JPS59110201A - Comb line type band-pass filter - Google Patents

Comb line type band-pass filter

Info

Publication number
JPS59110201A
JPS59110201A JP21991082A JP21991082A JPS59110201A JP S59110201 A JPS59110201 A JP S59110201A JP 21991082 A JP21991082 A JP 21991082A JP 21991082 A JP21991082 A JP 21991082A JP S59110201 A JPS59110201 A JP S59110201A
Authority
JP
Japan
Prior art keywords
resonant
resonant elements
coupling
input
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21991082A
Other languages
Japanese (ja)
Other versions
JPH0467361B2 (en
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP21991082A priority Critical patent/JPS59110201A/en
Publication of JPS59110201A publication Critical patent/JPS59110201A/en
Publication of JPH0467361B2 publication Critical patent/JPH0467361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To obtain a comb line type BPF which has superior dielectric strength characteristics and stable electric characteristics by using resonance elements which have axial length nearly a quarter a resonance frequency and specifying intervals between the resonance elements. CONSTITUTION:The resonance elements 21-2n have axial length a quarter resonance wavelength in terms of electric length and are arrayed in a line with the same polarity. Further, input/output coupled circuit elements 30-3n+1 are provided and the center interval between resonance elements is specified by equations I . In this case, Cdk.(k+1) is the center interval between the resonance elements, k=1-n, and (n) is the degree of a filter; and (d) is the diameter of the resonance elements, W is the width of a housing 1, and Lck.(k+1) is reactance loss between resonance elements. Further, Mk.(k+1) is the coefficient of the magnetic field coupling between the resonance elements, and lambdac=2W(epsilon)<1/2>, where lambdac is cutoff wavelength, lambda is the wavelength of a transmit signal, and epsilon is a dielectric constant. Consequently, the comb line type BPF which has superior dielectric strength characteristics and stable electric characteristics is obtained.

Description

【発明の詳細な説明】 覧−/ 従来、同軸型共振器を用いて成るBPFは、インクディ
ジタル型BPF又は孔結合型BPFが主として用いられ
ているが、インクディジタル型BPFは共振器の共振素
子が逆極性を以て交互に配設され、共振周波数微調用の
ねじの外端が筐体の土壁及び下壁かも交互に外側へ突出
しているので形状が比較的複雑大型となるΩみならず、
設計製作E啼して理論値と実験値との間の誤差が大なる
ため一々寅験的に確めて誤差を補正する必要があり、多
くの時間と労力を要する欠点がある。
Detailed Description of the Invention - / Conventionally, ink-digital BPFs or hole-coupled BPFs have been mainly used as BPFs using coaxial resonators. are arranged alternately with opposite polarity, and the outer ends of the screws for resonant frequency fine tuning alternately protrude outward from the earth wall and bottom wall of the casing, making the shape relatively complex and large.
During design and manufacturing, there is a large error between the theoretical value and the experimental value, so it is necessary to confirm each case experimentally and correct the error, which has the disadvantage of requiring a lot of time and effort.

孔結合型BPFは結合孔の穿設加工等を要するため筐体
の製作コストが高くなるばカーってなく、調整に多くの
時間と労力を要する欠点がある。
Since the hole combination type BPF requires drilling of the connection hole, etc., it is unprofitable if the manufacturing cost of the casing increases, and it has the disadvantage that adjustment requires a lot of time and labor.

コムライン型BPFは比較的小型で、製作コストが低廉
なると共に調整も比較的容易である力く、次のような欠
点を有する。
The comline type BPF has the advantages of being relatively small, inexpensive to manufacture, and relatively easy to adjust, but has the following drawbacks.

第1図は従来の同軸型共振器より成るコムライン型BP
Fの一例を示す断面図(第2図のB−B断面図)、第2
図は第1図のA−A断面図、第3図はその等価口路図で
、1は電磁シールド用筐体、2は棒状導体より成る共振
素子、3(ま棒状導体より成る入出力結合回路素子、4
は入出力同軸端子、5は負荷容量を形成する電極板で、
このBPF’ lこおいては共振素子2の軸長を共振波
長のfilよ%tこ選び、各共振素子の開放端に取付け
た電極板5と筐体1間の静電容量によって共振を図ると
共に段間結合容量C(2、cai ’・・・・・・によ
って共振素子間を結合するように構成しである。然るに
電極板5と筐体1間に形成される負荷容量は比較的大な
る値を必要とするため、電極板5と筐体1間の各間隙が
狭くなって耐圧特性が劣化し、又、周囲温度の変化に基
づく電極板5と筐体1間の間隙の太き任の変化に応じて
その間に形成される静電容量が大幅に変化し、安定良好
な電気的特性が得られない等の欠点を有し、例えば送信
用大電力BPP等には極めて不適である。
Figure 1 shows a combline type BP consisting of a conventional coaxial resonator.
A sectional view showing an example of F (BB sectional view in Fig. 2),
The figure is a sectional view taken along the line A-A in Figure 1, and Figure 3 is its equivalent circuit diagram, where 1 is an electromagnetic shielding case, 2 is a resonant element made of a bar-shaped conductor, and 3 (input/output coupling made of a bar-shaped conductor). circuit element, 4
is an input/output coaxial terminal, 5 is an electrode plate that forms a load capacitance,
In this BPF'l, the axial length of the resonant element 2 is selected as fil of the resonant wavelength, and resonance is achieved by the capacitance between the electrode plate 5 attached to the open end of each resonant element and the housing 1. In addition, the resonant elements are coupled by an interstage coupling capacitance C (2, cai'...).However, the load capacitance formed between the electrode plate 5 and the housing 1 is relatively large. As a result, each gap between the electrode plate 5 and the housing 1 becomes narrower, deteriorating the pressure resistance characteristics. The electrostatic capacitance formed between them changes significantly depending on the change in power, and it has drawbacks such as not being able to obtain stable electrical characteristics, making it extremely unsuitable for high-power transmission BPP, etc. .

又、前記のように電界結合によって共振素子間を結合す
るように構成している。ので、共振素子と筐体間に誘電
体を介在せしめて誘電体共振器を形成した場合には誘電
体の誘電率に応じて股間結合係数が変るため、設計が困
難となる。
Further, as described above, the resonant elements are configured to be coupled by electric field coupling. Therefore, when a dielectric resonator is formed by interposing a dielectric between the resonant element and the housing, the coupling coefficient between the legs changes depending on the dielectric constant of the dielectric, making the design difficult.

本発明は耐圧特性に優れ、周囲温度の変化の影響を受け
ることなく安定良好な電気的特性を有し、大電力用等に
好適なると共に、共振器を誘電体共振器を以て形成した
場合でも誘電率の変化によって段間結合係数に変化を生
ずることなく、したがって設計製作の容易な超短波ない
しマイクロ波用コムライン型BPFを実現するごとを目
的とする。
The present invention has excellent withstand voltage characteristics, has stable electrical characteristics without being affected by changes in ambient temperature, and is suitable for high power applications. It is an object of the present invention to realize a combline type BPF for very high frequency waves or microwaves that does not cause a change in the interstage coupling coefficient due to a change in the ratio and is therefore easy to design and manufacture.

第4図は本発明の一実施例を示す断面図(第5図のB−
B断面図)、第5図は第4図のA−A断面図で、1は電
磁シールド用筐体、2Iないし2rLは棒状導体より成
る共振素子(nはBPFの次数)、3゜及び37Iや1
は入出力結合回路素子% 4a及び47L?+は入出力
同軸端子である。そして筐体1の横幅W及び共振素子2
1ないし2nの直径dが共振波長に較べて小(例えば直
径dが共振波長のhOないしイO程度)なる場合には、
共振素子2Iないし2□の軸長を電気長で共振波長の頻
に形成し、筐体1の横幅W及び共振素子2Iないし2n
の直径dが共振波長に対して比較的大なる場合には、共
振素子2.ないし2暮の軸長2電気長で共振波長の4よ
りも適当に短かくして各共振素子の機械的自由端を電気
的に開放状態に保っである。
FIG. 4 is a sectional view showing one embodiment of the present invention (B--B in FIG. 5).
B sectional view), FIG. 5 is a sectional view taken along line AA in FIG. Ya1
are input/output coupling circuit elements % 4a and 47L? + is an input/output coaxial terminal. Then, the width W of the housing 1 and the resonant element 2
When the diameter d of 1 to 2n is small compared to the resonant wavelength (for example, the diameter d is about hO to iO of the resonant wavelength),
The axial lengths of the resonant elements 2I to 2□ are formed to be electrical lengths that correspond to the resonant wavelength, and the width W of the housing 1 and the resonant elements 2I to 2n are
When the diameter d of the resonant element 2. is relatively large with respect to the resonant wavelength, the resonant element 2. The axial length is set to 2 to 2 electrical lengths, which is appropriately shorter than the resonance wavelength of 4, so that the mechanical free end of each resonant element is kept electrically open.

第6図は第4図及び第5図に示した本発明BPFの等価
回路図で、R1ないしRnは共振素子2−ないし2nと
筐体1 とより成る共振器回路、M+a  % MJj
  %・・・・・・Mζ止、)孔は磁界結合係数、Co
、I及びC7,Cえす、)は入出力結合容量である− このように構成した本発明BPFにおいては初段共振素
子21に共振電流が流れると、共振素子2.と筐体1の
間にTEMモード波が発生し、その磁界成分が、共振素
子2Iと22の間における筐体1によって形成されると
共に筐体1の横幅Wによって遮断波長洗の定まるカット
オフ導波管部を励振し、(素子21がプローブ即ちアン
テナとなって励振が行われる)結果的に第7図に示す電
界成分Eと第8図に示す磁界成分Hを有するL+モード
波となり、次段の共振素子2コを励振する。以1・同様
にして信号の伝送が行われる。
FIG. 6 is an equivalent circuit diagram of the BPF of the present invention shown in FIGS. 4 and 5, where R1 to Rn are resonator circuits consisting of resonant elements 2- to 2n and casing 1, and M+a % MJj
%...Mζ stop,) hole is magnetic field coupling coefficient, Co
, I and C7, Cess, ) are input/output coupling capacitances. In the BPF of the present invention configured as described above, when a resonant current flows through the first-stage resonant element 21, the resonant element 2. A TEM mode wave is generated between the casing 1 and the casing 1, and its magnetic field component is formed by the casing 1 between the resonant elements 2I and 22, and the cut-off wave is determined by the horizontal width W of the casing 1. The wave tube section is excited (the element 21 serves as a probe or antenna and excitation is performed), resulting in an L+ mode wave having an electric field component E shown in FIG. 7 and a magnetic field component H shown in FIG. 8. Excite two resonant elements in the stage. 1. Signal transmission is performed in the same manner.

上記カットオフ導波管部におけるHl、モード波の遮断
波長λ(は(1)式で、共振素子間のリアクタンス損失
Lcは(2)式で容重められるが、本発明者が行った基
礎実験の結果を分析すると、共振素子の近くで電磁界の
乱れがあるため(3)式の実験式の方がより正確である
Hl in the above cut-off waveguide section and the cutoff wavelength λ of the mode wave are expressed by the equation (1), and the reactance loss Lc between the resonant elements is calculated by the equation (2). Analysis of the results shows that the experimental formula (3) is more accurate because there is disturbance in the electromagnetic field near the resonant element.

λ、 = 2’W (i           ・・・
・・・・・  (1)・・・・(3) イ旦し、 ε:筐体1と共振素子間に介在する材質で定まる値で、
空気の場合、ε=1、誘電体の場合はその誘電率である
。゛ λ:伝送信号の自由空間余長 cd=隣接対向する共振素子の中心間隔共振素子間を伝
送する信号のりアクタンス損失Lcから共振素子間の磁
界結合係数M+、a % M、+、j・・・・、・M/
7L−り、71 (まとめてMで表わす)を求めること
九 が出来るが、磁界の強さは共振電流a→きさに比例する
ので、各共振素子間のりアクタンス損失LQと磁界結合
係数Mの間には次式の関係が成立する。
λ, = 2'W (i...
... (1) ... (3) ε: A value determined by the material interposed between the housing 1 and the resonant element,
In the case of air, ε=1; in the case of a dielectric, it is its dielectric constant.゛λ: Extra free space length of transmission signal cd = Center distance between adjacent and opposing resonant elements Signal transmission between resonant elements Actance loss Lc From magnetic field coupling coefficient between resonant elements M+, a % M, +, j...・・・M/
7L-ri, 71 (collectively expressed as M) can be found, but since the strength of the magnetic field is proportional to the resonance current a → magnitude, the actance loss LQ between each resonant element and the magnetic field coupling coefficient M can be calculated. The following relationship holds true between them.

LQ=−2ologM・・・・−・(4)一旦 M=IO”       ・・・・・・ (5)筐体1
の横幅W、共振素子相互の中心間隔Cd 。
LQ=-2ologM・・・・−・(4) Once M=IO”・・・・・・(5) Housing 1
width W, and center distance Cd between the resonant elements.

共振素子の直径d2共振素子と筐体間に介在する材質で
定まるε及び伝送信号の波長式を与えると(3)式ない
しく5)式から磁界結合係数Mを求めることが出来、磁
界結合係数Mを与えると (3)式ないし (5)式か
ら共振素子相互の中心間隔Cdを求めることが出来る。
Diameter of the resonant element d2 Given ε, which is determined by the material interposed between the resonant element and the housing, and the wavelength equation of the transmission signal, the magnetic field coupling coefficient M can be obtained from equations (3) or 5), and the magnetic field coupling coefficient is When M is given, the center distance Cd between the resonant elements can be found from equations (3) to (5).

次に、分布定数型BPFを設計する場合には、基準化低
域通過ろ波器の幾何係数を求め、これを基にしてBPF
の回路定数を定めて所要の伝送特性を得るのが一般の設
計手法で、息子:i4<9図に等両回路図を、第10図
(横軸は伝送周波数f1縦軸は減衰量ATT 、 fc
 は遮断周波数)に伝送特性の曲線図を示すようなチェ
ビシェフ型基準化低域通過ろ波器の幾何係数を基にして
通過域がチェビシェフ特性で減衰域がワグナ特性を呈す
るBPFを得る場合につき説明する。
Next, when designing a distributed constant BPF, find the geometric coefficients of the scaled low-pass filter, and based on this, the BPF
The general design method is to obtain the required transmission characteristics by determining the circuit constants of . fc
A case will be explained in which a BPF with a Chebyshev characteristic in the passband and a Wagner characteristic in the attenuation region is obtained based on the geometric coefficients of a Chebyshev-type normalized low-pass filter that shows a curve diagram of the transmission characteristic at the cutoff frequency). do.

まずBPFの設計上許容される通過帯域内における電圧
定在波比(VSWR) をSとすると、通過帯域内にお
ける許容リップルLarは次式で表ねされる。
First, if the voltage standing wave ratio (VSWR) within the passband allowed in the design of the BPF is S, then the allowable ripple Lar within the passband is expressed by the following equation.

