JPS595701A - Comb line type band-pass filter - Google Patents

Comb line type band-pass filter

Info

Publication number
JPS595701A
JPS595701A JP11377082A JP11377082A JPS595701A JP S595701 A JPS595701 A JP S595701A JP 11377082 A JP11377082 A JP 11377082A JP 11377082 A JP11377082 A JP 11377082A JP S595701 A JPS595701 A JP S595701A
Authority
JP
Japan
Prior art keywords
resonators
conductor
bandpass filter
combline
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11377082A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP11377082A priority Critical patent/JPS595701A/en
Publication of JPS595701A publication Critical patent/JPS595701A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Abstract

PURPOSE:To reduce the size of a comb line type band-pass filter (BPF) for microwaves even when a load is high by interposing aperture type coupling windows among resonators constituting the comb line type BPF. CONSTITUTION:The electric axial length of resonating elements 41-4n made of bar conductors is set to a quarter resonance length lambda when the width H of a housing 1 and the diameters of the resonating elements are relatively less (e.g. 0.1lambda and 0.2lambda) than the resonance wavelength lambda, and the electric axial length of the resonating element is made adequately less than a quarter the resonance wavelength; and ungrounded end parts of the resonating elements are held in electrically open or nearly open states. Then, aperture type coupling windows 51-5n-1 have upper, external, and lower edges in contact with intermediate parts of adjacent resonating elements, e.g. the upper wall, side wall, and bottom wall of the housing 1 corresponding to a half the center-axis interval while set parallel to the axial direction of the resonating elements, and also arranged at the facing interval between two facing conductor plates 51' and 5n-1' perpendicular to the side wall of the housing 1.

Description

【発明の詳細な説明】 本発明は、マイクロ波用コムライン形帯域通過ろ波器に
関するものである。以下帯域通過ろ波器をBPF と略
記する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combline bandpass filter for microwaves. Hereinafter, the bandpass filter will be abbreviated as BPF.

本発明者は、さきに、構成が簡潔で耐圧特性に優れ、周
囲温度の変化の影響を受けることなく安定良好な電気的
特性を有し、大電力用に好適なマイクO波用コムライン
形BPFを提案した。(特願昭57−61315) 第1図は、その構成を示す断面図(第2図のB−8断面
図)、第2図は、第1図のA−A断面図で、両図におい
で、lは電磁シールド用筐体、2I及び2コは入出力同
軸端子、3I及び32は入出力結合素子、4I ないし
46は棒状導体より成る共振素子で、共振波長のほぼ4
の軸長を有する。このBPFにおいては共振素子に流れ
る共振電流によって生じた磁界によって結合が行われる
が、隣接する共振素子間における磁界結合減衰量らhは
、筐体1の幅Hと遮断波長へ〇の開に ^c=28  
なる関係がある場合には、 =す(1<2H;);  ・・・州) C:隣接する共振素子の中心軸間陥 入 : 共(辰、波長 !(と^の関係が H<o、 2人  なる場合には、
t、h (dB)≠匹至     ・・・・・・(2)
H 隣接する共振素子間の磁界結合係数M。は、Lh(ばら
) 一]了− M、=IO・・・・・1(3) で表わされる。
The present inventor first proposed a combline type microphone for O-waves that has a simple structure, excellent voltage resistance characteristics, stable electrical characteristics without being affected by changes in ambient temperature, and is suitable for high power applications. I proposed BPF. (Japanese Patent Application No. 57-61315) Fig. 1 is a sectional view showing the structure (B-8 sectional view in Fig. 2), and Fig. 2 is a sectional view taken along A-A in Fig. 1. Here, l is an electromagnetic shielding case, 2I and 2 are input/output coaxial terminals, 3I and 32 are input/output coupling elements, 4I to 46 are resonant elements made of rod-shaped conductors, and the resonant wavelength is approximately 4.
It has an axial length of In this BPF, coupling is performed by the magnetic field generated by the resonant current flowing through the resonant element, and the magnetic field coupling attenuation between adjacent resonant elements, h, depends on the width H of the housing 1 and the cutoff wavelength. c=28
If there is a relationship such as =su(1<2H;); . , if there are two people,
t, h (dB)≠total ・・・・・・(2)
H Magnetic field coupling coefficient M between adjacent resonant elements. is expressed as Lh (rose) 1] M, = IO...1 (3).

今、M(0,2λ なる関係において負荷Qを100と
した場合における隣接共振素子の中心軸間隔Cを求める
と、 (3)式から 一崩μ回 M、=lO二〇 であるから 1ogM、 ”−坦μ軒 0 しt二がって Lh (dB) =−201ogM。
Now, if we calculate the center axis spacing C of adjacent resonant elements when the load Q is 100 in the relationship M(0, 2λ), from equation (3), one collapse μ times M, = 1O20, so 1ogM, ”-Tanmu eaves 0 and then Lh (dB) = -201ogM.

又、(2)式から 、   54.60 r、h  (as)  円 □ H であるから 設定条件から 1 M、 = −= −=O,0I QL   100 したがって 上式から明らかなように、このBPFにおいては負荷Q
を100にするためには隣接する共振素子の中心軸間隔
Cを筐体1の幅Hのほぼ1.5倍に選ぶ必要があり、孔
結合形BPF又は容量結合形BPR’に比して大きさが
ほぼ50%大となる。
Also, from equation (2), 54.60 r, h (as) circle □ H, so from the setting conditions 1 M, = −= −=O, 0I QL 100 Therefore, as is clear from the above equation, this BPF In the case, the load Q
In order to make 100, it is necessary to select the center axis spacing C of adjacent resonant elements to be approximately 1.5 times the width H of the housing 1, which is larger than that of the hole-coupled BPF or capacitively coupled BPR'. The size increases by approximately 50%.

尚、第3図は、(4)式で計算して得られたi(横軸、
等間隔目盛)と磁界結合係数yo (縦軸、対数目盛)
の関係を示す曲線図である。
In addition, FIG. 3 shows i (horizontal axis,
Evenly spaced scale) and magnetic field coupling coefficient yo (vertical axis, logarithmic scale)
It is a curve diagram showing the relationship.

