JPS58215803A - Comb-line type band-pass filter - Google Patents

Comb-line type band-pass filter

Info

Publication number
JPS58215803A
JPS58215803A JP9884682A JP9884682A JPS58215803A JP S58215803 A JPS58215803 A JP S58215803A JP 9884682 A JP9884682 A JP 9884682A JP 9884682 A JP9884682 A JP 9884682A JP S58215803 A JPS58215803 A JP S58215803A
Authority
JP
Japan
Prior art keywords
coupling
resonators
resonator
conductor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9884682A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP9884682A priority Critical patent/JPS58215803A/en
Publication of JPS58215803A publication Critical patent/JPS58215803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Abstract

PURPOSE:To obtain easily desired transmitting characteristics, by containing plural resonators on which metallic film forming outer conductors are coated except coupling surfaces and opening surfaces with adjacent resonators on outer surface of a dielectric in a shield case, for attaining interstage coupling by means of a magnetic field from the coupling surface. CONSTITUTION:A through-hole is formed at a center axis of a rectangular prism 11 made of a dielectric, the metallic coating film 12 being inner conductors of the resonators 61-6n is vapor-deposited on the inner wall thereof, and the length of axis is selected to 1/4 of the resonance wavelength. Further, the metallic coating film 15 is vapor-deposited on the surface of the rectangular prism 11 except the coupling and the opening surface with the adjacent resonators 61-6n, and a rod conductor 13 for component mounting is inserted into the inside of the prism 11. The resonators 61-6n constituted in this way are contained in the shield case 1 to form air gaps 81-8n-1 among the respective resonators 61-6n. Further, input/output coupling capacitive elements 101-102 are connected to coaxial input/output terminals 91, 92 respectively, the interstage coupling is performed by the magnetic field from the coupling surface, allowing to obtain the desired transmitting characteristics.

Description

【発明の詳細な説明】 本発明は、誘電体共振器より成るコムライン形帯域通過
ろ波器に関するものである。以下、帯域通過ろ波器をB
PFと略記する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combline type bandpass filter comprising dielectric resonators. Below, the bandpass filter is B
It is abbreviated as PF.

第1図は、従来の誘電体共振器より成る股間容量結合形
BPFの一例を示す断面図で、1はシールドケース、2
1  ないし241.tそれぞれ誘電体共振器の構成素
子で、誘電体より成る直方体の中心軸にほぼ一致する孔
隙の内壁面に金属被膜を付着させて内部導体を形成した
もので、各構成素子 をシールド板31  ないし33
 を介・して密着させてシールドケース1に内装するこ
とにより構成素子21 、シールド板3I 及びシール
ドケース1によって初段の共振器を構成し、構成素子2
2、シールド板3+ % 3:r及びシールドケース1
によって第2段の共振器を構成し、同様に構成素子23
.2斗、シールド板3Ω、33及びシールドケース1に
よって第3設及び終段の共振器を構成しである。41 
及び42は入出力同軸端子、5(u及び54Bは入出力
結合容量素子、5+:r % 523及び鎖は段間結合
容量素子である。
FIG. 1 is a cross-sectional view showing an example of a groin capacitively coupled BPF consisting of a conventional dielectric resonator, in which 1 is a shield case, 2
1 to 241. Each component of a dielectric resonator has a metal coating attached to the inner wall surface of a hole that substantially coincides with the center axis of a rectangular parallelepiped made of dielectric to form an internal conductor, and each component is connected to a shield plate 31 or 33
The component 21, the shield plate 3I, and the shield case 1 constitute a first-stage resonator by closely fitting the component 21, the shield plate 3I, and the shield case 1,
2. Shield plate 3+% 3: r and shield case 1
The second stage resonator is constructed by the component 23.
.. The third and final stage resonators are constituted by the two shield plates 3Ω, 33, and the shield case 1. 41
and 42 are input/output coaxial terminals, 5(u and 54B are input/output coupling capacitance elements, 5+:r % 523 and chain are interstage coupling capacitance elements.

第2図は、第1図に示したコムライン形BPFの等価回
路図で% Lコ1 、LC2、Lコ]及びL24は共振
回路、T1 及びT:Lは入出力端子、co+及びC4
Sは入出力結合容量、012 、C:rz及びCa2は
段間結合容量である。
Figure 2 is an equivalent circuit diagram of the combline type BPF shown in Figure 1, where %Lco1, LC2, Lco] and L24 are resonant circuits, T1 and T:L are input/output terminals, co+ and C4
S is an input/output coupling capacitance, and 012, C:rz, and Ca2 are interstage coupling capacitances.