上式から1.、arを求めると共に回路次数nを定め、
(7)式から幾何係数g1を求め、(8)式から幾何係
数g2ないしg、1を求める。
From the above formula, 1. , ar and determine the circuit order n,
The geometric coefficient g1 is obtained from equation (7), and the geometric coefficients g2 to g, 1 are obtained from equation (8).

・・・・・・ (8) 上式において、 ・・・・・・(9) Y =Illinll (−L)     −・・・・
・(IQ)n β=in (coth±“−)   ・・・・・・(+
+)17.37 ・・・・(12) 尚、第9図においてRLは負荷抵抗で、回路次数nが奇
数の場合、RL=I 、nが偶数の場合には、第6図に
示した磁界結合係数M12% M2.3 s・・・・・
・M <7z−+3.71をまとめてM k4Nヤリ 
で表わし、各幾何係数をまとめてg8で表わすと、BP
Fを構成する共振器ノ特性インピーダンスZ6Cは、共
振素子の各中心間隔に無関係で筐体1の横幅W及び共振
素子の直径dで定まるからMに、(に+7)は、3) で表わされる。但し、 13wr :許容リップルしarを与える通過帯域幅f
6 : BPF’の中心周波数 共振素子21と21間のりアクタンス損失f Lc、、
2.2ユと23間のりアクタンス損失をLC2,3・・
・・・・2n−1と21間のりアクタンス損失をLC(
n−、ン、□ とし、これをまとめてLeK、(イヤ、
)と表わすと共に、共振素子21と2aの中心間隔をC
d14.2ユと23の中心間隔をca、、l・・・・・
・21−5と27Lの中心間隔をCd(*−11,71
とし、これをまとめてCdに(に旬と表わすと、(3)
式から Cdド、(1オ+1 = 0.3d+“11“ ・・・
・(14)54.6η k =1 、2 、 ・・・・・・n 入=300/l (GHz) =300000Δ(MH
z)−・・−(+6)又、(4)、(5)及び(13)
式から、次式が得られる。
...... (8) In the above formula, ...... (9) Y = Illinll (-L) -...
・(IQ)n β=in (coth±“-) ・・・・・・(+
+) 17.37 ... (12) In Fig. 9, RL is the load resistance, and when the circuit order n is an odd number, RL = I, and when n is an even number, as shown in Fig. 6. Magnetic field coupling coefficient M12% M2.3 s...
・M <7z-+3.71 together and M k4N spear
If each geometric coefficient is collectively expressed as g8, then BP
The characteristic impedance Z6C of the resonator constituting F is determined by the width W of the housing 1 and the diameter d of the resonant element, regardless of the center spacing of the resonant elements, so M, (+7) is expressed as 3) . However, 13wr: Pass band width f that gives the allowable ripple and ar
6: Actance loss f Lc between center frequency resonant elements 21 and 21 of BPF'
The actance loss between 2.2 U and 23 is LC2,3...
...The actance loss between 2n-1 and 21 is expressed as LC(
n-, n, □, and put them together as LeK, (no,
), and the center distance between the resonant elements 21 and 2a is C.
The center distance between d14.2 and 23 is ca,,l...
・The center distance between 21-5 and 27L is Cd (*-11,71
, and if we put this together and express it as Cd, (3)
From the formula, Cd de, (1o+1 = 0.3d+“11”...
・(14)54.6η k = 1 , 2 , ......n input = 300/l (GHz) = 300000Δ(MH
z) -...-(+6) Also, (4), (5) and (13)
From the equation, we get the following equation:

(17)式のBWr及びfaに所要値を代入すると共に
、(7)及び(8)式から求めた幾何係数g、ないしg
?tの各値を(17)式に代入して各段間のりアクタン
ス損失”K、(K+Q  を求め、このLQK、(K+
+)の値を(14)式に代入すると共に共振素子の直径
d2筐体1の横幅(共振器の幅)W、誘電率ε、遮断波
長洗及び伝送信号の波長の各股足値を(14)式に代入
して各隣接共振素子毎の中心間隔Cd式、(Kやl)を
求め、共振素子石ないし21tの実際の各中心間隔を(
14)式から得られたCdに、iK+1)に一致せしめ
ることにより、本発明BPFの伝送特性を前記の伝送特
性とすることが出来る。他の伝送特性を得る場合にも同
様の手法によって目的を達することが出来る。
While substituting the required values for BWr and fa in equation (17), the geometric coefficient g or g obtained from equations (7) and (8)
? By substituting each value of t into equation (17), the actance loss between each stage ``K'', (K+Q) is determined, and this LQK, (K+
+) into equation (14), and the respective values of the diameter d of the resonant element, the width of the housing 1 (width of the resonator) W, the dielectric constant ε, the cut-off wavelength cleaning, and the wavelength of the transmission signal are expressed as ( 14) Substitute into the formula to find the center distance Cd formula (K and l) for each adjacent resonant element, and calculate the actual center distance of each resonant element stone or 21t by (
By matching Cd obtained from equation 14) with iK+1), the transmission characteristic of the BPF of the present invention can be made to be the above-mentioned transmission characteristic. Similar techniques can be used to achieve the objective when obtaining other transmission characteristics.

通過帯域をチェビシェフ特性、減衰域をワグナ特性とな
した場合の本発明BPFの伝送特性は次式%式% 上式において、 ATT :減衰量(aB) ′T1L(x)はチェビシェフの多項式で、X(+  
の場合、 7h(x) =cos (n co8x )   ・・
・”・(20)x)l の場合、 7;、(x) =cosh (n cosh−’x )
   ・・=−(21)x =    ()     
 ・・・・・・ (22)BWr  fa   f 第11図は上記特性を凋する本発明BPFの特性曲線図
で、横軸は伝送周波数t (MH2) 、縦軸は減衰量
ATT (dB) 、fn及びf、は許容リップルLa
rを与える通過帯域幅Bwrの上限及び下限周波数であ
る。
When the pass band is Chebyshev characteristic and the attenuation band is Wagner characteristic, the transmission characteristic of the BPF of the present invention is expressed by the following formula. X(+
In the case of 7h(x) = cos (n co8x)...
・"・(20)x)l, 7;, (x) = cosh (n cosh-'x)
・・=−(21)x=()
...... (22) BWr fa f Figure 11 is a characteristic curve diagram of the BPF of the present invention that reduces the above characteristics, where the horizontal axis is the transmission frequency t (MH2), the vertical axis is the attenuation ATT (dB), fn and f are the allowable ripple La
These are the upper and lower limit frequencies of the passband width Bwr that gives r.

以上は最も基本的な設問結合構成であるが、この構成で
は例えば負荷Qが高い場合、共振素子の中心間隔が大と
なって実装設計上不利となるおそれがある。
The above is the most basic coupling configuration, but in this configuration, for example, when the load Q is high, the center spacing of the resonant elements becomes large, which may be disadvantageous in terms of mounting design.

第12図はこのような欠点を除き得る実施例の要部を示
す断面図(第13図のB−B断面図)、第13図は第1
2図のA−A断面図で、6Il及び6JIないし6Rn
−+)及び6a(n−r)は絞りで、各上縁、各外側縁
及び各下縁を隣接対向する共振素子間fこおける筐体l
の上壁、側壁及び底壁に密着せしめる(多少間隙があっ
ても差支えない)と共に共振素子の軸方向に平行で、筐
体1の側壁に直角に取付けである。第13図には例えば
共振素子2.と22の間に絞り61.と6ユIを対向し
て設けた場合を例示しであるが、何れか一方を省いて第
14図に示すように例えば6□ないし6IcK−1)を
片側に設けるようにしてもよく、何れの場合にも絞りの
上縁は必ずしも筐体1の土壁に密着せしめなくともよい
FIG. 12 is a sectional view (BB sectional view in FIG. 13) showing the main parts of an embodiment that can eliminate such defects, and FIG.
In the A-A sectional view of Figure 2, 6Il and 6JI to 6Rn
-+) and 6a (n-r) are apertures, which are located between the adjacent resonant elements at each upper edge, each outer edge, and each lower edge of the housing l.
It is attached closely to the top wall, side wall, and bottom wall (there may be some gaps), parallel to the axial direction of the resonant element, and perpendicular to the side wall of the housing 1. FIG. 13 shows, for example, a resonant element 2. and 22 has an aperture 61. Although this example shows a case in which 6□ to 6IcK-1 are provided facing each other, one of them may be omitted and, for example, 6□ to 6IcK-1) may be provided on one side as shown in FIG. Even in this case, the upper edge of the aperture does not necessarily have to be brought into close contact with the earthen wall of the housing 1.

今、第4図及び第5図に示したように絞りを設けていな
い場合の負荷Qと、第12図ないし第14図示のように
絞りを設けた場合の負荷Qとが互に一致するように共振
素子2.ないし27Iの各中心間隔をW@整した場合、
絞りを設けた場合の中心間隔をCd1)<、lxオ、)
、各共振素子間におけるリアクタンス損失をLOlK、
(Hヤ、)、各共振素子間における磁界結合と 係数をMiK、(H4り寺すると、これらの関係は次式
で表わされる。
Now, the load Q when the throttle is not provided as shown in FIGS. 4 and 5 and the load Q when the throttle is provided as shown in FIGS. 12 to 14 are made to match each other. Resonant element 2. When adjusting each center interval of 27I to W@,
If a diaphragm is provided, the center spacing is Cd1)<,lxo,)
, the reactance loss between each resonant element is LOlK,
(H,), and the magnetic field coupling and coefficient between each resonant element are MiK, (H4), then these relationships are expressed by the following equation.

・・・・(23) LQll<、1に十〇  =   207!0gM1H
,(H++)        ・・・・・・  (24
)1、cJに、(htす M1ド、(ド中r)=IO”       ・・・・・
・(25)ηは(15)及び(I6)式で与えられる。
...(23) LQll<, 1 to 10 = 207!0gM1H
, (H++) ...... (24
)1, cJ, (ht M1 de, (do middle r) = IO”...
-(25) η is given by equations (15) and (I6).

(26)式のMiK、、イ4.)と (18)式のMK
(Wオリ及び筐体1の横幅(共振器の幅)Wから絞り幅
りは次式から近似的に求められる。
MiK of formula (26), 4. ) and MK of equation (18)
(The aperture width can be approximately determined from the W orientation and the horizontal width (resonator width) of the housing 1 from the following equation.

M 当匹材九W    ・・・・・・(26)MiKバ
にセ) 上式から得られた絞り幅りの値がW/2より小なる場合
には第13図のよう1こ両側に絞りを設け、Dの値がW
/2より大なる場合には第14図のように片側にのみ絞
9を設けるようl二すればよい。
M This material is 9 W (26) MiK bar) If the value of the aperture width obtained from the above formula is smaller than W/2, one on both sides as shown in Figure 13. A diaphragm is provided, and the value of D is W.
If it is larger than /2, the diaphragm 9 may be provided only on one side as shown in FIG.

以上は誘導性の絞りを設けた場合を例示したが、第15
図に要部断面図(第16図のB−B断面図)を、第16
図に第15図のA−A断面図を示すように、共振素子2
1ないし2nの各対向中間部における筐体壁の底壁、即
ち共振素子の接地側の筐体壁と側壁に接触せしめて絞り
6.ないし輻−7を設けた場合には、BPPの矩形導波
管部におけるH1+モード波の電界エネルキが絞りと筐
体の土壁間に集中蓄積され、容量性の絞りとして作用す
る。したがって共振素子間の磁界結合量(誘導性結合量
)が容量性絞りの打消作用を受は結合が密になる。
The above example illustrates the case where an inductive aperture is provided, but the 15th
The main part sectional view (BB sectional view in Fig. 16) is shown in the figure.
As shown in the A-A sectional view of FIG. 15, the resonant element 2
The aperture 6.1 to 2n is brought into contact with the bottom wall of the housing wall at each opposing intermediate portion, that is, the housing wall and side wall on the ground side of the resonance element. When the radius -7 is provided, the electric field energy of the H1+ mode wave in the rectangular waveguide section of the BPP is concentrated and accumulated between the diaphragm and the earthen wall of the casing, and acts as a capacitive diaphragm. Therefore, when the magnetic field coupling amount (inductive coupling amount) between the resonant elements receives the canceling effect of the capacitive aperture, the coupling becomes tighter.

第12図ないし第14図に示した実施例においては、誘
導性の絞り幅を調整することにより結合度を疎ならしめ
得るから高負荷QのBPFの形成に好適である。これに
対して第15図及び第16図に示した実施例においては
容量性絞りにより結合を密ならしめ得るから低負荷Qの
BPF’の形成に好適であるが、何れの実施例において
も共振素子21ないし21の各中心間隔、筐体1の長さ
及び幅を一定に保って絞り幅により段間結合度を自在に
調整し得るので、設計製作上有利なばかりでなく、伝送
特性を良好ならしめることが出来る。
The embodiments shown in FIGS. 12 to 14 are suitable for forming a BPF with a high load Q because the degree of coupling can be made sparse by adjusting the inductive aperture width. On the other hand, the embodiments shown in FIGS. 15 and 16 are suitable for forming a BPF' with a low load Q because the coupling can be made dense by the capacitive diaphragm. Since the distance between the centers of the elements 21 and 21 and the length and width of the housing 1 can be kept constant and the degree of coupling between stages can be freely adjusted by adjusting the aperture width, this is not only advantageous in terms of design and manufacturing, but also improves transmission characteristics. You can get used to it.

第17図は結合調整素子の他の例を示す要部断面図(第
18図のB−8断面図)、第18図は第17図のA−A
断面図で、7.ないし7n−1は結合調整ねじて、共振
素子2.ないし2几の各中間部における筐体1の土壁、
即ち共振素子の開放端に対向する筐体壁に設けたねじ孔
にら合せしめ、筐体外からの操作によってねじの筐体内
への挿入長を自在に調整し得るように形成しである。図
には共振素子の各中間部に1個ずつのねじを取付けた場
合を例示しであるが、各中間部に適宜複数個ずつのねじ
を取付けてもよく、筐体の土壁から共振素子と平行にね
じを取付ける代りに、共振素子2.ないし24の各対向
間隙における筐体1の側壁上部、即ち共振素子2rない
し2FLの各開放端に近い部分の側壁から共振素子と直
角方向にねじを挿入してもよく、一方の側壁からねじを
筐体内に挿入する代りに両側壁からねじを挿入するよう
にしてもよい。
FIG. 17 is a cross-sectional view of a main part (B-8 cross-sectional view in FIG. 18) showing another example of the coupling adjustment element, and FIG. 18 is a cross-sectional view taken along A-A in FIG.
In the cross-sectional view, 7. to 7n-1 are coupling adjustment screws, and the resonant elements 2. An earthen wall of the casing 1 in each middle part of the to 2 liters,
That is, it is formed so that it is aligned with a screw hole provided in the housing wall opposite to the open end of the resonant element, and the insertion length of the screw into the housing can be freely adjusted by operation from outside the housing. The figure shows an example where one screw is attached to each middle part of the resonant element, but it is also possible to attach multiple screws to each middle part as appropriate. Instead of mounting the screw parallel to the resonant element 2. The screws may be inserted in the direction perpendicular to the resonance elements from the upper side wall of the housing 1 in each of the opposed gaps 2 to 24, that is, the side wall of the portion near the open end of each of the resonance elements 2r to 2FL, or the screws may be inserted from one side wall. Instead of inserting the screws into the housing, the screws may be inserted from both side walls.