本発明は、本発明者がぎきに提案した前記マイクロ波用
コムライン形BPFの長所に加えて、負荷Qを高くする
場合にも全体を小形に構成し得るマイクロ波用コムライ
ン形BPFを実現することを目的とする。
In addition to the advantages of the above-mentioned combline BPF for microwaves, which was proposed by the present inventor, the present invention realizes a combline BPF for microwaves that can be configured in a small size even when the load Q is increased. The purpose is to

第4図は、本発明の一実施例を示す断面図(第5図のC
−C断面図)、第5図は、第4図のA−A断面図、第6
図は、第4図のB−8断面図で、各図において、1は電
磁シールド用筐体% 2+ 及び2Qは入出力同軸端子
、3I及び3λは入出力結合素子で、例えばストリップ
ラインより成る。ストリ・ンブラインを用いる代りにタ
ップ結合、ループ結合又1tリボン状導体と共振素子間
の容量を利用する結合等によって入出力結合を行うよう
に形成してもよい。4I  ないし4yLは棒状導体よ
り成る共振素子で、共振波長λに比し筐体1の幅(第6
図のH)及び共振素子の直径が比較的小(例えば0.1
人ないし0.2^)なる場合には共振素子の軸長を電気
長で共振波長のはに選び、筐体lの幅H及び共振素子の
直径が共振波長に比し比較的大なる場合には共振素子の
軸長を電気長で共振波長の鳥よりも適当に短かくして各
共振素子における非接地側の端部を電気的に開放又はほ
ぼ開放状態に保っである。次に5+ ないし5x−、は
絞り形結合窓で、上縁、外側縁及び下縁を、隣接する共
振素子の中間、例えば中心軸間隔Cの%に対応する筐体
1の土壁、側壁及び底壁に密着すると共に共振素子の軸
方向に平行で筐体1の側壁に直角な2枚の対向導体板5
1  ないし5に−1の対向間鋳より成る。尚、2枚の
対向導体板の中、何れか一方の導体板を省いてもよく、
又、導体板の上縁は必ずしも筐体の土壁に密着せしめな
くともよい。
FIG. 4 is a sectional view (C in FIG. 5) showing one embodiment of the present invention.
-C sectional view), Figure 5 is the AA sectional view of Figure 4,
The figure is a sectional view taken along line B-8 in Figure 4. In each figure, 1 is an electromagnetic shielding case, 2+ and 2Q are input/output coaxial terminals, and 3I and 3λ are input/output coupling elements, such as strip lines. . Instead of using strip lines, input/output coupling may be performed by tap coupling, loop coupling, coupling using capacitance between the 1t ribbon conductor and the resonant element, or the like. 4I to 4yL are resonant elements made of rod-shaped conductors, and the width of the housing 1 (6th
H in the figure) and the diameter of the resonant element is relatively small (e.g. 0.1
0.2^), the axial length of the resonant element should be chosen to be the electrical length of the resonant wavelength, and if the width H of the housing l and the diameter of the resonant element are relatively large compared to the resonant wavelength. In this method, the axial length of the resonant element is made appropriately shorter than the resonant wavelength in electrical length, and the non-grounded end of each resonant element is kept electrically open or almost open. Next, 5+ to 5x- are diaphragm-type coupling windows, and the upper edge, outer edge, and lower edge are connected to the middle of the adjacent resonant elements, for example, the earth wall, side wall, and two opposing conductor plates 5 that are in close contact with the bottom wall, parallel to the axial direction of the resonant element, and perpendicular to the side wall of the housing 1;
Consists of 1 to 5 to -1 opposed castings. Note that one of the two opposing conductor plates may be omitted,
Furthermore, the upper edge of the conductor plate does not necessarily have to be in close contact with the earthen wall of the casing.

今、絞り形結合窓51 ないし5孔−1を設けていない
と仮足し、筐体1の幅Hと共振波長への間にH<0.2
人なる関係がある場合、段間磁界結合減衰量Lhは(2
)式から1 、  54.6G Lh  (as)  =  − H 又、股間磁界結合係数M0は(3)式から、−窃足災 0 M、=IO ここで体積効率が最も良く、無負荷Qが良好となる条件
、H輪Cを与えると、 Lh (dB)鞠歴=27.3(dB)したがって、 となる。
Now, assuming that the diaphragm-type coupling window 51 or hole 5-1 is not provided, the distance between the width H of the housing 1 and the resonance wavelength is H<0.2.
If there is a relationship between two people, the interstage magnetic field coupling attenuation Lh is
) From the formula, 1, 54.6G Lh (as) = - H Also, from the formula (3), the groin magnetic field coupling coefficient M0 is - foot theft 0 M, = IO Here, the volumetric efficiency is the best, and the no-load Q is Given a good condition, H-ring C, Lh (dB) ball history = 27.3 (dB) Therefore, it becomes.

次に絞り形結合窓51  ないし5tt−t  を設け
た場合における各絞り形結合窓部分の磁界は、共振素子
に平行な方向に対して90″方向で、又、筐体1の側壁
に対しても9♂方向となる。よってこの場合の各股間に
おける磁界結合係数Mは、筐体1の幅Hと絞り幅D(第
6図)との比を変えることによって変化せしめることが
出来、 D M=M6−       ・・・・・・  (5)で表
わすことが出来る。
Next, when the aperture-type coupling windows 51 to 5tt-t are provided, the magnetic field of each aperture-type coupling window portion is in the 90'' direction with respect to the direction parallel to the resonant element, and with respect to the side wall of the housing 1. The magnetic field coupling coefficient M at each crotch in this case can be changed by changing the ratio between the width H of the housing 1 and the aperture width D (Fig. 6), and D M =M6- It can be expressed as (5).