上記従来の股間容量結合形BPFにおいては、構成素子
21 ないし2イの各開放端側を除いて誘電体より成る
直方体の全側壁面及び底壁面にシールドケース1及びシ
ールド板31 ないし33 を密着させて外部導体とな
し、以て各段の共振器を構成し、容量素子51;l、5
コ3及び534を介して設問結合を行うように構成して
いるが、これらの段間結合容量素子の各容量は極めて小
で、例えば1ピコフアラツド以下の微小容量であるから
その容量測定が極めて困難で、量産に際して容量のばら
つきを生ずるのを免れることが出来ない。したがってこ
のような容量素子を用いて股間結合を行う従来のBPF
においでは所要の伝送特性をもたせることが極めて困難
で、量産には甚だ不適である。
In the above-mentioned conventional groin capacitively coupled BPF, the shield case 1 and the shield plates 31 to 33 are brought into close contact with all side walls and bottom walls of a rectangular parallelepiped made of dielectric material except for the open end sides of the components 21 to 2a. is used as an external conductor, and constitutes a resonator in each stage, and capacitive elements 51;
However, the capacitance of each of these interstage coupling capacitance elements is extremely small, for example, less than 1 picofarad, so it is extremely difficult to measure the capacitance. Therefore, it is impossible to avoid variations in capacity during mass production. Therefore, the conventional BPF that uses such a capacitive element to perform groin coupling
It is extremely difficult to provide the required transmission characteristics for odor, making it extremely unsuitable for mass production.

本発明は、構成が簡潔で、所要の伝送特性を得ることが
極めて容易な誘電体共振器より成るコムライン形BPF
を実現するこ゛とを目的とする。
The present invention is a combline type BPF consisting of a dielectric resonator that has a simple configuration and is extremely easy to obtain the required transmission characteristics.
The purpose is to realize the following.

第3図は、本発明の一実施例を示す断面図(第4図のB
−8断面図)、第4図は、第3図のA−A断面図で、両
図において1はシールドケース、61ないし6nはそれ
ぞれ誘電体共振器で、例えば第5図に拡大断面図を示す
ようにチタン酸バリウム等の誘電体より成る直方体11
 の中心軸にほぼ一致する貫通孔を穿ち、その内壁面に
共振器の内部導体を形成する銀又は銅等の金属被膜12
を蒸着等によって付着ξせ、その軸長を電気長で共振渡
合容量素子等の部品取付用の棒状導体13を固く嵌入し
、その底部に固定用ねじの挿入用ねじ孔14を穿っであ
る。そして直方体11 の表面に、開放百聞ち上壁面と
結合面即ち隣接する共振器と対向する側壁面を除いて共
振器の外部導体を形成する銀又は銅等の金属被膜15を
蒸着等によって付着させるか、シールド板を固着しであ
る。
FIG. 3 is a sectional view (B in FIG. 4) showing one embodiment of the present invention.
-8 sectional view), and Fig. 4 is an A-A sectional view of Fig. 3. In both figures, 1 is a shield case, and 61 to 6n are dielectric resonators, respectively. For example, Fig. 5 shows an enlarged sectional view. As shown, a rectangular parallelepiped 11 made of a dielectric material such as barium titanate
A metal coating 12 made of silver or copper or the like is formed on the inner wall surface of the through hole that substantially coincides with the central axis of the resonator to form the internal conductor of the resonator.
is attached by vapor deposition or the like, and a rod-shaped conductor 13 for attaching a component such as a resonant coupling capacitor element is firmly inserted with its axial length set to an electrical length, and a screw hole 14 for insertion of a fixing screw is bored in the bottom of the rod-shaped conductor 13. Then, on the surface of the rectangular parallelepiped 11, a metal coating 15 such as silver or copper, which forms the external conductor of the resonator, is deposited by vapor deposition or the like, except for the open upper wall surface and the coupling surface, that is, the side wall surface facing the adjacent resonator. Or, fix the shield plate.

誘電体より成る直方体11に穿った貫通孔の内壁面に金
属被膜を付着させることなく、この貫通孔内に棒状導体
13を直接嵌入し、この棒状導体13を共振器の内部導
体、放熱体及び部品の支持体等に兼用するように構成し
てもよく、又、発熱の小なる場合には棒状導体13を省
き、貫通孔の内壁面に付着させた金属被膜12の一部に
部品との接続用引出線を取付け、直方体11 の底壁に
ねじ孔を穿つようにしてもよい。又、誘電体より成る直
方体の外表面に金属被膜を付着させ又はシールド板を密
着させる代りにシールドケーる1 を外部導体に兼用だ
せるようにしてもよい。
A rod-shaped conductor 13 is directly inserted into the through-hole formed in a rectangular parallelepiped 11 made of a dielectric without attaching a metal coating to the inner wall surface of the through-hole, and the rod-shaped conductor 13 is used as an internal conductor of a resonator, a heat radiator, and the like. It may be constructed so that it also serves as a support for the component, or if the heat generation is small, the rod-shaped conductor 13 may be omitted and a part of the metal coating 12 attached to the inner wall surface of the through hole may be used as a support for the component. A connecting lead wire may be attached and a screw hole may be bored in the bottom wall of the rectangular parallelepiped 11. Further, instead of attaching a metal film to the outer surface of the dielectric rectangular parallelepiped or attaching a shield plate to the outer surface, the shield case 1 may also be used as an outer conductor.

