neutralization reaction, and then air was blown at a feed rate of 15M3/min to oxidize. As a result, yellowish brown goethite was obtained as precipitated particles.

該グーサイ1〜を水洗、濾過し、r過ケーキの一部を分
取して分析したところ、該グーサイ1〜は軸比14、比
表面積85m2/!]の針状粒子であった(該ゲーリー
イ1−をGlと呼ぶ)。
When the Gusai 1~ was washed with water and filtered, and a part of the r-filtration cake was separated and analyzed, the Gusai 1~ had an axial ratio of 14 and a specific surface area of 85 m2/! ] (the Gary 1- is referred to as Gl).

(2)被着’n理 ゲーサイト 0丁のゲーサイトをゲーサイト+水の重量比で100に
調整したスラリー1001を攪拌機を有する容器に投入
した。次に、 ■メタリン酸ソーダ52gを水1!に溶解させた水溶液 03号水ガラス原液1.13klJを水51に溶解させ
た水溶液、 ■N1(NOs)2 ・6H+01.57k(lを水5
1に溶解させた水溶液、 ■1現定のNa OH水溶液、及び ■1規定のHN O!水溶液 を用意し、上記スラリーに、まず■を添加し、次に■と
■を同時に各々1時間かけて添加した。■と■の添加の
際は液のI)Hが8を下廻らない様に適宜■を添加した
。最終的に■又は■でスラリーのpHを8に調整した後
、該スラリーを水洗して乾燥した。
(2) Slurry 1001, which was prepared by adjusting the weight ratio of goethite and water to 100, was charged into a container equipped with a stirrer. Next, ■ 52g of sodium metaphosphate to 1 portion of water! An aqueous solution in which 1.13 klJ of No. 03 water glass stock solution was dissolved in 51 water, ■N1 (NOs)2 ・6H + 01.57 k (l was dissolved in water 5
1 aqueous solution dissolved in 1, 1 normal NaOH aqueous solution, and 1 normal HNO! An aqueous solution was prepared, and to the above slurry, (1) was first added, and then (2) and (2) were added simultaneously over 1 hour each. When adding (2) and (2), (2) was added appropriately so that the I)H of the liquid did not fall below 8. Finally, the pH of the slurry was adjusted to 8 using (1) or (2), and the slurry was washed with water and dried.

乾燥粉の一部を分取して分析したところ、該被着粉は重
量比でNi /Fe−9,5/100.P/Fe =0
.45/100.Si /Fe =4.7/100.で
あった。
When a portion of the dry powder was separated and analyzed, the adhering powder had a weight ratio of Ni/Fe-9.5/100. P/Fe=0
.. 45/100. Si/Fe =4.7/100. Met.

(3)焼成、還元及びco処理 上記(2)で得た被着粉を乾燥して16メツシユのフル
イを通過する様に粉砕し、空気中650℃で4時間焼成
して嵩密度0.55 a/ccの焼成粉を得た。
(3) Calcining, reduction and CO treatment The adhered powder obtained in (2) above was dried and pulverized to pass through a 16-mesh sieve, and calcined in air at 650°C for 4 hours to give a bulk density of 0.55. A fired powder of a/cc was obtained.

この焼成粉5kgを、内径200mm、内容積60っで
、充てんした粉体を保持し、かつガスを均一に分散させ
る目的で反応器の底部に20μの微細孔から構成された
金属製の焼結板が据付けられ且つ反応器の内部に粉体の
攪拌響が取付けられた撹拌流動床式の反応器に投入し、
N2を8ONm 3/Hで供給しつつ攪拌翼をE2rp
mで回転させ、反応温度を400℃で3時間維持して還
元を行なった。
5 kg of this sintered powder was placed in a metal sintered reactor with an inner diameter of 200 mm and an inner volume of 60 mm, which was constructed with 20 μm micropores at the bottom of the reactor for the purpose of holding the filled powder and uniformly dispersing the gas. Pour the powder into a stirred fluidized bed reactor with a plate installed and a powder stirring sound installed inside the reactor,
While supplying N2 at 8ONm 3/H, the stirring blade was set to E2rp.
The reaction temperature was maintained at 400° C. for 3 hours to carry out the reduction.

400℃で3時間経過後の反応器出口ガスの露点は〜5
0’C以下であり、還元反応が改良していることを認め
た。引き続き8ONm 3/HのN2ガスにCOを10
0ppI11になる様に混合し、4゜0℃で1時間維持
して還元鉄粉のco処理を行なった後、ガスをN2に切
換えて大気温まで放冷した。なお、CO処理時の反応器
出口ガスをガスクロマド分析したところ、coは1 p
pm以下であり、CO2が約50 ppm増加していた
After 3 hours at 400℃, the dew point of the reactor outlet gas is ~5
It was found that the reduction reaction was improved. Continue to add 10% CO to 8ONm 3/H of N2 gas.
The mixture was mixed to a concentration of 0 ppI11, maintained at 4.degree. 0.degree. C. for 1 hour, and the reduced iron powder was subjected to co-treatment.Then, the gas was switched to N2 and the mixture was allowed to cool to ambient temperature. In addition, gas chromatography analysis of the reactor outlet gas during CO treatment revealed that CO was 1 p.
pm or less, and CO2 had increased by about 50 ppm.