上式に前記 M、 = 0.04315  を代入する
と、M =0.04315−     ・・・・・・ 
(6)しだがって D = −1(粍23.2MH・・・・・・  (7)
0.04315 今、 M =O+O1(Q[=+00)、 H= 18
 (mm)とすると、 (7)式から、 o 輌23.2xo、o+ x +s =a、2(mm
)即ち、筐体1の幅が18 (mm)の場合、絞り幅り
をはIZ4.2 (mm)とすることによって負荷Q(
Qt)を100とすることが出来るが、この場合、H′
、Cなる条件を前提としていること前記の通りであるか
らC1+またほぼ+8 (mm)となる。負荷Q (Q
L)tloOとする場合、第1図及び第2図に示したB
PFにおいでは隣接する共振素子の中心軸間隔Cを筐体
の幅Hのほぼ1.5倍に選ぶ必要のあること前述の通り
であるから、本発明BPF及び第1図及び第2図に示し
たBPFにおける各筐体の幅Hを等しく選べば、本発明
BPFのCは、第1図及び第2図に示したBPFにおけ
るCのほぼち となり、それだけ全体を小形化すること
が可能である。
Substituting the above M = 0.04315 into the above formula, M = 0.04315-...
(6) Therefore, D = -1 (粍23.2MH... (7)
0.04315 Now, M = O + O1 (Q [= +00), H = 18
(mm), then from equation (7), o 輌23.2xo, o+ x +s = a, 2(mm
) That is, if the width of the housing 1 is 18 (mm), by setting the aperture width to IZ4.2 (mm), the load Q (
Qt) can be set to 100, but in this case, H'
, C. As mentioned above, C1+ is approximately +8 (mm). Load Q (Q
L) When tloO, B shown in Figures 1 and 2
As mentioned above, in a PF, it is necessary to select the center axis distance C between adjacent resonant elements to be approximately 1.5 times the width H of the housing. If the width H of each casing in the BPF of the present invention is selected equally, C of the BPF of the present invention will be approximately the same as C of the BPF shown in FIGS. 1 and 2, and the overall size can be reduced by that much. .

尚、第7図は、(6)式で計算して得られたl(横軸、
等間隔目盛)と磁界結合係数M(縦軸、対数目盛)の関
係を示す曲線図で、A及びB点は理論値と実測値の一致
点である。
In addition, FIG. 7 shows l (horizontal axis,
It is a curve diagram showing the relationship between the magnetic field coupling coefficient M (vertical axis, logarithmic scale) and the magnetic field coupling coefficient M (vertical axis, logarithmic scale), and points A and B are points where the theoretical value and the measured value coincide.

次に分布定数形BPFの設計に当っては、基準低域ろ波
器の素子値、即ち幾何係数を求めで設計するのが一般で
、例えばチェとシェフ形基準但域ろ波器の素子値は、 2a+ 6、=−・・・・・・(8) γ aaX−1e aK gに”” bM−1” gH−+     ・・・・・
・(9)で表わされる。但し、 γ= Binh (−”−) n β=fln (aoth ”   ) 17、37 S二通過帯域内における許容電圧定在波比aakπ b3=7+5ink=l、2、・・・・・・nI)1T
) 共振素子41に関連する素子値g、は(8)式→参伜斡
幸六機鴫、共振素子4コに関連する素子値g2は(9)
式のkに2を代入してそれぞれ求め、以下4コないし4
.に関連する素子値g□ないしgrLは(9)式のkに
3ないしnを代入してそれぞれ求める。
Next, when designing a distributed parameter type BPF, it is common to design by finding the element values of a reference low-pass filter, that is, the geometric coefficients. For example, the element values of a Che and Sheff type reference low-pass filter. is 2a+ 6,=-・・・・・・(8) γ aaX−1e aK g”” bM−1” gH−+ ・・・・・・
・Represented by (9). However, γ= Binh (-”-) n β=fln (aoth ”) 17, 37 Allowable voltage standing wave ratio within the S2 passband aakπ b3=7+5 ink=l, 2,... nI) 1T
) The element value g associated with the resonant element 41 is expressed as (8) → the element value g2 associated with the four resonant elements is expressed as (9)
Substitute 2 for k in the formula to find each, and use the following 4 or 4
.. The element values g□ to grL related to are respectively determined by substituting 3 to n for k in equation (9).

次にチェビシェフ形BPFにおける各段間の磁界結合係
数 MK、にや、は、 MK、に+l =キ(t・L)2  ・・・・・・(0
)で表わされる。但し、 BWF :許容通過帯域幅 f、二通過帯域の中心周波数 共振器の数、即ちBPFの次数n1通過帯域幅F3yp
及び通過帯域の中心周波数f。等を適宜設定すると共に
(6)式及び(lO)式の各磁界結合係数M及びM K
、に+ Iが各段毎に等しくなるように絞り形結合窓5
1 ないし51−1  の各絞り幅りを定める、即ち筐
体1の幅Hは共振波長λと挿入損失より与えられるから
このHの寸法及び隣接共振素子の中心軸間隔Cをほぼ等
しく形成し、(6)式のDを適宜定めることにより通過
域がチェビシェフ形、減衰域がワグナ形特性のコムライ
ン形BPPを構成することが出来、その伝送特性は次式
で表わされる。
Next, the magnetic field coupling coefficient between each stage in the Chebyshev type BPF is:
). However, BWF: allowable passband width f, number of center frequency resonators in two passbands, i.e. BPF order n1 passband width F3yp
and the center frequency f of the passband. etc., and set the magnetic field coupling coefficients M and M K of equations (6) and (lO) as appropriate.
, and +I are equal for each stage.
1 to 51-1. That is, since the width H of the housing 1 is given by the resonance wavelength λ and the insertion loss, the dimension of H and the center axis spacing C of adjacent resonant elements are formed to be approximately equal, By appropriately determining D in equation (6), it is possible to construct a combline BPP with Chebyshev-type characteristics in the passband and Wagner-type characteristics in the attenuation region, and its transmission characteristics are expressed by the following equation.

但し、 ム:減衰量 Tユ(X)はチェビシIフの多項式で、x<1 の場合
、 7K(X) =cos (n cos−’ x )x>
Iの場合、 TrL(x) =coeh (n cash’ x )
fa   f   f。
However, the attenuation amount T (X) is a Chebisch I polynomial, and when x<1, 7K (X) = cos (n cos-' x ) x>
For I, TrL(x) = coeh (n cash' x )
fa f f.