第3図及び第4図に戻って71  ないし7nは共振器
6I  ないしろTLの固定用ねじて、シールドケース
の底壁に穿ったねじの挿通孔を介して共振器における棒
状導体13又は直方体11 の底部に穿ったねじ孔14
にら合して共振器を所定位置に固定する。シールドケー
ス1の底壁に各共振器の固定位置に対応してねじの挿通
孔を穿つ代りに細長い溝状の共通孔隙を穿ち、共振器の
固定位置を自在に変化し得るように形成してもよい。8
I  ないし87L−1は隣接共振器間における空隙、
9+ 及び9.2は入出力同軸端子、10I 及び10
2は入出力結合容量素子である。
Returning to FIGS. 3 and 4, 71 to 7n are screws for fixing the resonator 6I or TL, and the rod-shaped conductor 13 or rectangular parallelepiped 11 in the resonator is inserted through the screw insertion hole drilled in the bottom wall of the shield case. Screw hole 14 drilled in the bottom of
to secure the resonator in place. Instead of drilling screw insertion holes in the bottom wall of the shield case 1 corresponding to the fixing positions of each resonator, a common hole in the form of a long and narrow groove is bored so that the fixing position of the resonators can be freely changed. Good too. 8
I to 87L-1 are air gaps between adjacent resonators;
9+ and 9.2 are input/output coaxial terminals, 10I and 10
2 is an input/output coupling capacitive element.

このように構成した本発明BPFにおいては、入出力同
軸端子9I 及び入出力結合容量素子101  を介し
て導入された入力信号によって共振器61  を励振し
共振だせると、共振電流によって生じた磁界の中、結合
面からのもれ磁界が共振器6コの結合面を介して共振器
6コに結合し、これを励振して共振させ、以下同様にし
て各段の共振器が共振し、入出力結合容量素子10り及
び入出力同軸端子9コを介して出力信号が取出されるが
、各誘電体共振器61  ないし671のカットオフ導
波管としての磁界減衰量Lεは、 又、各空隙8I  ないし8yt−+  のカットオフ
導波管としての磁界減衰量b^は、 更に隣接対向する共振器における各内部導体の中心軸間
における磁界減衰量L^εは、LAε=Lt+L^  
   ・・・・・・(3)で表わされ、この磁界減衰量
から隣接対向する共振器間の磁界結合度、即ち初段及び
第2段の共振器間の磁界結合度MIJ%第2段及び第3
段の共振器間の磁界結合度M23、・・・・・・第(n
−1)段及び終段の共振器間の磁界結合度M(rL−+
)viを一般的にMにIK” ’但し、kは1からn〜
Nまで)で表わすと、LA乞(、iB) Mに、川=10  ″)O・・・・・・(4)但し、上
記各式において、 Hし:共振器を構成する誘電体より成る直方体の側壁(
シールドケース1の側壁に 接する側壁)の幅 ε:直方体を形成する誘電体の誘電率 H:共振器を構成する誘電体より成る直方体の結合面の
幅 入:共振器の共振波長で、 入  (mm)  = 300/ f  ((lHz)
f:共振器の共振周波数 C^:空隙8I  ないし8乳−1の長さ上記(1)な
いしく4)式から磁界結合度M K、%ヤII:L を求めると、第6図(横軸IA2即ち隣接する共振器に
おける内部導体の中心軸間隔Cを共振器における結合面
の幅Hで基準化した結合距離、縦軸は磁界結合度Mに、
に+1)のA曲線となり、実験により求めた実滑1イ直
をプロットすると8曲線のようになる。理論値を表わす
A曲線と実測値を表わすB曲線との間にはd″、0.3
d(dは共振器における内部導体の外径)なる誤差を生
じているが、これは理論値を求めるに当って共振器にお
ける内部導体の中心軸線を基準として計算を行ったのに
対して、実測値の場合は共振器の内部導体による電磁界
の乱れによって内部導体の中心軸線が見掛上変化するた
めに生ずる誤差であって、必要に応じて共振器の体積、
共振周波数等を変える毎に実験を繰返して結合距離の補
正を行う。
In the BPF of the present invention configured as described above, when the resonator 61 is excited and resonated by the input signal introduced through the input/output coaxial terminal 9I and the input/output coupling capacitance element 101, the magnetic field generated by the resonant current is generated. , the leakage magnetic field from the coupling surface couples to the six resonators through the coupling surface of the six resonators, excites them and causes them to resonate, and in the same way, the resonators at each stage resonate, and the input/output The output signal is extracted through the coupling capacitance element 10 and the input/output coaxial terminal 9, and the magnetic field attenuation Lε of each dielectric resonator 61 to 671 as a cut-off waveguide is also as follows: The magnetic field attenuation amount b^ as a cut-off waveguide of 8yt-+ is furthermore, the magnetic field attenuation amount L^ε between the center axes of each internal conductor in adjacent and opposing resonators is LAε=Lt+L^
......(3), and from this magnetic field attenuation, the degree of magnetic field coupling between adjacent and opposing resonators, that is, the degree of magnetic field coupling between the first and second stage resonators MIJ% second stage and Third
Magnetic field coupling degree M23 between the resonators of the stage, ......th (n
−1) Magnetic coupling degree M(rL−+
)vi to M in general IK'''However, k is from 1 to n~
(up to N), LA (, iB) M, river = 10'') O... (4) However, in each of the above equations, H: consists of the dielectric material that constitutes the resonator. Side walls of a rectangular parallelepiped (
Width ε of the side wall (side wall in contact with the side wall of the shield case 1): Dielectric constant H of the dielectric forming the rectangular parallelepiped: Width of the coupling surface of the rectangular parallelepiped made of the dielectric forming the resonator Input: At the resonant wavelength of the resonator, Input ( mm) = 300/f ((lHz)
f: Resonance frequency of the resonator C^: Length of the air gap 8I or 8I -1 When calculating the degree of magnetic field coupling MK, % II:L from the above formula (1) or 4), it is shown in Fig. 6 (horizontal Axis IA2, that is, the coupling distance where the center axis spacing C of the internal conductors in adjacent resonators is standardized by the width H of the coupling surface in the resonator, and the vertical axis is the magnetic field coupling degree M,
The A curve is +1), and when the actual smoothness 1 I obtained by experiment is plotted, it becomes a curve 8. There is a gap of d″, 0.3 between curve A representing the theoretical value and curve B representing the measured value.
d (d is the outer diameter of the internal conductor in the resonator), but this is due to the fact that the theoretical value was calculated based on the central axis of the internal conductor in the resonator. In the case of actual measurements, this is an error caused by the apparent change in the center axis of the internal conductor due to disturbance of the electromagnetic field caused by the internal conductor of the resonator, and the volume of the resonator,
The experiment is repeated each time the resonance frequency etc. is changed to correct the coupling distance.