共振素子間における筐体1の部分はカットオフ導波管と
して作用するからこの部分に結合調整ねじを設けるとき
は、第19図に示すように結合調整ねじ7t (又は7
aないし7nイ)の筐体内への挿入長に応じてこのねじ
に電界Eが集中して電界強度が強くなり、電界強度が強
くなるのに応じて磁界強度も増して磁界結合が密になる
。したがってBPFの設計に当って筐体の寸法の許す範
囲で負荷Qの最も高い状態、即ち磁界結合係数が最小と
なるように共振素子の各間隔を定め、結合調整ねじを筐
体外から操作してその挿入長を変化せしめることにより
磁界結合係数を適宜大ならしめて所要の負荷Qとなすと
共に、各共振素子の開放端と対向して取付けた周波数調
整ねじ (図には示していないが従来公知のものと全く
同様の構成である。)を筐体外から操作することにより
任意の周波数において任意の負荷Qとなすことが可能と
なる。即ち形状寸法の等しいBPFを設計製作し、筐体
外からの調整操作により任意の周波数において任意の負
荷Qを有せしめ得る。
Since the part of the housing 1 between the resonant elements acts as a cut-off waveguide, when providing a coupling adjustment screw in this part, the coupling adjustment screw 7t (or 7
The electric field E concentrates on this screw according to the length of insertion of a to 7n a) into the housing, and the electric field strength becomes stronger. As the electric field strength becomes stronger, the magnetic field strength also increases and the magnetic field coupling becomes denser. . Therefore, when designing the BPF, the intervals between the resonant elements are determined so that the load Q is at its highest, that is, the magnetic field coupling coefficient is minimized, within the range allowed by the dimensions of the housing, and the coupling adjustment screws are operated from outside the housing. By changing the insertion length, the magnetic field coupling coefficient is increased appropriately to achieve the required load Q, and a frequency adjustment screw (not shown in the figure, but conventionally known) is installed opposite the open end of each resonant element. It is possible to create any load Q at any frequency by operating it from outside the housing. That is, by designing and manufacturing BPFs with the same shape and dimensions, it is possible to have any load Q at any frequency by adjusting from outside the housing.

第20図は本発明の他の実施例の要部を示す断面図(第
21図のB−8断面図)、第21図は第20図のA−A
[iii図で、この実施例においては共振素子2、ない
し2nの各対向間隙に第12図ないし第14図について
説明した絞り611ないし62(n−I)を設けると共
に、第17図及び第18図に示した結合調整ねじ71な
いし7シ1を取付けたもので、共振素子、絞り及び結合
調整ねじの各結合作用を組合せて利用し得るからBPF
を小型化して、負荷Qの大きさにほとんど関係なく B
PFの筐体の標準化を可能ならしめることが出来る。即
ち筐体の横幅及び全長を一足【こして各種伝送特性のB
PPを構成することが出来、結合調整ねじの調整を筐体
外から行い得るから調整が容易で、短時間で良好な電気
的特性を得ることが出来る。
FIG. 20 is a sectional view (B-8 sectional view in FIG. 21) showing the main part of another embodiment of the present invention, and FIG. 21 is a sectional view taken along A-A in FIG. 20.
[iii] In this embodiment, the apertures 611 to 62 (n-I) explained in FIGS. 12 to 14 are provided in the opposing gaps of the resonant elements 2 to 2n, and the apertures 611 to 62 (n-I) described in FIGS. The coupling adjustment screws 71 to 7shi1 shown in the figure are attached, and the coupling effects of the resonance element, the aperture, and the coupling adjustment screws can be used in combination, so the BPF
By miniaturizing B, it is almost independent of the size of the load Q.
It is possible to standardize the PF housing. In other words, the width and total length of the housing are
Since the PP can be configured and the coupling adjustment screw can be adjusted from outside the housing, adjustment is easy and good electrical characteristics can be obtained in a short time.

第22図もまた絞り及び結合調整ねじを併せ設けた実施
例の要部を示す断面図(第23図のB−B断面図)、第
23図は第22図のA−A断面図で、この実施例におい
ては容量性の絞り6.Iないし63(n−t)を筐体1
の土壁に密着して設けると共に、共振素子2、ないし2
aの開放端に近い1体1の側壁上部から結合調整ねじ7
Iないし771−1を共振素子と直角方向に挿入したも
ので、絞り及び結合調整ねじを共に電界の強い部分に設
けであるから第15図及び第16図に示した実施例に較
べて電界の集中度が大となり、それだけ結合を密になし
得るので特に負荷Qの低いBPFを構成する場合に好適
である。
Fig. 22 is also a sectional view (BB sectional view in Fig. 23) showing the main parts of an embodiment in which a diaphragm and a coupling adjustment screw are also provided, and Fig. 23 is a sectional view taken along AA in Fig. 22. In this embodiment, a capacitive aperture 6. I to 63 (nt) in case 1
The resonance element 2 or 2 is installed in close contact with the earthen wall of
Connecting adjustment screw 7 from the top of the side wall of body 1 near the open end of a.
I to 771-1 are inserted perpendicularly to the resonant element, and both the aperture and the coupling adjustment screw are provided in areas where the electric field is strong, so the electric field is lower than in the embodiments shown in Figs. 15 and 16. Since the degree of concentration is increased and the coupling can be made denser, it is particularly suitable for configuring a BPF with a low load Q.

第24図もまた本発明の他の実施例の要部断面図(第2
5図のB−B断面図)、第25図は第24図のA−A断
面図で、この実施例においては共振素子2Iないし2n
の対向間隙に共振素子と平行な方向、即ちカットオフ導
波管部におけるHrtモード波の電界成分と平行な方向
に誘導性短絡棒811.8Jlないし811□、)、8
2.□ン を設けたもので、結合調整作用は誘導性絞り
とほぼ同様である。図には2本の誘導性短絡棒を設けた
場合を例示しであるが、1本又は2本以上適宜本数を設
けて差支えなく、設置本数、設置位置及び直径に応じて
結合量が定まる。
FIG. 24 is also a sectional view (second
5), and FIG. 25 is a sectional view taken along A-A in FIG.
Inductive shorting rods 811.8Jl to 811□,), 8
2. The coupling adjustment effect is almost the same as that of an inductive aperture. Although the figure shows an example in which two inductive shorting rods are provided, one or more than two inductive shorting rods may be provided as appropriate, and the amount of coupling is determined depending on the number of installed rods, the installation position, and the diameter.

誘導性短絡棒?設けると同時に、共振素子の対向間隙に
おける筐体の土壁に容量性結合調整ねじ7、ないし7.
L−、を取付け、その挿入長を筐体外から調整すること
により誘導性短絡棒の誘導性結合量を自在に調整変化せ
しめて良好な電気的特性を得ることが出来ると共にBP
Fを小型で経済的に製作することが出来る。尚、容量性
結合調整ねじは、共振素子の対向間隙における筐体上壁
の出来るだけ中央部に取付けることにより結合調整機能
を高めることが出来る。
Inductive shorting rod? At the same time as providing capacitive coupling adjustment screws 7 to 7 on the earth wall of the housing in the opposing gap of the resonant element.
By attaching L-, and adjusting its insertion length from outside the housing, the amount of inductive coupling of the inductive shorting rod can be freely adjusted and changed, and good electrical characteristics can be obtained.
F can be manufactured in a small size and economically. Note that the coupling adjustment function can be enhanced by attaching the capacitive coupling adjustment screw as centrally as possible on the top wall of the housing in the opposing gap between the resonant elements.

次に本発明BPFにおける入出力結合回路について言見
日月する。
Next, we will discuss the input/output coupling circuit in the BPF of the present invention.

第4図及び第5図に示した実施例においては、入出力結
合回路素子3゜及び3゜や1 を共振素子2Iないし2
aに対して逆極性を以て配設しであるが、本発明者の実
験研究結果によればこの実施例における結合は電界結合
と磁界結合の合成であって、電界結合係数をM6%磁界
結合係数をM)4、両者の合成結合係数をJM とする
とlhMは次式で与えられる。
In the embodiments shown in FIGS. 4 and 5, the input/output coupling circuit elements 3° and 3° and
According to the experimental research results of the present inventor, the coupling in this embodiment is a combination of electric field coupling and magnetic field coupling, and the electric field coupling coefficient is M6% magnetic field coupling coefficient. M)4, and the composite coupling coefficient of both is JM, then lhM is given by the following equation.

(35) ・・・・ (28) ・・・・ (29) Cdo、+ :入出力結合回路素子3゜と共振素子2.
との中心間隔 η:  (+5)及び(16)式で与えられる。
(35) ... (28) ... (29) Cdo, +: input/output coupling circuit element 3° and resonance element 2.
Center distance η: (+5) and given by equation (16).

上記理論式から結合係数を一律的に求めることは困難で
、したがって上記各式からCda、+を求めることも困
難であるから第26図を併用して所要の結合係数を求め
るのが実際的である。同図において横軸はcaa、+J
 (mm) %縦軸はMGI/l 、Mg及ヒM。
It is difficult to uniformly determine the coupling coefficient from the above theoretical formulas, and therefore it is also difficult to determine Cda and + from each of the above formulas, so it is practical to use Fig. 26 in combination to determine the required coupling coefficient. be. In the same figure, the horizontal axis is caa, +J
(mm) The % vertical axis is MGI/l, Mg and HM.

の大きさであるが、まず所要の伝送周波数f1伝送波長
入、筐体lの横幅w5人出力結合路素子3゜と共振素子
2Iの中心間隔Cd・、lを与えて(28)及び(29
)式から結合係数町及びMMの大きさを求め、第26図
からM、及びMMの合成値’%Mに対応するCdtpr
tyjを求めて0do4 を算出する。入出力結合回路
素子3n剖 と共振素子2n側の構成は素子3o及び2
1側と全く同様に構成するのが一般であるから、上記の
ようにして求められたCdo、+ はそのまま3 W+
 1及び2□の中心間隔となる。
First, given the required transmission frequency f1 transmission wavelength input, the width w5 of the housing l, the output coupling path element 3°, and the center spacing Cd·,l of the resonant element 2I, we obtain (28) and (29).
), calculate the coupling coefficient and the size of MM, and from FIG.
Find tyj and calculate 0do4. The configuration of the input/output coupling circuit element 3n and the resonance element 2n side is composed of elements 3o and 2.
Since it is generally configured in exactly the same way as the 1st side, Cdo, + obtained as above is 3 W +
The center spacing is 1 and 2□.

この入出力結合回路の結合は上記のように電界結合と磁
界結合の合成であるが、結果においでは第6図に示すよ
うに容量結合となり、又、この入出力結合回路の構成は
、本発明BPFを用いて分波器を構成する場合等に好都
合な場合が多い。
The coupling of this input/output coupling circuit is a combination of electric field coupling and magnetic field coupling as described above, but the result is capacitive coupling as shown in FIG. This is often convenient when configuring a duplexer using BPF.

第4図及び第5図における入出力結合回路素子3゜及び
3−IL+l を結合コンデンサのような集中定数回路
素子又は共振素子2I及び2nと各別に対向して分布容
量を形成する電極板等を以て形成し、第6図示のように
入出力結合口路を容量結合型に構成した場答、入出力結
合容量ell、l及び07?An−*l)を幾何係数g
、及びg71等を用いて表わすと、上記各式において、 Xa、1及びxicW+1) ’ c、、、及びCm、
+計r) ’) J)F41化’) 7クタンス、即ち
BPF’の特性イ ンピーダンスZ+にょるC帽及 びCIL、tTLhr)の正規化キャパシタンス Xa、+及びXn、(nヤυ: BPF’の中心角周波
数ω。における06.I 及びOn、(7L−u)のり
アクタンス 第27図に示すように入出力結合口F11!r素子3゜
及び3□オ、を共振素子2.及び2rLと同径性を以て
設けた場合には、第28図に等価口路図を示すように磁
界結合型の入出力結合回路が構成される。尚、第27図
及び第28図における他の符号は第4図及び第6図と同
様である。
The input/output coupling circuit elements 3° and 3-IL+l in FIGS. 4 and 5 are connected to lumped constant circuit elements such as coupling capacitors or electrode plates that form distributed capacitance by facing the resonant elements 2I and 2n, respectively. In the case where the input/output coupling ports are configured as a capacitive coupling type as shown in FIG. 6, the input/output coupling capacitances ell, l and 07? An-*l) as the geometric coefficient g
, and g71, etc., in each of the above formulas, Xa, 1 and xicW+1) ' c, , and Cm,
+ total r) ') J) F41 conversion') 7 ctance, that is, the characteristic impedance Z of BPF' + CIL, tTLhr) normalized capacitance Xa, + and Xn, (nya υ: center of BPF' 06.I and On at angular frequency ω. (7L-u) Glue actance As shown in Figure 27, input/output coupling ports F11!r elements 3° and 3□O are set to have the same diameter as resonance elements 2. and 2rL. When provided with proper characteristics, a magnetic field coupling type input/output coupling circuit is constructed as shown in the equivalent circuit diagram in Fig. 28.Other symbols in Figs. 27 and 28 refer to Fig. 4. and the same as in FIG.

この実施例における入出力結合量、即ちBPFを構成す
る共振器の特性インピーダンスZaCにおける結合係数
M o、及びMn、。+l)は、・・・・(33) で求めることが出来る。
The amount of input/output coupling in this example, that is, the coupling coefficient M o and Mn in the characteristic impedance ZaC of the resonator constituting the BPF. +l) can be found by (33).

又、筐体1の横幅がWの場合における入出力結合回路素
子3.及び3□ゆ、と共振素子2.及び24より成る入
出力結合変成器の結合損失をLWa、7及び”n、(r
L+I)とすると− LW、、、 =LWn、(***)=   20JOg
Ma、+(dB)  ”=  (34)となり、素子3
゜と21の中心間隔Cdc+、I及び素子24と3乳+
1の中心間隔Ctln、tn+oは、次式で求められる
Moreover, the input/output coupling circuit element 3 when the width of the housing 1 is W. and 3□yu, and resonant element 2. The coupling loss of the input/output coupling transformer consisting of LWa, 7 and "n, (r
L+I) then −LW,,, =LWn, (***)= 20JOg
Ma, + (dB) ”= (34), element 3
Center distance between ° and 21 Cdc+, I and element 24 and 3 milk+
The center distance Ctln, tn+o of 1 is obtained by the following equation.