X = =(−−−) Bwr  fa   f 第8図は、このBPF’の特性曲線図で、横軸は伝送周
波数t (GH2) 、縦軸は減衰量L((IB >で
ある。
X = = (---) Bwr fa f Figure 8 is a characteristic curve diagram of this BPF', where the horizontal axis is the transmission frequency t (GH2) and the vertical axis is the attenuation amount L ((IB >).

第9図は、本発明の他の実施例を示す断面図(第10図
のC−C断面図)、第1θ図は、第9図のA−A断面図
、第1図は、第9図のB−8断面図で、各図において、
61 ないし671は誘電体共振器で、例えば第12図
に拡大断面図を示すようにチタン酸バリウム等の誘電体
より成る直方体+2の中心軸にほぼ一致する貫通孔を穿
ち、その内壁面に共振器の内部導体を形成する銀又は銅
等の金属被l1lI113を蒸着暮によって付着せしめ
、その軸長を電気長で共振波長の省に選び、その内部に
放熱用及び入出力結合容量素子等の部品取付用の棒状導
体+4を嵌入し、その底部に固定用ねじの挿入用ねじ孔
15を穿っである。誘電体より成る直方体12の表面の
中、開放面と結合面(隣接する共振器と対向する側壁面
)を除いた表面に共振器の外部導体を形成する銀又は銅
等の金属被膜を設けである。即ち、初段共振器の場合は
第13図に拡大平面図を示すように筐体1の端壁及び両
側壁に接する直方体12の表面部分に金属被膜16ない
し18を付着し、終段共振器の場合は第14図に拡大平
面図を示すように筐体1の端壁及び両側壁に接する直方
体+2の表面部分に金属被膜17ないし19を付着し、
その他の共振器の場合には第15図に拡大平面図を示す
ように筐体嘗の両側壁に接する直方体12の表面部分に
金属被膜17及び18を付着しである。尚、各誘電体共
振器の底面にはすべて金属被膜20(第12図)を付着
しである。
FIG. 9 is a sectional view showing another embodiment of the present invention (CC sectional view in FIG. 10), FIG. 1θ is a sectional view taken along A-A in FIG. 9, and FIG. In the B-8 sectional view of the figure, in each figure,
61 to 671 are dielectric resonators, for example, as shown in an enlarged cross-sectional view in FIG. A metal coating such as silver or copper that forms the internal conductor of the device is deposited by vapor deposition, and its axial length is selected to be an electrical length that minimizes the resonance wavelength, and components such as heat dissipation and input/output coupling capacitance elements are placed inside it. A rod-shaped conductor +4 for attachment is inserted, and a screw hole 15 for insertion of a fixing screw is bored in the bottom of the rod-shaped conductor +4. A metal coating such as silver or copper that forms the external conductor of the resonator can be provided on the surface of the rectangular parallelepiped 12 made of a dielectric material, excluding the open surface and the coupling surface (the side wall surface facing the adjacent resonator). be. That is, in the case of the first stage resonator, as shown in the enlarged plan view in FIG. In this case, as shown in the enlarged plan view in FIG. 14, metal coatings 17 to 19 are attached to the surface portion of the rectangular parallelepiped +2 that is in contact with the end wall and both side walls of the housing 1,
In the case of other resonators, metal coatings 17 and 18 are attached to the surface portions of the rectangular parallelepiped 12 that are in contact with both side walls of the housing, as shown in an enlarged plan view in FIG. Incidentally, a metal coating 20 (FIG. 12) is attached to the bottom surface of each dielectric resonator.

金属被膜I6ないし20の代りにシールド板を固着して
もよく、金属被膜瞥6ないし20を付着する代りに、又
、シールド板を固着する代りに筐体1の端壁、両側壁及
び底壁を共振器の外部導体に兼用してもよい。誘電体よ
り成る直方体12に穿った貫通孔の内壁面に金属被膜1
3を付着することなく、この貫通孔内に棒状導体14を
直接嵌入し、この棒状導体14を共振器の内部導体、放
熱体及び部品の支持体等に兼用するように形成してもよ
く、発熱の少ない場合には棒状導体14を省き、貫通孔
の内壁面に付着した金属被111j13の一部に部品と
の接続用引出線を取付け、直方体12の底壁にねじ孔を
穿つようにしてもよい。
Instead of the metal coatings I6 to 20, a shield plate may be fixed, and instead of attaching the metal coatings 6 to 20, and instead of fixing the shield plate, the end walls, both side walls and the bottom wall of the housing 1 may be fixed. may also be used as the outer conductor of the resonator. A metal coating 1 is applied to the inner wall surface of a through hole formed in a rectangular parallelepiped 12 made of a dielectric material.
The rod-shaped conductor 14 may be directly inserted into this through hole without attaching the conductor 3, and the rod-shaped conductor 14 may be formed so as to serve as the internal conductor of the resonator, the heat sink, the support of the component, etc. If the heat generation is small, the rod-shaped conductor 14 is omitted, a lead wire for connection to the component is attached to a part of the metal covering 111j13 attached to the inner wall surface of the through hole, and a screw hole is bored in the bottom wall of the rectangular parallelepiped 12. Good too.

次に第9図ないし第1図において、7I  ないし7g
−+は絞り形結合窓を形成する金属被膜で、誘電体共振
器6I ないし6FL−を形成する直方体+2の各結合
面に銀又は銅等を蒸着等により付着せしめて形成する。
Next, in Figures 9 to 1, 7I to 7g
-+ is a metal film forming a diaphragm-shaped coupling window, and is formed by depositing silver, copper, or the like on each coupling surface of rectangular parallelepiped +2 forming dielectric resonators 6I to 6FL- by vapor deposition or the like.