次に分布定数形BPFの設計に当っては、基準低域通過
ろ波器(以下、低域通過ろ波器をLPFと略記する)の
素子値、即ち幾何係数を求めて設計するのが一般で、例
えばハタワース形基準らPFIの素子値g8い(kは1
からnまで)は、 で与えられ、ハタワース形BPFにおける各段間の磁界
結合度M’H,K<1(kは1からnまでンは、で表ね
される。但し、 M。−ト1 a BW3 :伝送信号の3デシベル低丁周波数帯域幅f0
:通過域における中心周波数 n:ろ波器の次数 誘電体共振器の共振波要人1.3デシベル低下周波数帯
域幅Bws及び中心周波数fo  を適宜設定すると共
に(4)及び(6)式における各磁界結合度MK、に+
+及びM’s、に++が各段毎に等しくなるように各共
振器における誘電体より成る直方体の幅Hε及びHを定
めると共に空隙81  ないし8n−1の長さを定める
ことによりハタワース形のコムライン形BPI”を構成
することが出来、その伝送特性は、L (+iB) −
+olog (++X5TL)    −・・−−−(
7)で表わされる。但し、 L:減衰量 f:任意の伝送周波数 第7図は、その伝送特性を示す曲線図で、横軸は伝送周
波数f (OHz ) 、縦軸は減衰量E、 (dB)
である。
Next, when designing a distributed constant type BPF, it is common to design by finding the element values, that is, the geometric coefficients, of a reference low-pass filter (hereinafter, low-pass filter is abbreviated as LPF). For example, the element value of PFI based on the hatterworth type standard is g8 (k is 1
from n to n) is given by, and the degree of magnetic field coupling between each stage in the Hattersworth BPF is given by M'H, K<1 (k from 1 to n is expressed as 1 a BW3: 3 dB low frequency bandwidth f0 of the transmission signal
: Center frequency in the passband n: Resonance wave of the dielectric resonator of the order of the filter 1.3 dB reduction Frequency bandwidth Bws and center frequency fo are set appropriately, and each of equations (4) and (6) is Magnetic field coupling degree MK, +
By determining the widths Hε and H of the rectangular parallelepiped made of dielectric material in each resonator and determining the length of the gaps 81 to 8n-1 so that + and M's and ++ are equal for each stage, a hatter-worth shape is obtained. A comline type BPI" can be constructed, and its transmission characteristics are L (+iB) -
+olog (++X5TL) −・・−−−(
7). However, L: attenuation f: arbitrary transmission frequency Figure 7 is a curve diagram showing the transmission characteristics, where the horizontal axis is the transmission frequency f (OHz) and the vertical axis is the attenuation E, (dB).
It is.

第8図は、その等価回路図で、TI 及びTQ は入出
力端子、C1及びC,は入出力結合容量、L+  ない
し職は共振回路、M+2 ないしM(IL−1)ルは共
振回路間の等価相互インダクタンスである。
Figure 8 is its equivalent circuit diagram, where TI and TQ are input/output terminals, C1 and C are input/output coupling capacitances, L+ or M(IL-1) is the resonant circuit, and M+2 or M(IL-1) is between the resonant circuits. is the equivalent mutual inductance.