ηは(15)及び(16)式で与えられる値である。η is a value given by equations (15) and (16).

第29図は本発明の他の実施例の要部を示す断面図(第
30図のB−’B断面図)、第30図は第29図のA−
A断面図で、この実施例においては人出力結合回路素子
36及び3□+1(31ヤ、は図示していないが3.と
同様構成である)をストリップラインを以て形成したも
ので、その幅、厚さ、対向する共振素子21及び2nと
の各中心間隔等をマイクロ波回路における理論計算によ
って求めるのは困難であるが、実験的に所要寸法を比較
的容易に求めることが可能である。この実施例のように
入出力結合回路素子としてストリップラインを用いると
きはスペースファクタが良好で、全体を小型かつ経済的
に形成することが出来、比較的大電力似損失のBPFを
構成し得るから分波器を構成する場合等に特に効果的で
ある。尚、第290及び第30図における他の符号は第
4図及び第5図と同様である。
FIG. 29 is a sectional view (B-'B sectional view in FIG. 30) showing the main part of another embodiment of the present invention, and FIG.
In the A sectional view, in this embodiment, the human output coupling circuit elements 36 and 3□+1 (31Y, not shown, but having the same configuration as 3) are formed using strip lines, and the width thereof is Although it is difficult to determine the thickness, the distance between the centers of the opposing resonant elements 21 and 2n, etc. by theoretical calculation in a microwave circuit, it is possible to experimentally determine the required dimensions relatively easily. When a strip line is used as the input/output coupling circuit element as in this embodiment, the space factor is good, the whole can be made compact and economical, and a BPF with relatively high power and similar losses can be constructed. This is particularly effective when configuring a duplexer. Note that other symbols in FIGS. 290 and 30 are the same as in FIGS. 4 and 5.

第31図もまた本発明の他の実施例の要部断面図(第3
2図のB−B断面図)、第32図は第31図のA−A断
面図で、この実施例においては入出力結合回路素子3o
及び37N+ (3,FLuは図示していない)を細線
を以て形成したもので、その直径、共振素子2I及び2
nとの中心間隔等を理論的に算出するのは容易ではない
が、実験的1こは比較的容易に所要寸法ヲ求めることが
出来る。この実施例における細線は前実施例におけるス
トリップラインに較べて電力容量が小であるが、一般の
通信機又は分波器等に用いるBPFの入出力結合回路素
子としては十分な電力容量を鳴し、BPF全体を小型か
つ経済的に形成し得ると共にストリップラインに較べて
入手が容易で、取付調整も容易である。第31図及び第
32図における他の符号は第4図及び第5図と四オ果で
ある。
FIG. 31 is also a cross-sectional view of a main part of another embodiment of the present invention (third
2), and FIG. 32 is a sectional view taken along A-A in FIG. 31. In this embodiment, the input/output coupling circuit element 3o
and 37N+ (3, FLu is not shown) formed using thin wire, and its diameter, resonant elements 2I and 2
Although it is not easy to theoretically calculate the distance between the centers and n, the required dimensions can be determined experimentally relatively easily. Although the thin wire in this example has a smaller power capacity than the strip line in the previous example, it has sufficient power capacity as an input/output coupling circuit element of a BPF used in general communication devices or duplexers. , the entire BPF can be formed compactly and economically, and it is easier to obtain than strip lines, and installation and adjustment are easier. Other symbols in FIGS. 31 and 32 are the same as in FIGS. 4 and 5.

第29図ないし第32図に示した実施例においでは、ス
トリップライン又は、細線より成る入出力結合回路素子
を共振素子と逆極性に設けて入出力結合回路を容量結合
型に形成した場合を例示したが、入出力結合回路素子を
共振素子と同極性を以て設けることにより磁界結合型の
入出力結合回路を形成することが出来る。
In the embodiments shown in FIGS. 29 to 32, the input/output coupling circuit is formed into a capacitive coupling type by providing an input/output coupling circuit element made of a strip line or a thin wire with a polarity opposite to that of a resonant element. However, by providing the input/output coupling circuit element with the same polarity as the resonant element, a magnetic field coupling type input/output coupling circuit can be formed.

第33図は本発明の他の実施例を示す要部断面図(第3
4図のB−B断面図)、第34図(ま第33図のA−A
断面図で、この実施例(;おL\て(ま入出力結合回路
索子3.及び37L+I(3ν11ま図示して11なL
\)をループを以て形成して磁界結合口3各を升折成し
たもので他の符号は第4図及び第5図と同+iである。
FIG. 33 is a cross-sectional view of main parts (third embodiment) showing another embodiment of the present invention.
(B-B sectional view in Figure 4), Figure 34 (A-A in Figure 33)
In the cross-sectional view, this embodiment (;L\te(input/output coupling circuit cord 3. and 37L+I(3ν11, 11L in the diagram)
\) is formed with a loop and each of the magnetic field coupling ports 3 is folded into squares, and the other symbols are the same +i as in FIGS. 4 and 5.

この実施例における入出力磁界結合係数M。、I及びM
n、tn引)は次式で近似的に与えられる。
Input/output magnetic field coupling coefficient M in this example. , I and M
n, tn) is approximately given by the following equation.

f;伝送周波数(Hz) Sq:入出力結合ループが磁束を切る面イ責(ml)μ
、=4π×10−″  (ヘン1)A)r:ループの位
置半径、即ちル−プの中70とループと対向する共振素
子の中・ら軸とのJ!:筐体1の底壁からル−プの中l
しまでの高き入出力磁界結合係数Ma、1及びM7!、
rn+、)を調整するにはループの位置半径r及びルー
プが磁束を切る面積Sqを調整する必要があり、ループ
が薄板より成る場合には面積sqヲ変えることは容易で
あるh<、結合電力容量が大でループが厚板より成る場
合ξこは面積Sqを微細に調整するのは容易ではなし\
f: Transmission frequency (Hz) Sq: Surface impact where the input/output coupling loop cuts the magnetic flux (ml) μ
, = 4π x 10-'' (Hen 1) A) r: Position radius of the loop, that is, J between the inside 70 of the loop and the inside and outside axes of the resonant element facing the loop!: Bottom wall of the housing 1 in the loop from
Highest input/output magnetic field coupling coefficients Ma, 1 and M7! ,
To adjust rn+, ), it is necessary to adjust the position radius r of the loop and the area Sq where the loop cuts the magnetic flux.If the loop is made of a thin plate, it is easy to change the area sq. If the capacity is large and the loop is made of a thick plate, it is not easy to finely adjust the area Sq.
.

このような場合には第35図に断面を示すようす回転型
ループを用いることにより入出力磁界結合係数を微細に
調整することが出来る。同図(こおいて、)は筐体の端
壁、4.は入出力同軸端子で、外部導体9、内部導体1
0、絶縁体11 より成り、筐体1の端壁に穿った取付
孔内に外部導体9の基部を回転自在に挿入しである。1
2はリング状の押え金具で、その内周面に設けた溝部f
二、外部導体9の基部外周に設けたつば状突起を緩く嵌
合しである。3.はループより成る入出力結合口S各素
子で、その内端を内部導体10の内端に止めねじ13等
fこより固定し、ループの外端を外部導体9の基部に溶
着等によって固着しである。止めねじ14を緩めて入出
力同軸端子4#を中心軸の周りに回転せしめるとループ
3−もまた端子46と一体になって回転し、止めねじ1
4 t−締付けるとリング状押え金具12の内周面に設
けた溝部の内面がつば状突起に圧着して入出力同軸端子
4.及びループ3.を任意の回転角において固定する。
In such a case, the input/output magnetic field coupling coefficient can be finely adjusted by using a rotating loop as shown in cross section in FIG. The same figure (in this case) shows the end wall of the casing, 4. is the input/output coaxial terminal, outer conductor 9, inner conductor 1
The base of the external conductor 9 is rotatably inserted into a mounting hole bored in the end wall of the housing 1. 1
2 is a ring-shaped presser metal fitting with a groove f provided on its inner peripheral surface.
2. The flange-shaped protrusion provided on the outer periphery of the base of the external conductor 9 is loosely fitted. 3. denotes each input/output coupling port S element consisting of a loop, the inner end of which is fixed to the inner end of the inner conductor 10 with a set screw 13, etc., and the outer end of the loop is fixed to the base of the outer conductor 9 by welding or the like. be. When the set screw 14 is loosened and the input/output coaxial terminal 4# is rotated around the central axis, the loop 3- also rotates together with the terminal 46, and the set screw 1
4 T- When tightened, the inner surface of the groove provided on the inner circumferential surface of the ring-shaped presser metal fitting 12 is crimped against the collar-shaped protrusion, and the input/output coaxial terminal 4. and loop 3. is fixed at an arbitrary rotation angle.

したがって第36図(イ)に第33図と同様の断面図を
、(1ml>図に(イ)図のA−A断面図を示すように
、共振素子2.の中心軸方向に対するループ3゜の回転
角をθ。
Therefore, as shown in FIG. 36(a) is a cross-sectional view similar to that in FIG. 33, and as shown in FIG. The rotation angle is θ.

トスルト、θ1=0 の場合における入出力磁界結合係
数がMo、rであるから任意の回転角θアにおける入出
力磁界結合係数Ma6.t  はMen、I   =M
a、+  00日θ「            ・・・
・・・ (37)となり、ループが磁束を切る面積の微
細調整を容易に行うことが出来る。
Since the input and output magnetic field coupling coefficients in the case of tosult and θ1=0 are Mo and r, the input and output magnetic field coupling coefficient Ma6. t is Men, I = M
a, + 00 days θ "...
... (37), and the area where the loop cuts the magnetic flux can be easily finely adjusted.

以上の各実施例においては、すべて共振素子2゜ないし
2nを一列に配設しているため全体の形状が横長となり
実装設計上不利な場合がある。又、消極形伝送特性とな
す場合にも2個又はその整数倍の個数の共振素子を隔て
た共振素子相互を間接結合するに当って同軸ケーブル又
はストリップライン及びこれらの伝送線路と共振素子間
を結合するループ又は容量素子等を必要とするため、間
接結合回路が比較的複雑長大となる。
In each of the above embodiments, since the resonant elements 2° to 2n are all arranged in a row, the overall shape becomes horizontally elongated, which may be disadvantageous in terms of mounting design. Furthermore, in the case of passive transmission characteristics, coaxial cables or strip lines and connections between these transmission lines and the resonant elements are used to indirectly couple the resonant elements separated by two or an integral multiple of the resonant elements. Since a coupling loop or a capacitive element is required, the indirect coupling circuit becomes relatively complex and long.

第37図はこのような欠点をも除き得るように構成した
実施例を示す断面図(第38図のB−B断面図)、第3
8図は第37図のA−A断面図で、1は電磁シールド用
筐体、15は導体より成る隔壁で、この隔壁によって筐
体1内をコの字型に仕切っである。21・・・・・・2
.m% 2M’l++・・・・・・2rLは棒状導体よ
り成る共振素子で、コの字型に仕切られた筐体1内にコ
の字型に配設しである。3゜及び3?Lヤ、は入出力結
合回路素子、4.及び47L−r+ は入出力同軸端子
である。この実施例においても筐体1の側壁と隔壁15
の間隔W及び共振素子2.ないし2nの直径dが共振波
長に対して比較的小なる場合には共振素子2.ないし2
rLの軸長を電気長で共振波長の匈に選び、幅W及び直
径dが共振波長に対して比較的大なる場合には共振素子
2.ないし2rLの軸長を電気長で共振波長の4よりも
適当に短かく形成しである。
Fig. 37 is a sectional view (BB sectional view in Fig. 38) showing an embodiment configured to eliminate such drawbacks;
FIG. 8 is a sectional view taken along the line A-A in FIG. 37, where 1 is an electromagnetic shielding case, 15 is a partition made of a conductor, and the partition wall partitions the inside of the case 1 into a U-shape. 21...2
.. m% 2M'l++...2rL is a resonant element made of a rod-shaped conductor, and is disposed in a U-shape in a casing 1 partitioned into a U-shape. 3° and 3? Lya is an input/output coupling circuit element; 4. and 47L-r+ are input/output coaxial terminals. Also in this embodiment, the side wall of the housing 1 and the partition wall 15
interval W and resonant element 2. When the diameter d of the resonant element 2. or 2
The axial length of rL is selected as the electrical length of the resonant wavelength, and if the width W and diameter d are relatively larger than the resonant wavelength, the resonant element 2. The axial length of 2rL to 2rL is made to be appropriately shorter than the resonant wavelength of 4 in terms of electrical length.

共振素子間の基本的な結合作用も折返し部分の結合作用
、即ち共振素子2□と2TrLヤ5間の結合作用を除い
て第4図及び第5図に示した実施例(以下、第1の実施
例と略記する)と全く同様である。折返し部分における
共振素子2mと2a++との間は、第39図に示すよう
に隔壁15の端部によって電磁界が乱されるため正確な
物理的検討を行うこと、理論計算式を求めること等は困
難であるが、第39図において共振素子21及び21□
の中心を連ねる線A−Aから図面に向って右側における
電磁界モード (隔壁15による乱れをほとんど生じて
いないとみなされる電磁界モード)によって遮断波長が
近似的に定まるものと仮定すれば、A−A線を中心とし
て筐体1の側壁と対称の位置(1点鎖線で示しである)
に側壁を仮想し、この仮想側壁とA−A線間における電
磁界モードが、A−A線の右側における電磁界モードと
対称であると仮定することにより共振素子2□及び2、
や1間のりアクタンス損失及び磁界結合係数等を(1)
式ないしく5)式で近似的に求めることが出来る。
The basic coupling action between the resonant elements also differs from the embodiment shown in FIGS. 4 and 5 (hereinafter referred to as the first This is exactly the same as in Example (abbreviated as Example). As shown in FIG. 39, the electromagnetic field between the resonant elements 2m and 2a++ in the folded portion is disturbed by the end of the partition wall 15, so it is difficult to perform accurate physical examination or find a theoretical calculation formula. Although it is difficult, in FIG. 39, the resonance elements 21 and 21□
Assuming that the cutoff wavelength is approximately determined by the electromagnetic field mode on the right side of the drawing from the line A-A that connects the centers of -A position symmetrical to the side wall of the housing 1 with the A line as the center (indicated by a dashed line)
By imagining a side wall and assuming that the electromagnetic field mode between this virtual side wall and line A-A is symmetrical with the electromagnetic field mode on the right side of line A-A, resonant elements 2 and 2,
(1) Actance loss, magnetic field coupling coefficient, etc.
It can be approximately determined using the formula or formula 5).