第12図、第13図及び第15図における7K(k=1
.2、・・・・n−1)は絞り形結合窓を形成する金属
被膜で、第15図には一方の開放面にのみ絞り形結合窓
を設けた場合を例示しであるが、点線で示したように他
方の開放面にも設けてもよく、この場合には第14図に
点線で示したように終段共振器の開放面にも設けるよう
にしてもよい。第9図ないし第11図において8+  
ないし84は止めねじ、9I 及び9コは入出力同軸端
子、101 及び102は入出力結合容量素子、11+
  ないしHy(−+  は隣接誘電体共振器間におけ
る空隙である。
7K (k=1
.. 2,...n-1) is a metal coating that forms a diaphragm-shaped coupling window, and FIG. As shown, it may also be provided on the other open surface, and in this case, it may also be provided on the open surface of the final stage resonator as shown by the dotted line in FIG. 8+ in Figures 9 to 11
84 to 84 are set screws, 9I and 9 are input/output coaxial terminals, 101 and 102 are input/output coupling capacitance elements, 11+
to Hy(-+ is the air gap between adjacent dielectric resonators.

本実施例においては誘電体共振器の共振電流によって生
じた磁界の中、結合面からの漏れ磁界が隣接対向する誘
電体共振器の結合面を介して結合するが、その結合特性
は(1)式における八Cを2Hに(εは共振器を形成す
る直方体12の誘電率)とおいて銹電体部分の磁界減衰
量を求めると共に(2)式から空隙部分の磁界減衰量を
求め、更に(3)式から磁界結合係数M0 を求めるこ
とにより第7図及び(6)式から磁界結合係数Mを求め
ることが出来、前実施例と同様、素子値から定まる磁界
結合係数と一致するように絞り形結合窓の絞り幅りを定
めることにより所要の伝送特性を得ることが出来る。
In this example, in the magnetic field generated by the resonant current of the dielectric resonator, the leakage magnetic field from the coupling surface is coupled via the coupling surface of the adjacent dielectric resonators facing each other, and the coupling characteristic is (1). By setting 8C in the equation to 2H (ε is the dielectric constant of the rectangular parallelepiped 12 forming the resonator), find the magnetic field attenuation of the electric body part, find the magnetic field attenuation of the air gap part from equation (2), and further ( 3) By finding the magnetic field coupling coefficient M0 from equation (6), the magnetic field coupling coefficient M can be found from FIG. By determining the aperture width of the shaped coupling window, the desired transmission characteristics can be obtained.

誘電体共振器の誘電体部分を直方体に形成する代りに肉
厚の円筒体に形成し、その外表面の中、開放面と結合面
を除いた部分に外部導体を形成する金属被膜を付着して
成る共振器を用いても本発明を実施することが出来る。
Instead of forming the dielectric part of the dielectric resonator into a rectangular parallelepiped, it is formed into a thick cylindrical body, and a metal coating that forms an external conductor is attached to the inside of the outer surface, excluding the open surface and the coupling surface. The present invention can also be practiced using a resonator made of.

第16図は、その−例を示す断面図(第17図のB−B
断面図)、第17図は、第160のA−A断面図で、両
図において、6; ないし6′ユは円筒形誘電体共振器
で、他の符号は第9図ないし第11図と同様である。
FIG. 16 is a cross-sectional view showing an example (B-B in FIG. 17).
17 is a sectional view taken along the line A-A of No. 160, and in both figures, 6; to 6' are cylindrical dielectric resonators, and the other symbols are the same as in FIGS. 9 to 11. The same is true.

この実施例における結合作用及び伝送特性は前実施例と
同様で、結合面の幅、即ち絞り形結合窓の絞り幅と誘電
体共振器の直径の比を変えることにより磁界結合係数を
調整することが出来る。図に示すように円筒形誘電体共
振器と接する筐体1の側壁及び端壁に断面弧状の溝状凹
部を設けることにより共振器を安定に保持し得ると共に
共振器の側壁との接触面積を大ならしめ得るから筐体1
を共振器の外部導体として利用する場合に好都合であり
、又、空隙111  ないしU−rL−、に対応する筐
体の側壁の肉厚、即ち断面弧状の溝状凹部の深ざを変え
ることにより絞り形結合窓の絞り幅を調整することが出
来る。
The coupling effect and transmission characteristics in this embodiment are similar to those in the previous embodiment, and the magnetic field coupling coefficient can be adjusted by changing the width of the coupling surface, that is, the ratio of the aperture width of the aperture-shaped coupling window to the diameter of the dielectric resonator. I can do it. As shown in the figure, by providing groove-shaped recesses with an arcuate cross section on the side walls and end walls of the housing 1 that are in contact with the cylindrical dielectric resonator, the resonator can be stably held and the contact area with the side wall of the resonator can be reduced. Because it can be made larger, the case 1
This is advantageous when used as an external conductor of a resonator, and by changing the thickness of the side wall of the casing corresponding to the air gap 111 to U-rL-, that is, the depth of the groove-like recess with an arcuate cross-section. The aperture width of the aperture-shaped combined window can be adjusted.

以上何れの実施例においても共振器を一列に配設した場
合を例示したが、コの字形に配設することによって全体
を更に小形化することが出来る。
In each of the above embodiments, the case where the resonators are arranged in a line has been exemplified, but by arranging them in a U-shape, the overall size can be further reduced.