次にチェビシェフ形基準LPFの素子値は、S:通過帯
域内における許容電圧定在波比この場合には共振器61
に関連する素子値g1 は(8)式のkに1を代入し、
共振器6コに関連する素子値g、2は(9)式のkに2
を代入してそれぞれ求め、以下共振器63 ないし6n
に関連する素子値g3 ないしgrLは(9)式のkに
3ないしnを代入しでそれぞれ求める。尚、(8)式は
gl  を求める場合にのみ用いる。
Next, the element value of the Chebyshev type reference LPF is S: permissible voltage standing wave ratio within the passband, in this case, the resonator 61
The element value g1 related to is obtained by substituting 1 for k in equation (8),
The element value g, 2 related to the six resonators is 2 for k in equation (9).
are calculated by substituting the following resonators 63 to 6n.
The element values g3 to grL related to are respectively determined by substituting 3 to n for k in equation (9). Note that equation (8) is used only when determining gl.

次にチェビシェフ形BPF’における各股間の磁界結合
度M K、に+ 1は、 で表ねされる。但し、 M’s   =   s四J: f。
Next, the degree of magnetic field coupling MK between each crotch in Chebyshev type BPF' is expressed as +1. However, M's = s4J: f.

Bwr :許容リップルを与える帯域幅(許容通過帯域
幅) したがって共振器の共振波要人、許容リップルを与える
帯域幅BW、及び中心周波数f、  登適宜設定すると
共に(4)及び(10)式の各磁界結合度MK+ド伺及
びM”K、にや−が各段毎に等しくなるように各共振器
における誘電体より成る直方体の幅Hε及びHを足める
と共に空隙8I  ないし871−1  の各長ざC^
を定めることにより通過域がチェビシェフ形特性で、減
衰域がワグナ形特性のコムライン形BPFを構成するこ
とが出来、その伝送特性は、で表わされる。但し、 1<x)はチェビシェフの多項式で、 x(Iの場合、 1(x) =cos (n aoe’x )X>1  
の場合、 7;、(x)  =cosh  (n  ca日h  
x  )又、nが奇数の場合、 nが偶数の場合、 上式においでRe は実数gKをとるの意、lYLは虚
数部をとるの意である。
Bwr: Bandwidth that provides an allowable ripple (allowable pass band width) Therefore, the resonance wave characteristics of the resonator, the bandwidth BW that provides an allowable ripple, and the center frequency f, are set as appropriate, and equations (4) and (10) are Add the widths Hε and H of the rectangular parallelepiped made of dielectric material in each resonator so that the degree of magnetic coupling MK+do and M''K, and niya- are equal for each stage, and also add the widths Hε and H of the rectangular parallelepiped made of dielectric material in each resonator, and the air gaps 8I to 871-1. Each length C^
By determining , it is possible to construct a combline type BPF whose passband has Chebyshev type characteristics and whose attenuation band has Wagner type characteristics, and its transmission characteristics are expressed by. However, 1<x) is Chebyshev's polynomial, and in the case of x(I, 1(x) = cos (naoe'x)X>1
If 7;, (x) = cosh (n ca day h
x) When n is an odd number, When n is an even number, In the above equation, Re means to take the real number gK, and lYL means to take the imaginary part.

第9図は、このBPFの伝送特性を示す曲線図で、横軸
及び縦軸は第7図と同様である。
FIG. 9 is a curve diagram showing the transmission characteristics of this BPF, and the horizontal and vertical axes are the same as in FIG. 7.

本発明BPFにおける共振器の中、2個又はその整数倍
の個数の共振器を隔てた共振器間を間接結合することに
より減衰域に減衰極を有するBPFを構成することが出
来る。
Among the resonators in the BPF of the present invention, a BPF having an attenuation pole in the attenuation region can be constructed by indirectly coupling two resonators separated by two or an integral multiple thereof.

第10図は、その−例を示す断面図(第11図のB−B
断面図)、第1;図は、第10図のA−A断面図で、両
図において1はシールドケース、6I  ないし66は
共振器、71  ないし76  は固定用ねじ、8I 
 ないし8Sは空隙、91及び9コは入出力同軸端子、
lo+ 及び10コは入出力結合容量素子で、これらは
第3図及び第4図と同様構成で、又、(4)及び(6)
式の各磁界結合度Mに、■及びM′に、に+1が各段毎
に等しくなるように構成しである。次に16は同軸線路
、ストリップライン又はセミリジットケーブル等より成
る間接結合線路、17I 及び17コは結合索子で、ル
ープ又は共振器の内部導体との間に結合容量を形成する
電極等より成る。図1こ1ま素子17+  をループを
以て形成し、素子17.1 を容量形成電極を以て形成
した場合を例示したが、+7゜を容量形成電極を以て形
成し、1乃 をループを以て形成してもよ(,17+ 
 及び17コ  を共にル−プ又は容量形成電極を以て
形成してもよ(\。
FIG. 10 is a sectional view showing an example thereof (BB in FIG. 11).
1; The figure is a sectional view taken along the line A-A in FIG.
8S to 8S are air gaps, 91 and 9 are input/output coaxial terminals,
lo+ and 10 are input/output coupling capacitance elements, which have the same configuration as in Figures 3 and 4, and (4) and (6).
The configuration is such that +1 is equal to each magnetic field coupling degree M in the equation, and M and M' in each stage. Next, reference numeral 16 denotes an indirect coupling line such as a coaxial line, strip line or semi-rigid cable, and 17I and 17 denote coupling cables, which are composed of electrodes and the like that form a coupling capacitance between the loop or the internal conductor of the resonator. In Fig. 1, an example is shown in which the element 17+ is formed with a loop and the element 17.1 is formed with a capacitance forming electrode, but it is also possible to form +7° with a capacitance forming electrode and 1~ with a loop. (,17+
and 17 may be formed using loops or capacitance forming electrodes (\.