次いで、該還元粉末を回収してトルエン中に浸漬した後
平皿上に展開して空気と接触せしめ、還元粉末の表面に
酸化被膜を形成させて安定化し、最終的に乾燥状態の磁
性鉄粉的3.3kgを得た。
Next, the reduced powder is collected and immersed in toluene, spread on a flat plate, and brought into contact with air to form an oxide film on the surface of the reduced powder to stabilize it, and finally to form a dry magnetic iron powder. 3.3 kg was obtained.

(4)磁性鉄粉の評価 [粉体物性] 該磁性鉄粉の粉体物性を磁気特性及び比表面積につき測
定して、次の値を得た。尚、磁気特性は振動試料型磁力
計(VSM)を用いて測定磁界10KOeにて測定した
(4) Evaluation of magnetic iron powder [Powder physical properties] The powder physical properties of the magnetic iron powder were measured in terms of magnetic properties and specific surface area, and the following values were obtained. The magnetic properties were measured using a vibrating sample magnetometer (VSM) at a measurement magnetic field of 10 KOe.

Hc1540   Qe (fs  1 26  emtJ/g σr /σSo、51 比表面積 58m2/g また、磁性鉄粉中のC濃度を分析したところ、lff1
比rc/Fe−0,07/100であった。
Hc1540 Qe (fs 1 26 emtJ/g σr /σSo, 51 Specific surface area 58 m2/g In addition, when the C concentration in the magnetic iron powder was analyzed, lff1
The ratio rc/Fe-0.07/100.

[シート物性の測定J 磁性鉄粉300部、VAGH(塩酸ビ系重合体、UCC
社製商品名)45部、トルエン175部及びメチルイソ
ブチルケトン175部からなる混合物をボールミル中で
24時間攪拌分散した後、ざらにタケネートL−100
7(ウレタンプレポリマー、成田薬品製商品名)2部、
トルエン15部及びメチルイソブチルケトン15部をホ
ールミル中に加え、1時間攪拌分散して磁性塗料を調製
した。
[Measurement of sheet physical properties J 300 parts of magnetic iron powder, VAGH (vinyl hydrochloride polymer, UCC)
After stirring and dispersing a mixture of 45 parts (product name), 175 parts of toluene, and 175 parts of methyl isobutyl ketone in a ball mill for 24 hours,
7 (Urethane prepolymer, Narita Pharmaceutical product name) 2 parts,
15 parts of toluene and 15 parts of methyl isobutyl ketone were added to a hole mill and stirred and dispersed for 1 hour to prepare a magnetic coating material.

得られた磁性塗料を、厚さ16μmのポリエステルフィ
ルムに乾燥Jlが3μmとなる様に塗布し、磁界中で金
属粉末の配向を行なったのち乾燥し、次いで磁性層表面
をカレンダー処理により鋭面加工し、所定の幅に裁断し
て検体を得た。
The obtained magnetic paint was applied to a polyester film with a thickness of 16 μm so that the dry Jl was 3 μm, the metal powder was oriented in a magnetic field, and then dried. Then, the surface of the magnetic layer was sharpened by calendering. The sample was then cut to a predetermined width to obtain a specimen.

該検体をVSMにて測定磁界10KOeで測定して、次
のシート物性を得た。
The sample was measured with a VSM at a measurement magnetic field of 10 KOe to obtain the following sheet properties.

Hc1450 0e Br2150  Gauss Br /am 0.74 実施例 2〜6 還元条件及びco98理条件を変更する以外は実施例1
と同じ方法で磁性鉄粉を得た。各々の磁性鉄粉の評価結
果は次表の通りであった。尚、各々の実施例でのCO処
理時の反応器出口C0yA度は1 ppm以下であった
Hc1450 0e Br2150 Gauss Br /am 0.74 Examples 2 to 6 Example 1 except for changing the reduction conditions and co98 processing conditions
Magnetic iron powder was obtained in the same manner. The evaluation results for each magnetic iron powder are shown in the table below. Incidentally, the C0yA degree at the reactor outlet during CO treatment in each example was 1 ppm or less.