共振素子24と2’FI’L+1 との間隔以外の共振
素子間隔は、第1の実施例について説明したようにこれ
を変えて磁界結合係数を調整し得るが、共振素子籍と2
2や、の中心間隔はほぼWに一致し、 (隔壁15の厚
さだけWより大となる)Wが定まれば2俄と2a++ 
 の中心間隔も自動的に定まり、これを変えることは出
来ないからBPFの設計上制約を受けることとなる。
The resonant element spacing other than the spacing between the resonant element 24 and 2'FI'L+1 can be changed to adjust the magnetic field coupling coefficient as described in the first embodiment;
The center spacing of 2 and 2 almost matches W, and if W is determined (the thickness of the partition wall 15 is greater than W), 2 and 2a++
The center spacing of the BPF is also determined automatically and cannot be changed, which imposes constraints on the design of the BPF.

この制約を除くために、隔壁15の端部を第14図につ
いで説明した誘導性の絞りとみなし、絞り幅りとWの比
を変えることにより共振素子2nLと26.。
In order to eliminate this restriction, the end of the partition wall 15 is regarded as the inductive aperture described in connection with FIG. 14, and by changing the ratio of the aperture width and W, the resonant elements 2nL and 26. .

間の結合度を調整することが出来る。尚、隔壁15によ
って共振素子2m−と2.W1ヤC間の直接結合及び2
□と2.1’tLア間の直接結合を防ぐ必要があるから
絞り幅りには自から限度がろ9、したがって共振素子2
1と2WLや5間の結合度調整は、前記絞り幅の最大限
度における結合度から疎になる方向への調整に限られる
こととなる。
The degree of coupling between them can be adjusted. Note that the partition wall 15 separates the resonance elements 2m- and 2. Direct connection between W1 and C and 2
Since it is necessary to prevent direct coupling between □ and 2.1'tL, there is a limit to the aperture width.
Adjustment of the degree of coupling between WLs 1 and 2 and WL 5 is limited to adjustment in the direction from the degree of coupling at the maximum aperture width to sparse.

今、隔壁15の端部から成る絞りが、存在しないものと
仮想した場合、即ちD=wと仮想した場合における共振
素子2□と2yyi4I 間のりアクタンス損失L Q
 i y 、lW(+ r)は、 (23)式と同様に
、から求めることが出来、求めた値を(24)ないしく
26)式に代入することにより所要の絞り幅りを求める
ことが出来る。
Now, when it is assumed that the aperture consisting of the end of the partition wall 15 does not exist, that is, when it is assumed that D=w, the actance loss L between the resonant elements 2□ and 2yyi4I is
i y , lW (+ r) can be found from the same way as equation (23), and the required aperture width can be found by substituting the obtained values into equations (24) or 26). I can do it.

第40図に要部断面図を示すように、折返し部分の中央
、即ち共振素子2□と2エヤ、の対向間隙の中央におけ
る筐体1の土壁から容量性の結合調整ねじ71.Lを筐
体1内に挿入し、その挿入長を変えることにより共振素
子2.、Lと2mや5間の結合度が密になる方向に結合
度を調整し得るから絞り幅りによる調整と、結合調整ね
じ7□による調整を併用することにより他の共振素子相
互間の結合度調整と同様、2□と21や、開の結合度を
自在に調整することが可能となる。
As shown in a sectional view of the main part in FIG. 40, a capacitive coupling adjustment screw 71. By inserting L into the housing 1 and changing its insertion length, the resonant element 2. , the degree of coupling between L and 2m and 5 can be adjusted in the direction where it becomes denser, so by using both the adjustment by the aperture width and the adjustment by the coupling adjustment screw 7□, the coupling between other resonant elements can be improved. Similar to the degree adjustment, it is possible to freely adjust the degree of connection between 2□ and 21, and the degree of openness.

第41図は折返し部分の他の構成を示す断面図(第42
図のB−B断面図)、第42図は第41図のA−A断面
図で、この実施例においては隔壁15の端部を筐体1の
端壁まで延長密着せしめて共振素子2□と2%や1間を
遮へいし、共振素子2.と2,1の各中心軸を含む面を
隔壁15との交線上の一点を中心とする結合孔16を穿
ち、筐体1の底壁(共振素子の接地側端部に接触する筐
体壁)から結合孔16の中心までの高キIHを伝送信号
の任意の高調波、例えば第3高調波の節から電圧波腹点
までの長ざに選ぶと、結合孔16の周縁に第3吟高調波
電流が流れることなく、シたがって共振素子21と2□
や、の間で第3高調波の結合がなく、はとんど基本波の
みが結合孔16を介して結合されることとなるから高調
波特性の良好なりPFを構成することが出来る。結合孔
16の直径りを定めるには、まず所要の磁界結合係数を
Mm、(2刊)とすると結合サセプクンスbLユ、(、
Wlや、)は、したがって、 但し、 r:共振素子の半径 (40)式から求められる結合孔16の大きざを適当な
らしめることにより共振素子2□と27jL++の中心
間隔を一足に保った状態で結合度を自在に調整すること
が出来る。
FIG. 41 is a sectional view showing another configuration of the folded portion (No. 42).
FIG. 42 is a cross-sectional view taken along A-A in FIG. and 2% or 1, and resonant element 2. A coupling hole 16 is formed centered at a point on the line of intersection with the partition wall 15 in the plane containing the respective central axes of 2 and 1. ) to the center of the coupling hole 16 is selected to be the length of an arbitrary harmonic of the transmission signal, for example, from the node of the third harmonic to the voltage wave antinode, the third harmonic IH at the periphery of the coupling hole 16 is selected. Therefore, the resonant elements 21 and 2□
Since there is no coupling of the third harmonic between , and, and only the fundamental wave is coupled through the coupling hole 16, a PF with good harmonic characteristics can be constructed. To determine the diameter of the coupling hole 16, first, let the required magnetic field coupling coefficient be Mm, (2nd edition), then the coupling susceptibility bLyu, (,
Wl and ) are therefore: However, r: Radius of the resonant element The state in which the center distance between the resonant elements 2□ and 27jL++ is kept at one foot by adjusting the size of the coupling hole 16, which is determined from equation (40), to an appropriate size. You can freely adjust the degree of coupling.

次に、第37図及び第38図に示した実施例(以下、第
2の実施例と略記する)における入出力結合回路素子3
゜及び3nヤ1もまた第1の実施例において説明した各
種の実施態様をすべてそのまま適用実施することが出来
、又、共振素子2FrLと2 ffl+1間・・(39
)を結合孔16て結合した場合はこの対向区間を除(す
べての共振素子の対向区間に、共振素子2.nと211
、間に結合孔を介在せしめることなく結合を素子の対向
区間に第1の実施例の場合と同様、絞り、結合調整ねじ
又は誘導性短絡棒の何れか一種の結合調整素子を介装す
るか、これらを適宜組合せて介装することにより結合特
性を自在に調整することが出来る。
Next, the input/output coupling circuit element 3 in the embodiment shown in FIGS. 37 and 38 (hereinafter abbreviated as the second embodiment)
゜ and 3n Ya 1 can also be implemented by applying all the various embodiments explained in the first embodiment as they are, and between the resonance elements 2FrL and 2ffl+1 (39
) are coupled through the coupling hole 16, this opposing section is excluded (all resonant elements 2.n and 211 are connected in the opposing section of the
As in the case of the first embodiment, a coupling adjustment element of any one of a diaphragm, a coupling adjustment screw, or an inductive shorting rod is interposed in the opposing sections of the elements without interposing a coupling hole therebetween. By interposing these in appropriate combinations, the bonding characteristics can be freely adjusted.

第1の実施例の伝送特性を基準化像域通過ろ波器の幾何
係数を基にして所要の特性となす手法は、これをそのま
ま第2の実施例に適用して所要の伝送特性を得ることが
出来る。
The method of making the transmission characteristics of the first embodiment into the required characteristics based on the geometric coefficients of the standardized image pass filter is to apply this directly to the second example to obtain the required transmission characteristics. I can do it.

然しなから、例えば通過帯域がチェビシェフ特性で、減
衰域がワグナ特性のBPFは、7I8i極型BPFに比
して減衰特性が垢るので、以下本発明BPFの有極化に
ついて説明する。
However, for example, a BPF with a Chebyshev characteristic in the passband and a Wagner characteristic in the attenuation range has poorer attenuation characteristics than a 7I8i polar type BPF, so the polarization of the BPF of the present invention will be explained below.

第43図は第2の実施例における回路次数を6とすると
共に有極型特性に形成した一例を示す断面図(第44図
のC−C断面図)、第44図は第43図のA−A断面図
、第45図は第43図のB−B断面図で、各図において
1は筐体、2.なし\し2blよ共振素子で、コの字型
に配設しである。3゜及び3□1よ入出力結合回路素子
、4.及び4りは入出力同軸端子、15は隔壁、17は
間接結合孔で、共振素子21及び2&の各中心軸を含む
平面と隔壁15の交線上における適宜の高さの個所にほ
ぼ中心を有する。間接結合孔17の代りにループ等の誘
導性結合素子を用いてもよい。18は容量性間接結合素
子で、例えばコンデンサ等の集中定数回路素子又は共振
素子2.との間に結合蓉量を形成する対向電極板と共振
素子2.との間に結合容量を形成する対向電極板とを接
続線を介して接続しで成る分布定数的結合素子より成る
。容量性間接結合素子18は、共振素子2a及び25の
各中心軸を含む平面と隔壁15の交線上適宜高さの個所
にほぼ中心を有する孔隙を通しで、かつ隔壁15との間
を絶縁を保って支持されるように形成しである。
FIG. 43 is a cross-sectional view (C-C cross-sectional view in FIG. 44) showing an example in which the circuit order is 6 in the second embodiment and is formed to have polar characteristics, and FIG. 44 is A in FIG. -A sectional view, FIG. 45 is a BB sectional view of FIG. 43, and in each figure, 1 is the housing, 2. None\2BL is a resonant element arranged in a U-shape. 3° and 3□1 input/output coupling circuit elements, 4. and 4 are input/output coaxial terminals, 15 is a partition wall, and 17 is an indirect coupling hole, the center of which is approximately at an appropriate height on the intersection line of the partition wall 15 with a plane containing the central axes of the resonant elements 21 and 2&. . In place of the indirect coupling hole 17, an inductive coupling element such as a loop may be used. 18 is a capacitive indirect coupling element, for example, a lumped constant circuit element such as a capacitor or a resonant element 2. A counter electrode plate forming a coupling force between the resonant element 2. and a counter electrode plate forming a coupling capacitance therebetween, which are connected via a connecting line. The capacitive indirect coupling element 18 is inserted through a hole approximately centered at an appropriate height on the intersection of the partition wall 15 and a plane containing the center axes of the resonant elements 2a and 25, and is insulated from the partition wall 15. It is shaped to be held and supported.

この実施例においては回路次数を6に選んだ場合を例示
しであるが、回路次数はこれを適宜増減し得ること勿論
で、又、共振素子の軸長、折返し部分を含む股間結合構
成及び入出力結合回路素子の構成等は第1及び第2の実
施例と同様である。
In this example, the case where the circuit order is selected as 6 is illustrated, but it is of course possible to increase or decrease the circuit order as appropriate. The configuration of the output coupling circuit element and the like are the same as those in the first and second embodiments.

第46図はこの実施例の等価回路図で、C□及びC1り
は入出力結合容量、R,ないしR6は共振回路、M、1
.ないしMよ、6は股間磁界結合係数、Mlhは間接磁
界結合係数、OaGは間接結合容量である。
Fig. 46 is an equivalent circuit diagram of this embodiment, where C□ and C1 are input/output coupling capacitances, R, to R6 are resonant circuits, M, 1
.. Or M, 6 is the crotch magnetic field coupling coefficient, Mlh is the indirect magnetic field coupling coefficient, and OaG is the indirect coupling capacitance.

第46図における共振回路の一区間、例えばR5区間は
、第47図のように書換えることが出来る。
One section of the resonant circuit in FIG. 46, for example, the R5 section, can be rewritten as shown in FIG. 47.

同図においてLRは共振回路におけるインダクタンス分
、Cえは共振回路における容量分、MITLは磁気相互
インダクタンスである。
In the figure, LR is the inductance in the resonant circuit, C is the capacitance in the resonant circuit, and MITL is the magnetic mutual inductance.

第47図に示した等価回路図は第48図のように、共振
作用を営む回路部分R,と、位相回路を構成する回路部
分PCとに分けることが出来る。同図においてCI、l
は等価位相回路の容量で、他の符号は第47図と同様で
ある。位相回路を構成する回路部分P。
As shown in FIG. 48, the equivalent circuit diagram shown in FIG. 47 can be divided into a circuit portion R that performs a resonance action and a circuit portion PC that constitutes a phase circuit. In the same figure, CI, l
is the capacitance of the equivalent phase circuit, and the other symbols are the same as in FIG. 47. A circuit portion P that constitutes a phase circuit.

の[F]マトリクスは、 ・・・・(41) 但し、 ω0M1ミω、0ylE+ 第49図に示すように特性インピーダンスz0及び特性
アドミッタンスYaが1で、畏さ迭が電気長で管内波長
λJの4のケーブルの[F’lマトリクスは、・・・・
 (42) (41)式において(42)式が成立するようにすれば
(41)式の右辺は)r2Aケーブルと等価となり、第
46図は第50図のように書換えることが出来る。同図
においてP、ないしR7は90’位相口路で、他の符号
は第46図と同様である。
The [F] matrix is: (41) However, as shown in Fig. 49, the characteristic impedance z0 and the characteristic admittance Ya are 1, and the distance is the electrical length and the tube wavelength λJ is The [F'l matrix of cable No. 4 is...
(42) If the equation (42) is established in the equation (41), the right side of the equation (41) becomes equivalent to the r2A cable, and FIG. 46 can be rewritten as shown in FIG. 50. In the figure, P to R7 are 90' phase paths, and other symbols are the same as in FIG. 46.