本実施例においても入出力同軸端子9. lこ加えられ
た信号は、第3図及び第4図につき説明したと同様にし
て共振器6I  ないし6&の縦続接続回路より成る主
回路と伝送して入出力同軸端子92から取出されるが、
この伝送信号の中、通過域より周波数の高い(低い)信
号は共振器61  ないし66において電圧電流の位相
が9σ進み(遅れ)、各共振器間に形成される移相回路
において位相が270m進む(遅れる)から共振器62
における信号の位相と、共振器65における信号の位相
は同相となるが、間接結合線路16の長さを適当ならし
めると共に結合素子171 及び175 の何れか一方
又は双方をループを以て形成した場合にはループの極性
を適当ならしめることにより間接結合線路16、結合素
子+7. 及び17コ より成る間接結合回路を介して
共振器62から共振器6りへ伝送される信号に両共、4
辰器閤において+ao’の位相差を生せしめ得る。
Also in this embodiment, the input/output coaxial terminal 9. The applied signal is transmitted to the main circuit consisting of the cascaded circuit of resonators 6I to 6& and taken out from the input/output coaxial terminal 92 in the same manner as explained with reference to FIGS. 3 and 4.
Among these transmission signals, for signals with a frequency higher (lower) than the passband, the phase of the voltage and current is advanced (delayed) by 9σ in the resonators 61 to 66, and the phase is advanced by 270 m in the phase shift circuit formed between each resonator. (delayed) from resonator 62
The phase of the signal at and the phase of the signal at the resonator 65 are in phase, but if the length of the indirect coupling line 16 is made appropriate and one or both of the coupling elements 171 and 175 is formed with a loop, By adjusting the polarity of the loop appropriately, the indirect coupling line 16, the coupling element +7. and 17 circuits.
A phase difference of +ao' can be produced in the china.

したがって結合素子17+  及び172  の各結合
度登調整して間接結合回路を介して共振器65に到る信
号の大きさと主回路を介して共振器65に到る信号の大
きさを等しくすることによりこの信号の周波数位置に減
衰極を生せしめることが出来、その伝送特性は次式で表
わされる。
Therefore, by adjusting the coupling degree of each coupling element 17+ and 172 to equalize the magnitude of the signal reaching the resonator 65 via the indirect coupling circuit and the magnitude of the signal reaching the resonator 65 via the main circuit. An attenuation pole can be generated at the frequency position of this signal, and its transmission characteristic is expressed by the following equation.

本実施例のように次数nが6、即ちnが偶数の場合には
、 nが奇数の場合には、 f=(l−mゴ) fbaj :中心周波数fa と減衰極を生ずる周波数
との差 △f、:中心周波数fa  と許容電圧定在波比を与え
るバンドエツジの周波数との差 尚、結合素子+7.及び17コの結合度を低くすると減
衰極の周波数位置が通過域から遠ざかる方へ移動し、結
合度を高くすると減衰極の周波数位置が通過域に近づく
方へ移動する。
When the order n is 6 as in this example, that is, when n is an even number, when n is an odd number, f=(l−mgo) fbaj: difference between the center frequency fa and the frequency that produces the attenuation pole. Δf: Difference between the center frequency fa and the frequency of the band edge that provides the allowable voltage standing wave ratio, and the coupling element +7. When the coupling degree of 17 and 17 is lowered, the frequency position of the attenuation pole moves away from the passband, and when the coupling degree is increased, the frequency position of the attenuation pole moves closer to the passband.

減衰極の周波数位置が通過域から比較的離れている場合
には、通過域がチェビシェフ形特性で減衰域がワクナ形
特性のBPFとほぼ等しい結合特性を呈する。
When the frequency position of the attenuation pole is relatively far from the passband, the coupling characteristic is approximately equal to that of a BPF in which the passband has Chebyshev type characteristics and the attenuation area has Wakuna type characteristics.

第12図は、本実施例における有極形BPF’の等価回
路図で、T+ 及びT2 は入出力端子、CI 及びC
コは入出力結合容量、し ないしL は共振回路、M1
2  ないしM4A は共振回路間の等価相互インダク
タンス、CCは間接結合線路、MITI+  は間接結
合口路の等価相互インダクタンス、O+y=  は間接
結合容量である。
FIG. 12 is an equivalent circuit diagram of the polarized BPF' in this embodiment, where T+ and T2 are input/output terminals, CI and C
ko is the input/output coupling capacitance, or L is the resonant circuit, M1
2 to M4A is the equivalent mutual inductance between the resonant circuits, CC is the indirect coupling line, MITI+ is the equivalent mutual inductance of the indirect coupling path, and O+y= is the indirect coupling capacitance.