実施例 7 実施例1において撹拌流動床式反応器に焼成粉を10k
o充てんすることと還元及びCO処理の際(7) Hr
 ヲ16ONn+ 3/Hに変更すること以外は実施例
1と同一の操作で、磁性鉄倹約6.8kgを得た。
Example 7 In Example 1, 10 kg of calcined powder was placed in a stirred fluidized bed reactor.
o During filling and reduction and CO treatment (7) Hr
Approximately 6.8 kg of magnetic iron was obtained by the same operation as in Example 1 except that the material was changed to 16ONn+3/H.

該磁性R製の粉体特性は、 HCl535 0e as 125 emu/+;) σr/σS0.51 比表面積 571R2/g であり、シート特性は、 HCl440 0e Br 2150  Gauss Sr /Bu 0.74 となり、実施例1と殆んど同じ特性であることを認めた
The properties of the magnetic R powder are: HCl535 0e as 125 emu/+ ;) σr/σS0.51 Specific surface area 571R2/g, and the sheet properties are: HCl440 0e Br 2150 Gauss Sr /Bu 0.74. It was recognized that the properties were almost the same as in Example 1.

比較例 1 実施例1のCO処理をを省略して還元後ただちにN2に
切換えて放冷する以外は実施例1と同じ操作を行なって
、磁性鉄粉を得た。
Comparative Example 1 Magnetic iron powder was obtained by carrying out the same operations as in Example 1, except that the CO treatment in Example 1 was omitted, and after reduction, the treatment was immediately switched to N2 and allowed to cool.

該磁性鉄粉の粉体特性は、 Hc1660 0e σS 125 emu/g σr/σs0.51 比表面積 59m2/Q であり、シート物性は、 Hc1540 0e Br2080  Gauss 3r /Bm o、74 であった。The powder characteristics of the magnetic iron powder are: Hc1660 0e σS 125 emu/g σr/σs0.51 Specific surface area 59m2/Q And the sheet physical properties are Hc1540 0e Br2080 Gauss 3r/Bm o, 74 Met.

尚、上記シー1〜物性は、3mmビデオの用途には満足
なi3rレベルであるが、シートの1−1cは1430
〜1500の範囲でなければならないために該磁性鉄粉
は不適格である。
In addition, the physical properties of the sheet 1-1 are at the i3r level, which is satisfactory for 3mm video applications, but the sheet 1-1c is 1430.
-1500, making the magnetic iron powder unsuitable.

比較例 2及び3 実施例2及び3に於けるCO処理を省略して、)!死後
ただちにN2に切換えて放冷する以外は各々実施例2及
び3と同じ操作に行なって、磁性鉄粉を得た。
Comparative Examples 2 and 3 By omitting the CO treatment in Examples 2 and 3)! Magnetic iron powder was obtained by carrying out the same operations as in Examples 2 and 3, except that immediately after death, the atmosphere was changed to N2 and allowed to cool.

各々の磁性鉄粉の評価結果は、次表の通りであった。The evaluation results for each magnetic iron powder are as shown in the table below.

比較例 4 固定床反応器に実施例1の焼成粉soogを充てんし、
13Nm3/Hの水素気流中380℃で還元した。尚、
固定床の層高は充てん時で8Qcmであった。5.5時
間で反応器出口ガスの露点が=50℃となり、この時点
でH2気流中にCOを1100pp添加し、1時間処理
した後、N2気流中で室温まで放冷した。尚、CO添加
時の反応器出口C0W4度はQ、1pt)l以下であっ
た。
Comparative Example 4 A fixed bed reactor was filled with the calcined powder soog of Example 1,
Reduction was carried out at 380° C. in a hydrogen stream of 13 Nm 3 /H. still,
The bed height of the fixed bed was 8 Qcm at the time of filling. After 5.5 hours, the dew point of the reactor outlet gas reached =50°C, at which point 1100 pp of CO was added to the H2 stream, and after treatment for 1 hour, it was allowed to cool to room temperature in a N2 stream. Incidentally, the C0W4 degree at the reactor outlet when CO was added was below Q, 1 pt)l.

次いで、該還元粉末を50gずつ注意して上部より分取
し、各々を安定化処理して磁性鉄粉とした。分取サンプ
ルは反応器上部から順にS−1、S−2と番号をつけS
−9迄とした。また、S−1〜S−9の各々の半量ずつ
を粉体混合器で均一に混合して5−10とした。各々の
サンプルの磁気特性は次表のようになった。また、C′
III度を元素分析した結果は、次表の様に反応器上部
はど高m度であった。
Next, 50 g of the reduced powder was carefully collected from the top, and each portion was stabilized to obtain magnetic iron powder. The preparative samples are numbered S-1 and S-2 in order from the top of the reactor.
It was set to -9. In addition, half of each of S-1 to S-9 was uniformly mixed using a powder mixer to obtain 5-10. The magnetic properties of each sample are as shown in the table below. Also, C'
As shown in the following table, the elemental analysis results for the III-degree reactor showed that the upper part of the reactor was at a height of m degrees.