第50図におけるa点及びd点間の主回路を伝送する間
に、共振信号は90’位相回路P1ないし26間におい
て  +90ゝX 5= +450”   の位相差を
生ずるに対し、減衰信号は共振回路R,ないしR6にお
いで  ±9σ×6=±540′   の位相差を生ず
ルト共t:9o”位相回りニオイテ+9C1”X5=+
450”の位相差を生ずるから結果として  +450
’±5401の位相差を生ずる。したがって  450
’ +540°=990@−36(1@X 3=−90
°  又は  450°−540’=−90’   と
なる。即ち減衰信号は共振周波数より高い周波数の場合
も、低い周波数の場合においても一90°の位相差を生
ずる。
During transmission through the main circuit between points a and d in Figure 50, the resonant signal produces a phase difference of +90ゝIn circuits R and R6, a phase difference of ±9σ×6=±540′ is generated, and both routes are t:9o” phase rotation +9C1”X5=+
Since a phase difference of 450" is generated, the result is +450
'Produces a phase difference of ±5401. Therefore 450
' +540°=990@-36 (1@X 3=-90
° or 450°-540'=-90'. That is, the attenuated signal produces a phase difference of 190° both at frequencies higher than the resonance frequency and at frequencies lower than the resonance frequency.

a点及びd点間は、第43図及び第44図に17を以て
示し、第46図及び第50図にMl、&を以て示した結
合孔又はループによって間接結合(磁界結合、即ち電流
結合)せしめであるから、この間接結合素子を介してa
点からd点へ伝送される信号は+90°の位相差を生じ
、d点においては、主回路を伝送してd点に達する減衰
信号と間接結合素子を伝送してd点に達する減衰信号と
の間に180“の位相差を生ずる。間接結合孔(又はル
ープ)17を介して行われる共振回路R5とR&間の結
合量はBPFの負荷Qに密接に関連して変化するが、負
荷Qの大きさを所要値に定めて、減衰極を生せしめよう
とする周波数の信号(以下、減衰極信号と略記する)が
6点からd点まで主回路を伝送する間に生ずる減衰量と
、間接結合素子における結合減衰量とが互に等しくなる
ように間接結合孔17の直径又はループが磁束を切る面
積を定めることにより目的の周波数位置に減衰極を生せ
しめることが出来る。
Points a and d are indirectly coupled (magnetic field coupling, i.e., current coupling) by coupling holes or loops indicated by 17 in FIGS. 43 and 44 and Ml and & in FIGS. 46 and 50. Therefore, through this indirect coupling element, a
The signal transmitted from point to point d has a phase difference of +90°, and at point d, an attenuated signal that is transmitted through the main circuit and reaches point d, and an attenuated signal that is transmitted through an indirect coupling element and reaches point d. The amount of coupling between the resonant circuits R5 and R& through the indirect coupling hole (or loop) 17 varies closely in relation to the load Q of the BPF; The amount of attenuation that occurs while the signal at the frequency that is intended to cause an attenuation pole (hereinafter abbreviated as attenuation pole signal) is transmitted through the main circuit from point 6 to point d by setting the magnitude of By determining the diameter of the indirect coupling hole 17 or the area where the loop cuts the magnetic flux so that the coupling attenuation amounts in the indirect coupling elements are equal to each other, an attenuation pole can be generated at a desired frequency position.

次にb点及びC点間の主回路を伝送する間に共振信号は
位相回路P、ないしR5において  +90’ X3=
 + 270°  の位相差を生ずるに対し、減衰信号
は共振回路RユないしR,において  ±9♂×4=t
h36σ  の位相差を生ずると共に位相回路P。
Next, while transmitting the main circuit between point b and point C, the resonance signal is transmitted in phase circuit P or R5 +90'X3=
+270° phase difference, whereas the attenuated signal is ±9♂×4=t in the resonant circuit R
The phase circuit P generates a phase difference of h36σ.

ないしtにおいて  +90°X ’3= +270”
   の位相差を生ずるから結果として  +27♂+
3601の位相差、即ち  +27σ+360 = +
 63r; −360@X2=−9♂  又は  +2
70” −360°=−90゜の位相差を生ずる。一方
す点とC点間に介在せしめた容量性間接結合素子(第4
3図及び第45図の18)においては+90″の位相差
を生ずるので、主回路を伝送する減衰信号と容量性間接
結合素子を伝送する減衰信号との間にはC点において1
80°の位相差を生ずる。したがって主回路を伝送する
減衰極信号と容量性間接結合素子を伝送する減衰極信号
との各振幅がC点において互に等しくなるように容量性
間接結合素子の結合容量を定めることにより目的の周波
数位置に減衰極を生せしめることが出来る。
or at t +90°X '3= +270"
This results in a phase difference of +27♂+
3601 phase difference, i.e. +27σ+360 = +
63r; -360@X2=-9♂ or +2
A phase difference of 70" -360°=-90° is produced. On the other hand, a capacitive indirect coupling element (the fourth
3 and 18) in Fig. 45, a phase difference of +90'' is generated, so there is a difference of 1 at point C between the attenuated signal transmitted through the main circuit and the attenuated signal transmitted through the capacitive indirect coupling element.
This produces a phase difference of 80°. Therefore, by determining the coupling capacitance of the capacitive indirect coupling element so that the amplitudes of the attenuation pole signal transmitted through the main circuit and the attenuation pole signal transmitted through the capacitive indirect coupling element are equal to each other at point C, the target frequency can be determined. Attenuation poles can be generated at certain positions.

尚、第51図は結合孔又はループ等より成る間接結合素
子17の等価回路図、第52図は容量性間接結合素子1
8の等価回路図で、それぞれのIF、l及びlFc1マ
トリクスは、 bL=誘導す七プタンス X、:容量リアクタンス 又、両者の位相特性の一般式は、 θ:二位相 角、、l:複素数表示の虚数部 R1:複素数表示の実数部 結合孔17又はループより成る間接結合素子の位相特性
は、 eL:位相角 容量性間接結合素子18の位相特性は、ec=tan−
’ −”      ・・・・・・(48)θ6 二位
相角 bL及びXcが十分に大であれば素子17及び18の位
相角θ、及びθ。は同じ値になり、例えばす、=+00
  とした場合、θ、 =88.85’Xc:100 
 とした場合、θ。= 88.85”となる。
In addition, FIG. 51 is an equivalent circuit diagram of the indirect coupling element 17 consisting of a coupling hole or loop, etc., and FIG. 52 is an equivalent circuit diagram of the indirect coupling element 17 consisting of a coupling hole or a loop.
In the equivalent circuit diagram of 8, the respective IF, l, and lFc1 matrices are as follows: bL = induced septance Imaginary part R1: Real part expressed as a complex number The phase characteristic of the indirect coupling element consisting of the coupling hole 17 or loop is: eL: The phase characteristic of the phase angle capacitive indirect coupling element 18 is ec=tan-
'-'' ...... (48) θ6 If the two phase angles bL and Xc are sufficiently large, the phase angles θ and θ of elements 17 and 18 will be the same value, for example, S = +00
In this case, θ, =88.85'Xc:100
If θ. = 88.85".

間接結合素子として結合孔又はループのような磁界結合
素子を用いる場合、位相関係は電流を基準とし、回路的
には第5+図に示した並列回路(アドミッタンス回路)
で取扱い、容量結合素子を用いる場合には、位相関係は
電圧を基準とし、回路的には第52図に示した直列回路
(インピーダンス回路)で取扱う。
When using a magnetic field coupling element such as a coupling hole or a loop as an indirect coupling element, the phase relationship is based on the current, and the circuit is a parallel circuit (admittance circuit) shown in Figure 5+.
When a capacitive coupling element is used, the phase relationship is based on voltage, and the circuit is handled using a series circuit (impedance circuit) shown in FIG.

第43図ないし第46図に示した間接結合素子17を容
量結合素子を以て置換え、第53図に等価回路を示すよ
うIこ、共振回路R9とR6を間接結合容量Crbによ
って間接結合しても前記と同様に有極型特性となすこと
が出来る。又、第54図に等価回路を示すように、R5
とR6間及びR3とR9間を共に磁界結合(M、&及び
Mar )によって間接結合してもよく、特にこの場合
には入出力結合回路を、第4図に示したように棒状導体
より成る入出力結合回路素子を、共振素子と逆極性を以
て設けて成る変成器構成とすることにより大電力用BP
Fを形成することが出来る。
Even if the indirect coupling element 17 shown in FIGS. 43 to 46 is replaced with a capacitive coupling element, and the equivalent circuit is shown in FIG. 53, the resonance circuits R9 and R6 are indirectly coupled by the indirect coupling capacitance Crb. Similarly, it can be made to have polar characteristics. Also, as shown in the equivalent circuit in Fig. 54, R5
and R6 and between R3 and R9 may be indirectly coupled by magnetic field coupling (M, & and Mar). In particular, in this case, the input/output coupling circuit is made of a rod-shaped conductor as shown in Fig. 4. By using a transformer configuration in which the input/output coupling circuit element is provided with polarity opposite to that of the resonant element, high power BP
F can be formed.

第53図及び第54図において共振回路R5とR6間又
はR2とR5間の何れか一方のみを間接結合してもよく
、一般に間接結合すべき共振回路の組数は、これを任意
に選ぶことが出来、間接結合すべき共振回路を一般的に
規定すれば2個又はその整数倍の個数の共振回路を隔て
た共振回路相互である。
In FIGS. 53 and 54, only one of the resonant circuits R5 and R6 or R2 and R5 may be indirectly coupled, and generally the number of resonant circuits to be indirectly coupled can be arbitrarily selected. Generally speaking, the resonant circuits to be indirectly coupled are two resonant circuits or an integer multiple of the resonant circuits separated from each other.

更にすべての間接結合素子を磁界結合素子又は容量結合
素子の何れかを以て形成し、複数個の間接結合素子の中
、任意数の間接結合−素子を磁界結合素子を以て形成し
、残りの間接結合素子を容量結合素子を以て形成するよ
うに構成しても本発明を実施することが出来る。
Furthermore, all indirect coupling elements are formed using either magnetic coupling elements or capacitive coupling elements, and any number of indirect coupling elements among the plurality of indirect coupling elements are formed using magnetic coupling elements, and the remaining indirect coupling elements are The present invention can also be implemented by configuring the capacitor to be formed using a capacitive coupling element.

上記のようにして通過帯域がチェビシェフ特性で、減衰
域に減衰極を生せしめた本発明BPFの伝送特性は次式
から求めることが出来る。
The transmission characteristics of the BPF of the present invention in which the pass band has Chebyshev characteristics and an attenuation pole is generated in the attenuation region as described above can be obtained from the following equation.

次数nが奇数の場合、 次数nが偶数の場合、 ・・・・・・(53) f−:減衰極を生ずる周波数 (,50)式における1、lLは虚数部をとるの意、(
51)式におけるReは実数部をとるの意である。
When the order n is an odd number, When the order n is an even number, ...... (53) f-: Frequency that produces an attenuation pole In the equation (,50), 1 and lL mean the imaginary part, (
Re in formula 51) means taking the real part.

尚、上記各式において p、 千css 、m; :1
とすることにより1通過域がチェビシェフ特性で、減衰
域がワグナ特性の伝送特性を表わす(19)式第55図
は上記有極型特性をもたせた本発明BPFの特性曲線図
で、f−jは減衰極を生ずる周波数で、他の符号は第1
1図と同様である。
In each of the above formulas, p, 1,000 css, m; :1
(19) which expresses the transmission characteristic where one pass band has the Chebyshev characteristic and the attenuation zone has the Wagner characteristic. Figure 55 is a characteristic curve diagram of the BPF of the present invention having the above-mentioned polar type characteristic, and f-j is the frequency that produces the attenuation pole, and the other signs are the first
It is the same as Figure 1.

第1の実施例においても有極型特性とすることが可能な
こと勿論であるが、この場合には共振素子が一列に配設
されているため間接結合すべき共振素子の間隔が大で、
間接結合回路として同軸ケーブル又はストリップライン
等を必要とすると共に、同軸ケーブル又はストリップラ
インと共振素子間の結合素子として磁界結合素子又は容
量結合素子等を必要とするので、その構成が比較的複雑
大型となる欠点がある。
Of course, the first embodiment can also have polar characteristics, but in this case, since the resonant elements are arranged in a row, the intervals between the resonant elements to be indirectly coupled are large.
A coaxial cable or strip line is required as an indirect coupling circuit, and a magnetic coupling element or capacitive coupling element is required as a coupling element between the coaxial cable or strip line and the resonant element, so the configuration is relatively complex and large. There is a drawback.

以上例れの実施例においても共振器として、共振素子(
内部導体)と筐体(外部導体)の間に誘電体を介在せし
めて成る誘電体共振器を用いてもよく、この場合、本発
明BPFにおける股間結合が磁界結合であるため誘電体
の誘電率の影響をほとんど受けることなく、又、透磁率
を空気の場合と同じく1 として扱えるので、設計製作
は空気が介在する場合と同様容易である。
In each of the above embodiments, a resonant element (
A dielectric resonator in which a dielectric material is interposed between an internal conductor) and a housing (external conductor) may be used; in this case, since the coupling between the legs in the BPF of the present invention is magnetic field coupling, the dielectric constant of the dielectric material is Since the magnetic permeability can be treated as 1 in the same way as in the case of air, design and manufacture is as easy as in the case of air.

本発明者は各実施例について次数が4.6及び8のBP
Fを試作し、伝送特性、構成部品の寸法等についての理
論値と実際値とを比較した結果、両者極めて良く一致し
、本発明の理論構成の正しさを立証することが出来た。
The inventor has developed a BP of order 4.6 and 8 for each example.
As a result of making a prototype of F and comparing the theoretical values and actual values regarding transmission characteristics, dimensions of component parts, etc., the two agreed extremely well, proving the correctness of the theoretical configuration of the present invention.

以上の説明から明らかなように、本発明BPFにおいて
は共振素子の開放端と筐体壁との間隔を比較的大ならし
め得るので耐圧特性に優れ、周囲温度の変化の影響を受
けることなく電気的特性が安定良好で、全体を小型に形
成し得ると共に、全体の形状寸法を一足に保ったまま各
種の伝送特性を与え得る等の特長を有する。
As is clear from the above explanation, in the BPF of the present invention, the distance between the open end of the resonant element and the housing wall can be made relatively large, so it has excellent voltage resistance characteristics and is not affected by changes in ambient temperature The optical characteristics are stable and good, the entire structure can be made compact, and various transmission characteristics can be provided while maintaining the overall shape and dimensions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のコムライン型帯域通過ろ波器
を示す断面図、第3図はその等価回路図、第4図及び第
5図は本発明の一実施例を示す断面図、第6図、第28
図、第46図、第53図及び第548図、第19図及び
第36図は本発明ろ波器の作動説明図、第9図及び第1
0図は本発明ろ波器の設計手法の説明図、第11図及び
第55図は本発明ろ波器の伝送特性の一例を示す曲線図
、第12図ないし第18図、第20図ないし第25図、
第29図ないし第34図、第39図ないし第42図は本
発明の他の実施例の要部を示す断面図、第26図は本発
明ろ波器の入出力結合回路の説明のための曲線図、第2
7図、第37図、第38図、第43図ないし第45図は
本発明の他の実施例を示す断面図、第35図は本発明ろ
波器の入出力結合回路素子の一例を示す断面図、第47
図ないし第52図は本発明ろ波器の作動説明のための等
価回路図で、1:筐体、2及び21ないし2□:共振素
子、3.3゜及び3□、1=入入出力台回路素子、4.
4゜及び4□や、:入出力同軸端子、5:電極板−61
1及び6コlないし6trn−r)及び62C1−υs
 6/ないし6□−1=絞り、7.ないし7n−1’結
合調整ねじ、81−及びsatないしB/In−tl及
び8 Q(n−リ :誘導性短絡棒、9:外部導体、1
0:内部導体、11:絶縁体、12:押え金具、13及
び14:止めねじ、15:隔壁、16:結合孔、17及
び18:間接結合素子である。 第1図 第2図 第3図 第4図 第5図 第6図 第7図  第8図 第9図 第10図  第11図 第12図 第13図 第14図 第15図 第16図 第19図   第17図 第18図 第20図 第29図  第30図 / 0 第31図  第32図 / 0 第33図  第34図 第35図 第36図 〔イ)          (ロ) 第37図 第39図  第40図 第41囚   第42図 第44図 第43図 第45図 第46図
1 and 2 are cross-sectional views showing a conventional combline type bandpass filter, FIG. 3 is an equivalent circuit diagram thereof, and FIGS. 4 and 5 are cross-sectional views showing an embodiment of the present invention. , Figure 6, Figure 28
Figures 46, 53, 548, 19 and 36 are explanatory diagrams of the operation of the filter of the present invention, Figures 9 and 1.
Figure 0 is an explanatory diagram of the design method of the filter of the present invention, Figures 11 and 55 are curve diagrams showing examples of transmission characteristics of the filter of the present invention, Figures 12 to 18, and Figures 20 to 55. Figure 25,
29 to 34 and 39 to 42 are sectional views showing essential parts of other embodiments of the present invention, and FIG. 26 is a diagram for explaining the input/output coupling circuit of the filter of the present invention. Curve diagram, 2nd
7, 37, 38, 43 to 45 are cross-sectional views showing other embodiments of the present invention, and FIG. 35 shows an example of the input/output coupling circuit element of the filter of the present invention. Sectional view, No. 47
Figures 52 to 52 are equivalent circuit diagrams for explaining the operation of the filter of the present invention, in which 1: housing, 2 and 21 to 2□: resonant element, 3.3° and 3□, 1 = input/output stand circuit element, 4.
4゜ and 4□, : input/output coaxial terminal, 5: electrode plate-61
1 and 6kol to 6trn-r) and 62C1-υs
6/or 6□-1=aperture, 7. to 7n-1' coupling adjustment screw, 81- and sat to B/In-tl and 8 Q (n-ly: inductive shorting rod, 9: outer conductor, 1
0: internal conductor, 11: insulator, 12: presser fitting, 13 and 14: set screw, 15: partition wall, 16: coupling hole, 17 and 18: indirect coupling element. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 19 Figure 17 Figure 18 Figure 20 Figure 29 Figure 30 / 0 Figure 31 Figure 32 / 0 Figure 33 Figure 34 Figure 35 Figure 36 [A] (B) Figure 37 Figure 39 Figure 40 Figure 41 Prisoner Figure 42 Figure 44 Figure 43 Figure 45 Figure 46