又、何れの実施例においても縦続接続関係にある共振器
の中、2個又はその整数倍の個数の共振器を隔てた共振
器相互を、例えば同軸線路、ループ又は共振器の内部導
体と容量結合する素子等を介して間接結合することによ
り有極形BPFを構成することが出来る。この場合には
縦続接続ざ−れた共振器より成る主回路を伝送する信号
の中、通過域より周波数の高い(低い)信号+11各共
振器において電圧電流の位相が90°進み(δれ)、容
共(辰器開に形成される移相回路において位相が270
”進む(遅れる)から例えば第2段の共振器における信
号の位相と第5段の共振器における信号の位相は同相と
なるが、第2段及び第5段の共振器相互を間接結合する
参間接結合回路の定数を適当ならしめると共に共振器と
間接結合回路との結合極性を適当ならしめることにより
間接結合回路を介して第2段の共振器から第5段の共振
器へ伝送される信号は両共振器間において180’の位
相差を生ずる。したがって共振器と間接結合回路との結
合度を調整して間接結合回路を介して第5段の共振器に
到る信号の大きさと、主回路を介して第5段の共振器に
到る信号の大きさを等しくすることにより、この信号の
周波数位置に減衰極を生せしめることが出来る。尚、共
振器の数を任意に選んで本発明を実施し得るのと同を策
、間接結合される共振器の組数も任意に選んで本発明を
実施することが出来る。
In addition, in any of the embodiments, among the resonators in a cascade connection, two or an integral multiple of the resonators are separated from each other by, for example, a coaxial line, a loop, or an internal conductor of the resonator and a capacitor. A polarized BPF can be constructed by indirectly coupling via a coupling element or the like. In this case, among the signals transmitted through the main circuit consisting of cascade-connected resonators, the phase of the voltage and current in each resonator is 90° ahead (δ) of a signal with a frequency higher (lower) than the passband. , the phase is 270 in the phase shift circuit formed in a cylindrical manner.
For example, the phase of the signal in the second-stage resonator and the phase of the signal in the fifth-stage resonator will be in the same phase because of the advance (lag). By making the constant of the indirect coupling circuit appropriate and making the coupling polarity between the resonator and the indirect coupling circuit appropriate, a signal is transmitted from the second stage resonator to the fifth stage resonator via the indirect coupling circuit. produces a phase difference of 180' between both resonators. Therefore, by adjusting the degree of coupling between the resonator and the indirect coupling circuit, the magnitude of the signal reaching the fifth stage resonator via the indirect coupling circuit and the main By equalizing the magnitude of the signal that reaches the fifth stage resonator via the circuit, it is possible to generate an attenuation pole at the frequency position of this signal. The present invention can be practiced by arbitrarily selecting the number of indirectly coupled resonators to carry out the invention.

更に以上何れの実施例においても、棒状導体より成る共
揄素子間の空隙又は誘電体共振器間の空隙に対応する筐
体の上壁又は底壁或は上壁及び底壁の双方から結合調整
ねじを共振器の内部導体と平行に空跨部分に挿入し、任
意の挿入長において固定し得るように形成することによ
り、結合調整ねじの挿入長に応じてカットオフ導波管モ
ードの電界成分によって結合調整ねしに電界が集中して
電界が強くなり、これに応じて結合磁束密度も大となる
ので結合調整ねじの挿入長に応じて段開結合劇を密なら
しめることが出来る。
Furthermore, in any of the above embodiments, the coupling adjustment is performed from the top wall or the bottom wall of the housing, or from both the top wall and the bottom wall, corresponding to the gap between the symmetry elements made of rod-shaped conductors or the gap between the dielectric resonators. The electric field component of the cut-off waveguide mode is adjusted according to the insertion length of the coupling adjustment screw by inserting the screw into the hollow part parallel to the internal conductor of the resonator and forming it so that it can be fixed at any insertion length. As a result, the electric field is concentrated on the coupling adjustment screw, the electric field becomes stronger, and the coupling magnetic flux density increases accordingly, so that the step-opening coupling can be made denser depending on the insertion length of the coupling adjustment screw.