第13図(横軸及び縦軸は第7図と同じ)は、本実施例
における有極形BPFの伝送特性を示す曲線図である。
FIG. 13 (horizontal and vertical axes are the same as FIG. 7) is a curve diagram showing the transmission characteristics of the polarized BPF in this example.

前述のように共振器6Q及び65間を間接結合する代り
に共振器61 及び66開を間接結合してもよく、又、
共振器64及び65間を間接結合すると共に共振器6I
 及び66間を間接結合しても有極形BPFを構成する
ことが出来、この場合には通過域より高い周波数領域及
び低い周波数領域の各々に2個ずつの減衰極を生ずるこ
ととなる。
Instead of indirectly coupling the resonators 6Q and 65 as described above, the resonators 61 and 66 may be coupled indirectly, or
Indirect coupling between the resonators 64 and 65 and the resonator 6I
A polarized BPF can also be constructed by indirectly coupling between .

本実施例においては共振器を6段設けた場合を例示した
が、この段数は適宜増減することが出来、又、2個又は
その整数倍の個数の共振器を隔てた共振器間を間接結合
するという条件を備えるならば間接結合回路の数も任意
に選、仁ことが出来る。
In this example, a case where six stages of resonators are provided is illustrated, but the number of stages can be increased or decreased as appropriate, and indirect coupling between two or an integral multiple of resonators can be used. The number of indirect coupling circuits can be arbitrarily selected as long as the condition is met.

以上は通過域がチェビシェフ形特性を有するように構成
したBPFを有極化した場合につき説明したが、ハタワ
ース形に構成したBPFの場合にも同様にして有極化す
ることが出来る。
The above description has been given of a case in which a BPF configured so that the passband has a Chebyshev type characteristic is polarized, but a BPF configured in a hatterworth type can also be polarized in the same manner.

第14図もまた本発明の他の実施例を示す断面図(第1
5図のC−C断面図)、第15図は、第14図のA−A
断面図、第16図は、第14図のB−B断面図で、各図
において18は導体より成る仕切壁で、他の符号は第1
0図及び第11図と同様である。
FIG. 14 is also a sectional view (first embodiment) showing another embodiment of the present invention.
(C-C sectional view in Fig. 5), Fig. 15 is a sectional view taken along A-A in Fig. 14.
The sectional view, FIG. 16, is a BB sectional view of FIG.
This is similar to FIGS. 0 and 11.

本実施例においても入出・力量軸端子911−導入され
た信号は第3図及び第4図について説明したと同様に共
振器61  ないし86 を縦続接続して成る主回路を
伝送して入出力同軸端子92から取出される。又、(4
)式及び(6)式又は(10)式における磁界結合度M
K、に+書及びM’ic、+<中l又はM′気、に+1
が各段毎に等しくなるように共振器61 ないし66に
おける誘電体より成る直方体の幅HE −H、空隙81
ないし85の寸法を定めることによりハタワース形のコ
ムライン形BPF又は通過域がチェビシェフ形、減衰域
がワグナ−形のコムライン形BPFを構成し得るが、本
実施例においては共振器61  ないし66 をコの字
形に配設しであるので、前記各実施例に比して全体を小
形化することが出来る。
In this embodiment as well, signals introduced from the input/output/power axis terminal 911 are transmitted through the main circuit consisting of the resonators 61 to 86 connected in cascade in the same manner as explained with reference to FIGS. 3 and 4. It is taken out from the terminal 92. Also, (4
) and the magnetic field coupling degree M in equation (6) or equation (10)
K, ni + writing and M'ic, + < middle l or M' ki, ni +1
The width HE -H of the rectangular parallelepiped made of dielectric material in the resonators 61 to 66 and the air gap 81 are set so that the width is the same for each stage.
By determining the dimensions of the resonators 61 to 85, it is possible to configure a combline type BPF with a hatter-worth type or a combline type BPF with a Chebyshev type passband and a Wagner type attenuation area, but in this embodiment, the resonators 61 to 66 are Since it is arranged in a U-shape, the overall size can be made smaller compared to each of the embodiments described above.

更に本実施例においては、例えば共振器6コにおける内
部導体の頂部に対向して容量形成電極+9゜を設けると
共に共振器65における内部導体の頂部に対向して容量
形成電極19a を設け、仕切壁18に穿った孔隙20
に挿通した接続導体21により両電極191 及び19
コを接続し、孔隙20に充てんした絶縁物22によって
仕切壁18と接続導体21 を電気的に絶縁することに
よって前実施例と同様にして第17図(横軸及び縦軸は
第7図と同じ)に示すような有枠形伝送特性を有するコ
ムライン形BPFを構成することが出来る。
Furthermore, in this embodiment, for example, a capacitance forming electrode +9° is provided opposite the top of the internal conductor in the six resonators, and a capacitance forming electrode 19a is provided opposite the top of the internal conductor in the resonator 65, and the partition wall Hole 20 drilled in 18
Both electrodes 191 and 19 are connected by the connecting conductor 21 inserted through the
17 (horizontal and vertical axes are as shown in FIG. It is possible to construct a combline type BPF having a frame type transmission characteristic as shown in (the same).