Claims (28)

【特許請求の範囲】[Claims] (1)電気長で共振波長のほぼAの軸長を有し、同一極
性を以て一列に配設された複数個の共振素子と、入出力
結合回路素子とを備えると共に、前記複数個の共振素子
の各中心間隔を、Loに、(に州= −201ogMに
(に+1>CdX、(X+1):共振素子の中心間隔に
=1  、2  、 ・・・・・・nn:ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 LQ X、(%や、):共振素子間のりアクタンス損失
Mに、(K++) :共振素子間の磁界結合係数λc=
 2W g 洗:遮断波長 入:伝送信号の波長 ε:誘電率 で定めたことを特徴とするコムライン型帯域通過ろ、皮
器。
(1) A plurality of resonant elements having an electrical length and an axial length of approximately A of the resonant wavelength and arranged in a line with the same polarity, and an input/output coupling circuit element, and the plurality of resonant elements Let each center spacing be Lo, (to = -201ogM (to +1>CdX, (X+1): to the center spacing of the resonant element = 1, 2, ... nn: order of the filter d: Diameter of the resonant element W: Width LQ of the housing (outer conductor of the resonator)
2W g Cleaning: Cutoff wavelength Input: Wavelength of transmission signal ε: A combline type bandpass filter characterized by determined by dielectric constant.
(2)電気長で共振波長のほぼ暮の軸長を有し、同一極
性を以て一列に配設された複数個の共振素子と、前記複
数個の共振素子の中、2個又はその整数倍の個数の共振
素子を隔てた共振素子相互を間接結合する間接結合回路
と、入出力結合回路素子とを備えると共に、前記複数個
の共振素子の各中心間隔を、 Cdに、(に(vl) :共振素子の中心間隔に=1.
2、・・・・・・n n:ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 [、Cに、(に引):共振素子間のりアクタンス損失M
に、(Kt+):共振素子間の磁界結合係数λG=2W
g ^C:遮断波長 入 :伝送信号の波長 ε:誘電率 で定めたことを特徴とするコムライン型帯域通過ろ波器
(2) A plurality of resonant elements having an axial length approximately equal to the resonant wavelength in terms of electrical length and arranged in a line with the same polarity; It is provided with an indirect coupling circuit that indirectly couples the resonant elements separated by a number of resonant elements, and an input/output coupling circuit element, and the distance between the centers of the plurality of resonant elements is Cd, (to (vl): Center spacing of resonant elements = 1.
2,...n n: Order of the filter d: Diameter of the resonant element W: Width of the housing (external conductor of the resonator) [, C, (subtracted): Glue actance between the resonant elements loss M
, (Kt+): magnetic field coupling coefficient between resonant elements λG=2W
g ^C: Cutoff wavelength input: Wavelength of transmission signal ε: A combline type bandpass filter characterized by being determined by dielectric constant.
(3)電気長で共振波長のほぼ匈の軸長を有し、同一極
性?以て一列に配設された複数個の共振素子と、前記複
数個の共振素子の各対向間隙に設けた結合調整素子と、
入出力結合回路素子とを備えると共に、前記複数個の共
振素子の各中心間隔を、 Cdド、(に◆I):共振素子の中心間隔に=1 .2
  、・拳・・・・n n:ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 Lcに、(K+ll :共振素子間のりアクタンス損失
Mに、(に→、):共振素子間の磁界結合係数入c=2
W/’H 凝:遮断波長 入:伝送信号の波長 ε:誘電率 で定めたことを特徴とするコムライン型帯域通過ろ波器
(3) Has an electrical length that is approximately the same as the resonant wavelength, and has the same polarity? a plurality of resonant elements arranged in a line; a coupling adjustment element provided in each opposing gap between the plurality of resonant elements;
and an input/output coupling circuit element, and the distance between the centers of each of the plurality of resonant elements is Cd, (◆I): the distance between the centers of the resonant elements=1. 2
,・Fist...n n: Order of the filter d: Diameter of the resonant element W: Width Lc of the housing (outer conductor of the resonator), (K+ll: Actance loss M between the resonant elements, ( →, ): Magnetic field coupling coefficient between resonant elements c = 2
W/'H A combline type bandpass filter characterized by: cutoff wavelength input: wavelength of transmission signal ε: determined by dielectric constant.
(4)電気長で共振波長のほぼ匈の軸長を鳴し、同一極
性を以て一列に配設された複数個の共振素子と、前記複
数個の共振素子の中、2個又はその整数倍の個数の共振
素子を隔てた共振素子相互を間接結合する間接結合回路
と、前記複数個の共振素子の各対向間隙に設けた結合調
整素子と、入出力結合回路素子とを備えると共に、前記
複数個の共振素子の各中心間隔を、 しCド、(バ呻1)  = −20ノOgMK、(Kn
)Cdx、Or++) :共振素子の中心間隔に=1.
2、・・・・・・n n:ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 LQX、(イ、す:共振素子間のりアクタンス損失M 
H,(Kヤ、):共振素子間の磁界結合係数へc=2W
、/H λC:遮断波長 λ:伝送信号の波長 ε:誘電率 で定めたことを特徴とするコムライン型帯域通過ろ波器
(4) A plurality of resonant elements that emit an axial length approximately equal to the resonant wavelength in electrical length and are arranged in a line with the same polarity, and two or an integral multiple of the resonant elements of the plurality of resonant elements are arranged in a row with the same polarity. an indirect coupling circuit that indirectly couples the resonant elements separated by a plurality of resonant elements; a coupling adjustment element provided in each opposing gap of the plurality of resonant elements; and an input/output coupling circuit element; Let the center spacing of each resonant element be Cd, (B1) = -20OgMK, (Kn
) Cdx, Or++): Center spacing of resonant element = 1.
2,...n n: Order of the filter d: Diameter of the resonant element W: Width of the casing (outer conductor of the resonator) LQX, (A, S: Actance loss M between the resonant elements)
H, (Kya,): c=2W to magnetic field coupling coefficient between resonant elements
, /H λC: Cutoff wavelength λ: Wavelength of transmission signal ε: A combline type bandpass filter characterized by being determined by dielectric constant.
(5)電気長で共振波長のほぼ匈の軸長を有し、同一極
性を以てコの字型に配設された複数個の共振素子と、前
記複数個の共振素子により形成≧れる信号伝送路の中、
折返し部分を除(往路と復路との間に設けた導体隔壁と
、入出力結合回路素子とを備えたことを特徴とするコム
ライン型帯域通過ろ波器。
(5) A signal transmission line formed by a plurality of resonant elements having an electrical length and an axial length approximately equal to the resonant wavelength and having the same polarity and arranged in a U-shape, and the plurality of resonant elements. in,
A combline type band-pass filter characterized in that it includes a conductor partition provided between an outgoing path and a returning path (excluding the folded portion), and an input/output coupling circuit element.
(6)電気長で共振波長のほぼAの軸長を滴し、同一極
性を以てコの字型に配設された複数個の共振素子と、前
記複数個の共振素子により形成される信号伝送路の中、
折返し部分を除く・往路と復路との間に設けた導体隔壁
と、前記複数個の共振素子の中、縦続接続関係にある2
個又はその整数倍の個数の共振素子を隔てた共振素子相
互を間接結合する間接結合素子と、入出力結合回路素子
とを備えたことを特徴とするコムライン型帯域通過ろ波
器。
(6) A signal transmission path formed by a plurality of resonant elements arranged in a U-shape with the same polarity and having an axial length of approximately A of the resonant wavelength in electrical length, and the plurality of resonant elements. in,
Excluding the folded part ・The conductor partition wall provided between the outgoing path and the returning path, and two of the plurality of resonant elements that are in a cascade connection relationship.
1. A combline type band-pass filter comprising: an indirect coupling element that indirectly couples resonant elements separated by a number of resonant elements or an integral multiple of the number of resonant elements; and an input/output coupling circuit element.
(7)電気長で共振波長のほぼ匈の軸長を鳴し、同一極
性を以てコの字型に配設ぎれた複数個の共振素子と、前
記複数個の共振素子により形成される信号伝送路の中、
折返し部分を除く往路と復路との間に設けた導体隔壁と
、前記複数個の共振素子の縦続接続方向における各対向
間隙に設けた結合調整素子と、入出力結合回路素子とを
備えたことを特徴とするコムライン型帯域通過ろ波器。
(7) A signal transmission path formed by a plurality of resonant elements arranged in a U-shape with the same polarity, emitting an axial length approximately equal to the resonant wavelength in electrical length, and the plurality of resonant elements. in,
A conductive partition wall provided between the outgoing path and the incoming path excluding the folded portion, a coupling adjustment element provided in each opposing gap in the cascade connection direction of the plurality of resonant elements, and an input/output coupling circuit element. Features a combline type bandpass filter.
(8)電気長で共振波長のほぼ凶の軸長を有し、同一極
性を以てコの字型に配設された複数個の共振素子と、前
記複数個の共振素子により形成される信号伝送路の中、
折返し部分を除く往路と復路との間に設けた導体隔壁と
、前記複数個の共振素子の中、縦続接続関係にある2個
又はその整数倍の個数の共振素子を隔てた共振素子相互
を間接結合する間接結合素子と、前記複数個の共振素子
の縦続接続方向における各対向間隙に設けた結合調整素
子と、入出力結合回路素子とを備えたことを特徴とする
コムライン型帯域通過ろ波器。
(8) A plurality of resonant elements having an electrical length and an axial length approximately equal to the resonant wavelength and having the same polarity and arranged in a U-shape, and a signal transmission line formed by the plurality of resonant elements. in,
A conductive partition wall provided between the outgoing path and the incoming path excluding the turning portion, and resonant elements that separate two resonant elements in a cascade connection among the plurality of resonant elements or an integral multiple of the resonant elements. A combline type bandpass filter comprising: an indirect coupling element for coupling; a coupling adjustment element provided in each opposing gap in the cascade connection direction of the plurality of resonant elements; and an input/output coupling circuit element. vessel.
(9)電気長で共振波長のほぼ匈の軸長を有し、同一極
性を以て二列に配設された複数個の共振素子と、前記複
数個の共振素子より成る列と列の間に設けた導体隔壁と
、この導体隔壁の一方の端部に穿たれ、前記二列に配言
スサれた複数個の共振素子の中、最端部において対向す
る共振素子相互を結合する結合孔と、入出力結合回路素
子とを備えたことを特徴とするコムライン型帯域通過ろ
波器。
(9) A plurality of resonant elements having an electrical length approximately equal to the length of the resonant wavelength and arranged in two rows with the same polarity, and a plurality of resonant elements arranged between the rows of the plurality of resonant elements. a conductive partition wall, a coupling hole bored in one end of the conductor partition wall and coupling mutually opposing resonant elements at the ends of the plurality of resonant elements arranged in the two rows; A combline type bandpass filter characterized by comprising an input/output coupling circuit element.
(10)電気長で共振波長のほぼ凶の軸長を鳴し、同一
極性を以て二列に配設された複数個の共振素子と、前記
複数個の共振素子より成る列と列の間に設けた導体隔壁
と、この導体隔壁の一方の端部に穿たれ、前記二列に配
設された複数個の共振素子の中、最端部において対向す
る共振素子相互を結合する結合孔と、前記複数個の共振
素子の中、縦続接続関係にある2個又はその整数倍の個
数の共振素子を隔てた共振素子相互を間接結合する間接
結合素子と、入出力結合回路素子とを備えたことを特徴
とするコムライン型帯域通過ろ波器゛、。
(10) A plurality of resonant elements that emit an axial length approximately equal to the resonant wavelength in terms of electrical length and are arranged in two rows with the same polarity; a coupling hole bored in one end of the conductor partition wall for coupling mutually opposing resonant elements at the ends of the plurality of resonant elements arranged in the two rows; Among the plurality of resonant elements, an indirect coupling element that indirectly couples two or an integral multiple of the resonant elements in a cascade connection with each other, and an input/output coupling circuit element are provided. A combline type bandpass filter featuring features.
(11)電気長で共振波長のほぼAの軸長を有し、同一
極性を以て二列に配設された複数個の共振素子と、前記
複数個の共振素子より成る列と列の間に設けた導体隔壁
と、この導体隔壁の一方の端部に穿たれ、前記二列に配
設された複数個の共振素子の中、最端部において対向す
る共振素子相互を結合する結合孔と、前記複数個の共振
素子の縦続接続方向における対向間隙の中、前記結合孔
を設けた対向間隙を除く各対向間隙に設けた結合調整素
子と、入出力結合回路素子とを備えたことを特徴とする
コムライン型帯域通過ろ波器。
(11) A plurality of resonant elements having an electrical length and an axial length of approximately A of the resonant wavelength and arranged in two rows with the same polarity, and a plurality of resonant elements arranged between the rows of the plurality of resonant elements. a coupling hole bored in one end of the conductor partition wall for coupling mutually opposing resonant elements at the ends of the plurality of resonant elements arranged in the two rows; It is characterized by comprising a coupling adjustment element and an input/output coupling circuit element provided in each of the opposed gaps in the cascade connection direction of a plurality of resonant elements, except for the opposed gap in which the coupling hole is provided. Combline type bandpass filter.
(12)電気長で共振波長のほぼ頻の軸長を有し、同一
極性を以て二列に配設された複数個の共振素子と、前記
複数個の共振素子より成る列と列の間に設けた導体隔壁
と、この導体隔壁の一方の端部に穿たれ、前記二列に配
設された複数個の共振素子の中、最端部において対向す
る共振素子相互を結合する結合孔と、前記複数個の共振
素子の中、縦続接続関係にある2個又はその整数倍の個
数の共振素子を隔てた共振素子相互を間接結合する間接
結合素子と、前記複数個の共振素子の縦続接続方向にお
ける対向間隙の中、前記結合孔を設けた対向間隙を除く
各対向間隙に設けた結合調整素子と、入出力結合回路素
子とを備えたことを特徴とするコムライン型帯域通過ろ
波器。
(12) A plurality of resonant elements having an electrical length approximately equal to the resonant wavelength and arranged in two rows with the same polarity, and a plurality of resonant elements arranged between the rows of the plurality of resonant elements. a coupling hole bored in one end of the conductor partition wall for coupling mutually opposing resonant elements at the ends of the plurality of resonant elements arranged in the two rows; An indirect coupling element that indirectly couples two or an integral multiple of two resonant elements in a cascade connection among the plurality of resonant elements, and A combline type bandpass filter comprising a coupling adjustment element and an input/output coupling circuit element provided in each of the opposed gaps except for the opposed gap in which the coupling hole is provided.
(13)共振素子間のりアクタンス損失が、LOに、(
メ用:リアクタンス損失 Cdに−(K++) :共振素子の中心間隔k =1 
、2 、 ・・・・・・n n:帯域通過ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 ^。=2w/i へC:遮断波長 λ:伝送信号の波長 ε:誘電率 で定まる特許請求の範囲第1項ないし第12項の何れか
に記載のコムライン型帯域通過ろ波器。
(13) The actance loss between the resonant elements is LO, (
For mains: Reactance loss Cd -(K++): Center spacing of resonant element k = 1
, 2, ......n n: Order of bandpass filter d: Diameter of resonant element W: Width of the housing (outer conductor of the resonator) ^. =2w/i C: cutoff wavelength λ: wavelength of transmission signal ε: determined by dielectric constant The combline type bandpass filter according to any one of claims 1 to 12.
(14)折返し部分を除く共振素子の中心間隔が、Lc
に、(K+リ ニー201OEM)c、(IcすI)c
d’r(H+’> ’共振素子の中心間隔に=1  、
2  、 ・・・・・・nn:ろ波器の次数 d:共振素子の直径 W:筐体(共振器の外部導体)の幅 TJQK、(にヤ、):共振素子間のりアクタンス損失
M%、(H+r):共振素子間の磁界結合係数入ζ= 
2W/T 屓:遮断波長 入:伝送信号の波長 ε:誘電率 で定まる特許請求の範囲第5項ないし第12項の何れか
に記載のコムライン型帯域通過ろ波器。
(14) The center distance of the resonant element excluding the folded portion is Lc
, (K+Linny 201OEM)c, (IcsuI)c
d'r(H+'>' center spacing of resonant element = 1,
2, ......nn: Filter order d: Diameter of the resonant element W: Width of the housing (outer conductor of the resonator) TJQK, (Niya): Actance loss between the resonant elements M% , (H+r): magnetic field coupling coefficient between resonant elements ζ=
2W/T Bottom: Cutoff wavelength Input: Transmission signal wavelength ε: Determined by dielectric constant The combline type bandpass filter according to any one of claims 5 to 12.
(15)入出力結合回路素子が初段及び終段の共振素子
と逆極性を以て各対向する棒状導体より成り、対向共振
素子との間に形成される入出力結合容量が、 Ga、+ :入出力結合容量 zo:帯域通過ろ波器の特性インピーダンスω1 :帯
域通過ろ波器の中心角周波数Xo、+  : 06.!
の基準化リアクタンスで定まる特許請求の範囲第1項な
いし第12項の何れかに記載のコムライン型帯域通過ろ
波器。
(15) The input/output coupling circuit element is composed of rod-shaped conductors facing each other with opposite polarity to the first and final stage resonant elements, and the input/output coupling capacitance formed between the opposing resonant elements is Ga, +: input/output Coupling capacitance zo: Characteristic impedance of the bandpass filter ω1: Center angular frequency Xo, + of the bandpass filter: 06. !
A combline type bandpass filter according to any one of claims 1 to 12, which is determined by a normalized reactance of .
(16)入出力結合回路素子が初段及び終段の共振素子
と同極性を以て各対向する棒状導体より成り、対向共振
素子との間における磁界結合係数がLwa、を −F− M、、I=IO Me、r:磁界結合係数 Lwa、+ :入出力結合損失 で定まる特許請求の範囲第1項ないし第12項の何れか
に記載のコムライン型帯域通過ろ波器。
(16) The input/output coupling circuit element is composed of bar-shaped conductors facing each other with the same polarity as the first and final stage resonant elements, and the magnetic field coupling coefficient between them and the opposing resonant elements is Lwa, -F- M,,I= IO Me,r: Magnetic field coupling coefficient Lwa, +: Combline type bandpass filter according to any one of claims 1 to 12, determined by input/output coupling loss.
(17)入出力結合回路素子が初段及び終段の共振素子
と逆極性を以て各対向する棒状導体より成り、対向共振
素子との間における入出力結合係数力(、 M9.:入出力結合係数 M、:電界結合係数 M−一磁界結合係数 06m、1 :入出力結合回路素子と、これに対向する
共振素子との中心間隔 W:筐体(共振器の外部導体)の幅 d:共振素子の直径 入、=2w、/i λC:遮断波長 入:伝送信号の波長 7 ε:誘電率 で定まる特許請求の範囲第1項ないし第12項の何れか
に記載のコムライン型帯域通過ろ波器。
(17) The input/output coupling circuit element is composed of rod-shaped conductors facing each other with opposite polarity to the first and final stage resonant elements, and the input/output coupling coefficient force (, M9.: input/output coupling coefficient M , : Electric field coupling coefficient M - Magnetic field coupling coefficient 06 m, 1 : Center distance W between the input/output coupling circuit element and the resonant element facing it: Width d of the casing (outer conductor of the resonator): Width of the resonant element Diameter included, = 2w, /i λC: Cutoff wavelength included: Wavelength of transmission signal 7 ε: Determined by dielectric constant Combline type bandpass filter according to any one of claims 1 to 12 .
(18)入出力結合回路素子が初段及び終段の共振素子
と各対向するストリップラインより成る特許請求の範囲
第1項ないし第12項の何れかに記載のコムライン型帯
域通過ろ波器。
(18) The combline type bandpass filter according to any one of claims 1 to 12, wherein the input/output coupling circuit element comprises first-stage and final-stage resonant elements and opposing strip lines.
(19)入出力結合回路素子が初段及び終段の共振素子
と各対向する細線状導体より成る特許請求の範囲第1項
ないし第12項の何れかに記載のコムライン型帯域通過
ろ波器。
(19) The combline type bandpass filter according to any one of claims 1 to 12, wherein the input/output coupling circuit element comprises first-stage and final-stage resonant elements and thin wire conductors facing each other. .
(20)入出力結合口跡素子が初段及び終段の共振素子
と各対向する固定ループより成る特許請求の範囲第1項
ないし第12項の何れかに記載のコムライン型帯域通過
ろ波器。
(20) The combline type bandpass filter according to any one of claims 1 to 12, wherein the input/output coupling element comprises first-stage and final-stage resonant elements and fixed loops facing each other.
(21)入出力結合回路素子が初段及び終段の共振素子
と各対向する回転型ループより成る特許請求の範囲第1
項ないし第12項の何れかに記載のコムライン型帯域通
過ろ波器。
(21) Claim 1 in which the input/output coupling circuit element comprises first-stage and final-stage resonant elements and rotating loops facing each other.
The combline type bandpass filter according to any one of Items 1 to 12.
(22)結合調整素子が共振素子と平行に設けた誘導性
絞りより成る特許請求の範囲第3項、第4項、第7項、
第8項、第11項及び第12項の何れかに記載のコムラ
イン型帯域通過ろ波器。
(22) Claims 3, 4, and 7, in which the coupling adjustment element is an inductive aperture provided in parallel with the resonant element;
The combline bandpass filter according to any one of Items 8, 11, and 12.
(23)結合調整素子が共振素子と直角方向に設けた容
量性絞りより成る特許請求の範囲第3項、第4項、第7
項、第8項、第11項及び第12項の何れかに記載のコ
ムライン型帯域通過ろ波器。
(23) Claims 3, 4, and 7 in which the coupling adjustment element is a capacitive aperture provided perpendicularly to the resonant element.
8. The combline bandpass filter according to any one of Items 8, 11, and 12.
(24)結合調整素子が可変挿入長型容量性ねじより成
る特許請求の範囲第3項、第4項、第7項、第8項、第
11項及び第12項の何れかに記載のコムライン型帯域
通過ろ波器。
(24) The comb according to any one of claims 3, 4, 7, 8, 11, and 12, wherein the coupling adjustment element is a variable insertion length capacitive screw. Line type bandpass filter.
(25)結合調整素子が誘導性絞りと可変挿入長型容量
性ねじとより成る特許請求の範囲第3項、第4項、第7
項、第8項、第11項及び第12項の何れかに記載のコ
ムライン型帯域通過ろ波器。
(25) Claims 3, 4, and 7 in which the coupling adjustment element comprises an inductive throttle and a variable insertion length capacitive screw.
8. The combline bandpass filter according to any one of Items 8, 11, and 12.
(26)結合調整素子が容量性絞りと可変挿入長型容量
性ねじとより成る特許請求の範囲第3項、第4項、第7
項、第8項、第11項及び第12項の何れかに記載のコ
ムライン型帯域通過ろ波器。
(26) Claims 3, 4, and 7 in which the coupling adjustment element comprises a capacitive diaphragm and a variable insertion length capacitive screw.
8. The combline bandpass filter according to any one of Items 8, 11, and 12.
(27)結合調整素子が誘導性短絡棒と可変挿入長型容
量性ねじとより成る第3項、第4項、第7項、第8項、
第11項及び第12項の何れかに記載のコムライン型帯
域通過ろ波器。
(27) Clauses 3, 4, 7, and 8, in which the coupling adjustment element comprises an inductive shorting rod and a variable insertion length capacitive screw;
The combline bandpass filter according to any one of Items 11 and 12.
(28)共振素子が誘電体共振器の構成素子である特許
請求の範囲第1項ないし第12項の何れかに記載のコム
ライン型帯域通過ろ波器。
(28) The combline bandpass filter according to any one of claims 1 to 12, wherein the resonant element is a component of a dielectric resonator.
JP21991082A 1982-12-15 1982-12-15 Comb line type band-pass filter Granted JPS59110201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21991082A JPS59110201A (en) 1982-12-15 1982-12-15 Comb line type band-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21991082A JPS59110201A (en) 1982-12-15 1982-12-15 Comb line type band-pass filter