以上の説明から明らかなように、本発明はコムライン形
BPFを置設する共振器間に絞り形結合窓を介在せしめ
ることにより負荷Qの高(\場合でも小形化が可能で、
設計が容易なばかりでなく孔結台形BPF又は容量結合
形BPFに較べて構成が簡潔で、製作に当って筐体内壁
面及び結合窓形成用導体板面等の表面処理、組立調整が
容易であるから信頼性の高いものを低コストを以て製作
し得るものでその効果甚だ大である。
As is clear from the above description, the present invention enables miniaturization even when the load Q is high (\) by interposing a diaphragm-type coupling window between the resonators in which the combline type BPF is installed.
Not only is the design easy, but the configuration is simpler than that of a trapezoidal hole-type BPF or a capacitively coupled BPF, and during manufacturing, it is easy to perform surface treatment of the inner wall surface of the housing, the surface of the conductor plate for forming the coupling window, etc., and to adjust the assembly. It is possible to produce a highly reliable product at low cost from scratch, and its effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明者がききに提案した帯域通
過ろ波器を示す断面図、第3図は、共振素子間隔と磁界
結合係数の関係を示す図、第4図ないし第6図は、本発
明の一実施例を示す断面図、第7図は、絞り形結+窓の
絞り幅と磁界結合係数の関係を示す図、第8図は、本発
明ろ波器の伝送特性の一例を示す図、第9図ないし第1
1図、第16図及び第17図は、本発明の他の実施例を
示す断面図、第12図ないし第15図は、要部素子の一
例を示す図で、1:電磁シールド用筐体、21 % 2
a。 9I 及び9コニ入出力同軸端子、3t % 3a %
 +01 及び10コニ入出力結合素T141 ないし
4ユニ共振素子、5I  ないし5rL−+ :絞り形
結合窓、51  ないし5′ルーl:絞り形結合窓の形
成用導体板、6t ないし67L及び6−ないし6;I
:誘電体共振器、7I  ないし7に−I 及び7に:
絞り形結合窓形成用金属被艙、81 ないし8rL:止
めねじ、11 ないしl11t−、:空隙、12:誘電
体より成る直方体、13及び16ないし2o:金属被膜
、14:棒駄 状導体、15:iねしいである。 代理人清沢宗司 第1図 第3図 第4図 第5図 第6図 2゜ 第7図 U 日 第8図 f。 f□ 第9図 第10図 第11図
1 and 2 are cross-sectional views showing a bandpass filter proposed by the present inventor, FIG. 3 is a diagram showing the relationship between the resonant element spacing and the magnetic field coupling coefficient, and FIGS. Figure 6 is a sectional view showing an embodiment of the present invention, Figure 7 is a diagram showing the relationship between the aperture width of the aperture type connection + window and the magnetic field coupling coefficient, and Figure 8 is a diagram showing the transmission of the filter of the present invention. Figures showing examples of characteristics, Figures 9 to 1
1, 16, and 17 are cross-sectional views showing other embodiments of the present invention, and FIGS. 12 to 15 are views showing examples of essential elements. 1: Electromagnetic shielding case , 21% 2
a. 9I and 9coni input/output coaxial terminals, 3t% 3a%
+01 and 10 coni input/output coupling elements T141 to 4 uni-resonant elements, 5I to 5rL-+: Diaphragm type coupling window, 51 to 5'Rule l: Conductor plate for forming the aperture type coupling window, 6t to 67L and 6- to 6;I
:Dielectric resonator, 7I to 7-I and 7:
Metal cover for forming an aperture-shaped coupling window, 81 to 8rL: Set screw, 11 to l11t-, : void, 12: Rectangular parallelepiped made of dielectric, 13 and 16 to 2o: metal coating, 14: rod-shaped conductor, 15 :It's insipid. Agent Souji Kiyosawa Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 2゜Figure 7 U Day Figure 8 f. f□ Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 (1ン共振波長のほぼなの軸長を有する内部導体を備え
た複数個の共振器を電磁シールド用筐体内において同一
極性を保ち空隙を介しで縦続的に配設すると共に前記空
隙に絞り形結合悲を介在せしめたことを特徴とするコム
ライン形帯域通過ろ、皮器。 (2)共振波長のほぼ匂の軸長を有する内部導体を備え
た複数個の共振器を電磁シールド用筐体内において同一
極性を保ち空隙を介して縦続的に配設し、i1j記空隙
に絞り形結合窓を介在せしめると共に前記複数個の共振
器の中、2個又はその整数倍の個数の共振器を隔てた共
振器相互を間接結合せしめたことを特徴とするコムライ
ン形帯域通過ろ波器。 (3)共振波長のほぼ4の軸長を有する内部導体を備え
た複数個の共振器を電磁シールド用買体内において同一
極性を保ち空隙を介して縦続的に配設し、前記空隙に絞
り形結合窓を介在せしめると共に挿入長を変化せしめ得
る結合調整ねじを前記空隙に挿入したことを特徴とする
コムライン形帯域通過ろ波器。 (4)複数個の共振器が一列に配設された特許請求の範
囲第1項ないし第3項の何れかに記載のコムライン形帯
域通過ろ波器。 (5)複数個の共振器がコの字形信号伝送路を形成する
ように配設された特許請求の範囲第1項ないし第3項の
何れかに記載のコムライン形帯域通過ろ波器。 (6)共振器が内部導体を形成する棒状導体及び外部導
体を形成する電磁シールド用筐体とより成る特許請求の
範囲第1項ないし第3項の何れかに記載のコムライン形
帯域通過ろ波器。 (7)共振器が内部導体と外部導体間に誘電体より成る
直方体を介在せしめて形成した特許請求の範囲第1項な
いし第3項の何れかに記載のコムライン形帯域通過ろ波
器。 (8)共振器が内部導体と外部導体間に誘電体より成る
円筒体を介在せしめて形成した特許請求の範囲第1項な
いし第3項の何れかに記載のコムライン形帯域通過ろ波
器。 (9)絞り形結合窓が外側縁及び下縁を電磁シールド用
筐体の側壁及び底壁に密着せしめられ、共振器の内部導
体に平行で、電磁シールド用筐体の側壁に直角な導体板
によって形成される特許請求の範囲第1項ないし第3項
の何れかに記載のコムライン形帯域通過ろ波器。 (10)絞り形結合窓が共振器における誘電体部分の結
合面に付着せしめ、側縁及び下縁を外部導体に密着せし
めた金属被膜によって形成される特許請求の範囲第1項
ないし第3項の何れかに記載のコムライン形帯域通過ろ
波器。 (11)絞り形結合窓が内部導体の外周に誘電体より成
る円筒体を設けた共振器間の空隙に対応する電磁シール
ド用筐体の側壁によって形成される特許請求の範囲第1
項ないし第3項の何れかに記載のコムライン形帯域通過
ろ波器。 (12)共振器が内部導体の外周に設けた誘゛亀体より
成る円筒体と、この円筒体の側面に接する内壁面に断面
弧状の溝状凹部を設けた電磁シールド用筐体とより成る
特許請求の範囲第1項ないし第3項の何れかに記載のコ
ムライン形帯域通過ろ波器。
[Scope of Claims] (A plurality of resonators each having an internal conductor having an axial length approximately equal to one resonance wavelength are arranged in series in an electromagnetic shielding casing with the same polarity interposed through a gap, and A combline type bandpass filter characterized in that a diaphragm-type coupling layer is interposed in the air gap.(2) A plurality of resonators each having an inner conductor having an axial length approximately equal to the resonance wavelength The resonators have the same polarity in the electromagnetic shielding case and are arranged cascaded through a gap, with a diaphragm-shaped coupling window interposed in the gap i1j, and among the plurality of resonators, the number of resonators is two or an integral multiple thereof. A combline type bandpass filter characterized in that resonators separated by two resonators are indirectly coupled to each other. (3) A plurality of resonators each having an inner conductor having an axial length of approximately 4 times the resonant wavelength. The devices are arranged cascaded through a gap while maintaining the same polarity in the electromagnetic shielding body, and a diaphragm-shaped coupling window is interposed in the gap, and a coupling adjustment screw capable of changing the insertion length is inserted into the gap. A combline type bandpass filter characterized by: (4) A combline type bandpass filter according to any one of claims 1 to 3, wherein a plurality of resonators are arranged in a line. Filter. (5) The combline bandpass according to any one of claims 1 to 3, in which a plurality of resonators are arranged to form a U-shaped signal transmission path. Filter. (6) The combline according to any one of claims 1 to 3, wherein the resonator comprises a rod-shaped conductor forming an inner conductor and an electromagnetic shielding case forming an outer conductor. (7) The comb line according to any one of claims 1 to 3, wherein the resonator is formed by interposing a rectangular parallelepiped made of dielectric between the inner conductor and the outer conductor. (8) The comb according to any one of claims 1 to 3, wherein the resonator is formed by interposing a cylindrical body made of a dielectric material between the inner conductor and the outer conductor. Line-type bandpass filter. (9) The aperture-type coupling window has its outer edge and lower edge in close contact with the side wall and bottom wall of the electromagnetic shielding case, is parallel to the internal conductor of the resonator, and is parallel to the internal conductor of the electromagnetic shielding case. The combline type bandpass filter according to any one of claims 1 to 3, which is formed by a conductor plate perpendicular to the side wall of the body. A combline type bandpass filter according to any one of claims 1 to 3, which is formed by a metal coating attached to the joint surface of the body part and whose side edges and lower edge are in close contact with the outer conductor. Wave equipment. (11) Claim 1 in which the aperture-shaped coupling window is formed by the side wall of the electromagnetic shielding case corresponding to the gap between the resonators in which a cylindrical body made of dielectric material is provided on the outer periphery of the internal conductor.
The combline type bandpass filter according to any one of Items 1 to 3. (12) The resonator consists of a cylindrical body made of a dielectric turtle provided on the outer periphery of an internal conductor, and an electromagnetic shielding casing having a groove-shaped recess with an arcuate cross section on the inner wall surface in contact with the side surface of the cylindrical body. A combline type bandpass filter according to any one of claims 1 to 3.
JP11377082A 1982-06-30 1982-06-30 Comb line type band-pass filter Pending JPS595701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11377082A JPS595701A (en) 1982-06-30 1982-06-30 Comb line type band-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11377082A JPS595701A (en) 1982-06-30 1982-06-30 Comb line type band-pass filter