以上により、CO処理はCoと磁性鉄粉との反応活性が
きわめて犬であるため、固定床式反応器は工業的に使え
ないことがわかる。
From the above, it can be seen that in CO treatment, the reaction activity between Co and magnetic iron powder is extremely low, so a fixed bed reactor cannot be used industrially.

Claims (1)

【特許請求の範囲】[Claims]  形状保持成分で被着変成された針状オキシ水酸化鉄微
粒子を水素を主体とする還元性ガスで気相接触還元反応
によつて強磁性還元鉄粉とし、次いで一酸化炭素と還元
性ガスとの混合ガスによる気相接触炭化反応によつて強
磁性炭化鉄とすることから成る炭化鉄含有針状強磁性微
粒子の製造方法において、気相接触炭化反応を撹拌流動
床もしくは流動床方式の反応器を用いて一酸化炭素と還
元性ガスとの混合ガスの流速を2cm/sec以上の線
速度とする条件下で行なうことを特徴とする炭化鉄含有
針状強磁性微粒子の製造方法。
The acicular iron oxyhydroxide fine particles that have been modified with a shape-retaining component are made into ferromagnetic reduced iron powder by a gas phase catalytic reduction reaction using a reducing gas mainly composed of hydrogen, and then converted into ferromagnetic reduced iron powder with carbon monoxide and a reducing gas. In a method for producing acicular ferromagnetic fine particles containing iron carbide, which comprises producing ferromagnetic iron carbide through a gas phase catalytic carbonization reaction using a mixed gas, the gas phase catalytic carbonization reaction is carried out in a stirred fluidized bed or a fluidized bed type reactor. A method for producing acicular ferromagnetic particles containing iron carbide, characterized in that the process is carried out under conditions where the flow rate of a mixed gas of carbon monoxide and a reducing gas is set to a linear velocity of 2 cm/sec or more.
JP60197778A 1985-09-09 1985-09-09 Manufacture of magnetic iron powder for magnetic recording Pending JPS6258604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197778A JPS6258604A (en) 1985-09-09 1985-09-09 Manufacture of magnetic iron powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197778A JPS6258604A (en) 1985-09-09 1985-09-09 Manufacture of magnetic iron powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPS6258604A true JPS6258604A (en) 1987-03-14

Family

ID=16380190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197778A Pending JPS6258604A (en) 1985-09-09 1985-09-09 Manufacture of magnetic iron powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS6258604A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326165A2 (en) * 1988-01-27 1989-08-02 Daikin Industries, Limited Iron Carbide fine particles and a process for preparing the same
EP0641738A4 (en) * 1993-02-19 1994-12-28 Daikin Ind Ltd Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same.
US11709299B2 (en) 2018-06-14 2023-07-25 3M Innovative Properties Company Optical assembly with protective coating
US11724472B2 (en) 2010-04-13 2023-08-15 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
US11789291B2 (en) 2010-04-13 2023-10-17 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326165A2 (en) * 1988-01-27 1989-08-02 Daikin Industries, Limited Iron Carbide fine particles and a process for preparing the same
EP0641738A4 (en) * 1993-02-19 1994-12-28 Daikin Ind Ltd Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same.
EP0641738A1 (en) * 1993-02-19 1995-03-08 Daikin Industries, Limited Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same
US11724472B2 (en) 2010-04-13 2023-08-15 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11789291B2 (en) 2010-04-13 2023-10-17 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US11709299B2 (en) 2018-06-14 2023-07-25 3M Innovative Properties Company Optical assembly with protective coating
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
JPS58119609A (en) Magnetic recording medium
EP1840905B1 (en) Magnetic metal powder suitable for use in magnetic recording media and method of manufacturing the powder
DE69321531T2 (en) Granular particles for magnetic particles for magnetic recording and process for their production
JPS6258604A (en) Manufacture of magnetic iron powder for magnetic recording
US6391450B1 (en) Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped magnetic iron-based alloy particles, and process for producing the same
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
JP2011181170A (en) Magnetic metal powder for magnetic recording medium
JPS61196502A (en) Magnetic material and manufacture thereof
JPH0123402B2 (en)
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP2009084600A (en) Metal magnetic powder, and method for producing the same
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP3512053B2 (en) Lepidocrocite particle powder for non-magnetic underlayer of magnetic recording medium, substrate of magnetic recording medium, and magnetic recording medium
JP2002289415A (en) Magnetic recording spindle-shaped alloy magnetic particle powder and magnetic recoding medium
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP5170410B2 (en) Method for producing metal magnetic particle powder for magnetic recording, and magnetic recording medium
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH09251911A (en) Magnetic metal powder, magnetic recording medium, and manufacturing method of magnetic metal powder