Publications (2)

Publication Number Publication Date
JPS59110201A true JPS59110201A (en) 1984-06-26
JPH0467361B2 JPH0467361B2 (en) 1992-10-28

Family

ID=16742933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21991082A Granted JPS59110201A (en) 1982-12-15 1982-12-15 Comb line type band-pass filter

Country Status (1)

Country Link
JP (1) JPS59110201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543192A (en) * 2005-05-30 2008-11-27 松下電器産業株式会社 Microwave filter with end wall connectable to coaxial resonator
JP2020065230A (en) * 2018-10-19 2020-04-23 双信電機株式会社 filter
EP3972047A4 (en) * 2019-05-14 2022-12-21 Rosenberger Technologies Co., Ltd. Cross-coupled filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111443U (en) * 1978-01-24 1979-08-06
JPS54112144A (en) * 1978-02-22 1979-09-01 Nec Corp Band-pass filter
JPS5989001A (en) * 1982-10-26 1984-05-23 Nippon Dengiyou Kosaku Kk Comb-line type band-pass filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111443U (en) * 1978-01-24 1979-08-06
JPS54112144A (en) * 1978-02-22 1979-09-01 Nec Corp Band-pass filter
JPS5989001A (en) * 1982-10-26 1984-05-23 Nippon Dengiyou Kosaku Kk Comb-line type band-pass filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543192A (en) * 2005-05-30 2008-11-27 松下電器産業株式会社 Microwave filter with end wall connectable to coaxial resonator
JP2020065230A (en) * 2018-10-19 2020-04-23 双信電機株式会社 filter
US11469483B2 (en) 2018-10-19 2022-10-11 Soshin Electric Co., Ltd. Filter
EP3972047A4 (en) * 2019-05-14 2022-12-21 Rosenberger Technologies Co., Ltd. Cross-coupled filter

Also Published As

Publication number Publication date
JPH0467361B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
JP2008543192A (en) Microwave filter with end wall connectable to coaxial resonator
JPS5980002A (en) Dual mode inductor load cavity filter with non-adjacent mode coupling
JPH11251803A (en) Band stop dielectric filter, dielectric duplexer and communication machine device
US5945894A (en) Dielectric resonator and filter utilizing a non-radiative dielectric waveguide device
JPH11308009A (en) Single mode and dual mode helix-mounted cavity filter
JPS59110201A (en) Comb line type band-pass filter
JP7259991B2 (en) Dielectric waveguide resonator and dielectric waveguide filter
JPH0257363B2 (en)
JPS5989002A (en) Comb-line type band-pass filter
JPS595701A (en) Comb line type band-pass filter
JPH03212003A (en) Waveguide type dielectric filter
JP3475555B2 (en) TM mode dielectric resonator, TM mode dielectric resonator device, and high frequency bandpass filter device
JP4453690B2 (en) Dielectric filter
JPS5885601A (en) Microstrip type band-pass filter
JPS59122201A (en) Branching filter
Liu et al. Compact dual-band bandpass filter using single perturbed rectangular patch resonator with stubs
JP2004228891A (en) Dielectric filter
JPS58215803A (en) Comb-line type band-pass filter
JPH01165204A (en) Dielectric resonator
JPH0284801A (en) Cavity resonator
JPH0229241B2 (en) TAIIKITSUKAROHAKI
JPH03128501A (en) Low-pass filter
JPS628601A (en) Comb-line type band pass filter
JPS61269402A (en) Polar type band-pass filter
JPH01258501A (en) Dielectric filter