Publications (1)

Publication Number Publication Date
JPS595701A true JPS595701A (en) 1984-01-12

Family

ID=14620688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11377082A Pending JPS595701A (en) 1982-06-30 1982-06-30 Comb line type band-pass filter

Country Status (1)

Country Link
JP (1) JPS595701A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170573A (en) * 1986-01-14 1987-07-27 彦坂 宏 Apparatus for tensionless treatment of continuous cloth
US4747722A (en) * 1984-12-19 1988-05-31 Honda Giken Kogyo Kabushiki Kaisha Metal-ceramic fitting assembly
US4942999A (en) * 1987-08-31 1990-07-24 Ngk Insulators, Inc. Metal-ceramic joined composite bodies and joining process therefor
JPH03180568A (en) * 1989-12-06 1991-08-06 Hiroshi Hikosaka Apparatus for leading out fabric
JPH06272154A (en) * 1993-03-17 1994-09-27 Ito Batsuku Seisakusho:Yugen Apparatus for automatic immersion treatment of woven fabric
KR20160054851A (en) * 2014-11-07 2016-05-17 주식회사 이너트론 Filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227244A (en) * 1975-08-26 1977-03-01 Nec Corp Microwave polarized bandpass filter
JPS5354943A (en) * 1976-10-29 1978-05-18 Nec Corp Microwave filter
JPS54112144A (en) * 1978-02-22 1979-09-01 Nec Corp Band-pass filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227244A (en) * 1975-08-26 1977-03-01 Nec Corp Microwave polarized bandpass filter
JPS5354943A (en) * 1976-10-29 1978-05-18 Nec Corp Microwave filter
JPS54112144A (en) * 1978-02-22 1979-09-01 Nec Corp Band-pass filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747722A (en) * 1984-12-19 1988-05-31 Honda Giken Kogyo Kabushiki Kaisha Metal-ceramic fitting assembly
JPS62170573A (en) * 1986-01-14 1987-07-27 彦坂 宏 Apparatus for tensionless treatment of continuous cloth
US4754621A (en) * 1986-01-14 1988-07-05 Hiroshi Hikosaka Continuous tensionless treatment for cloth
JPH0470416B2 (en) * 1986-01-14 1992-11-10 Hiroshi Hikosaka
US4942999A (en) * 1987-08-31 1990-07-24 Ngk Insulators, Inc. Metal-ceramic joined composite bodies and joining process therefor
JPH03180568A (en) * 1989-12-06 1991-08-06 Hiroshi Hikosaka Apparatus for leading out fabric
JPH06272154A (en) * 1993-03-17 1994-09-27 Ito Batsuku Seisakusho:Yugen Apparatus for automatic immersion treatment of woven fabric
KR20160054851A (en) * 2014-11-07 2016-05-17 주식회사 이너트론 Filter
WO2016072643A3 (en) * 2014-11-07 2016-06-30 주식회사 이너트론 Filter

Similar Documents

Publication Publication Date Title
US4477785A (en) Generalized dielectric resonator filter
US4996506A (en) Band elimination filter and dielectric resonator therefor
US4963844A (en) Dielectric waveguide-type filter
US4223287A (en) Electrical filter employing transverse electromagnetic mode coaxial resonators
US4034319A (en) Coupled bar microwave bandpass filter
JPH11251803A (en) Band stop dielectric filter, dielectric duplexer and communication machine device
JPS6123881B2 (en)
US3936776A (en) Interspersed double winding helical resonator with connections to cavity
US4603311A (en) Twin strip resonators and filters constructed from these resonators
US4112398A (en) Temperature compensated microwave filter
KR20010030828A (en) Multi surface coupled coaxial resonator
JPS595701A (en) Comb line type band-pass filter
US3414847A (en) High q reference cavity resonator employing an internal bimetallic deflective temperature compensating member
JPS59139701A (en) Comb-line type band-pass filter
JPH0250502A (en) Dielectric filter
JPH03212003A (en) Waveguide type dielectric filter
JPS6033702A (en) Filter
JPS6390203A (en) Dielectric filter
JPS58215803A (en) Comb-line type band-pass filter
GB2305547A (en) Temperature compensation using a composite resonator in a coaxial cavity signal transmission filter
JPS58170101A (en) Band-pass filter
JPH01258501A (en) Dielectric filter
RU2150769C1 (en) Microwave filter
JP2516857B2 (en) Ring resonator and filter using the ring resonator
JPS628601A (en) Comb-line type band pass filter