共振器62及び65を間接結合する代りに、共振器6I
 及び66に結合したループ23+ 及び232を仕切
壁18に穿たれ絶縁物25を充てんした孔隙24に挿通
した接続導体26を介して接続することにより共振器6
I 及び66を間接結合しても有極形BPFを溝底する
ことが出来る。尚、孔隙24に絶縁物25を充てんする
代りに接続導体26として絶神被覆を施した接続導体を
用いてループ231 及び23.を接続してもよいこと
勿論である。
Instead of indirectly coupling resonators 62 and 65, resonator 6I
The resonator 6 is connected by connecting the loops 23+ and 232 coupled to the resonator 6 and 66 through the connecting conductor 26 inserted through the hole 24 bored in the partition wall 18 and filled with the insulator 25.
Even if I and 66 are indirectly coupled, a polarized BPF can be formed as a groove bottom. Incidentally, instead of filling the hole 24 with the insulator 25, a connecting conductor coated with a Zesshin coating is used as the connecting conductor 26 to connect the loops 231 and 23. Of course, it is also possible to connect.

共振器6a及び6ぢ間を間接結合すると共に共振器6I
及び66間を間接結合することにより第18図(横軸及
び縦軸は第7図と同じ)に示すように、通過域より高い
周波数領域及び低い周波数領域の各々に2個ずつの減衰
極を生せしめるSとが出来る。
Indirect coupling between the resonators 6a and 6j and the resonator 6I
By indirectly coupling between It is possible to produce S.

第19図は、その等価回路図で、C1qI及びCtqa
は間接結合容量、M231  及びM2JW  は間接
結合回路の等価相互インダクタンスで、他の符号は第1
2図と同様である。
FIG. 19 is its equivalent circuit diagram, in which C1qI and Ctqa
is the indirect coupling capacitance, M231 and M2JW are the equivalent mutual inductance of the indirect coupling circuit, and the other symbols are the first
It is the same as Figure 2.

上記各実施例から明らかなように、本発明においては共
振器の側面及び開放面の幅の寸法を変えると共に共振器
間に介在させた空隙の長ξを変えることによって所要の
伝送特性を得ることが出来るが、共振器間に空隙を介在
させる目的は上記の他に共振器の動作を安定させること
にある。
As is clear from the above embodiments, in the present invention, the required transmission characteristics can be obtained by changing the width dimensions of the side surfaces and open surfaces of the resonators and by changing the length ξ of the air gap interposed between the resonators. However, the purpose of interposing the air gap between the resonators is to stabilize the operation of the resonators in addition to the above.

即ち、本発明における共振器は結合面に金属被膜を付着
きせることなく、この結合面からのもれ磁界によって段
間結合を行うように構成しであるが、隣接する共振器の
結合面を空隙を介することなく直接接触任せると、開放
面が完全には平面でないため開放面相互が一様に密着−
することなく、開放面相互が直接密着する個所と、空気
を介して対向する個所と が不規則に分布し、空気の介
在する個所においては共振器を構成する誘電体と空気の
銹電率の相異によって電気双極子を生じ、この電気双極
子が不規則に分布するため動作の不安定を来たすことと
なるが、本発明においては共振器の結合面間に空隙を介
在させであるため結合面全域が空気と一様に接触するこ
ととなり、動作を安定ならしめることが出来る。
That is, the resonator according to the present invention is configured so that inter-stage coupling is performed by the leakage magnetic field from the coupling surface without attaching a metal film to the coupling surface, but the coupling surfaces of adjacent resonators are separated by an air gap. If the open surfaces are not completely flat, if the open surfaces are left in direct contact without intervening, the open surfaces will adhere uniformly to each other.
The areas where the open surfaces are in direct contact with each other and the areas where they face each other with air in between are irregularly distributed, and in the areas where air is present, the corrosion rate of the dielectric material making up the resonator and the air decreases. Electric dipoles are generated due to the difference, and these electric dipoles are irregularly distributed, which causes instability in operation. However, in the present invention, a gap is interposed between the coupling surfaces of the resonator, so that the coupling is prevented. The entire surface comes into uniform contact with the air, making the operation stable.

更に共振器間に空隙を介在させることによって第20図
ないし第22図に示すように結合調整ねじを介装して結
合度の調整も可能となるもので、第20図は、第21図
σ尺−C断面図、第21図は、第20図17)A−A断
面図、第22図は、第20図(’)B−8断面図である
が、各図において271  ないし27ケは結合調整ね
じて、空隙8「 ないし85に対応するシールドケース
1の土壁から空隙81  ないし85内に挿入し、各挿
入長を自在に変化させ、任意の挿入長においで固定し得
るように形成しである。他の符号は第14図ないし第1
6図と同様で、その結合作動及び伝送特性は第14図な
いし第16図に示した実施例において間接結合口路を設
けない場合と同様であるが、本実施例においては、結合
調整ねじ27r  ないし275 の挿入長に応じてカ
ットオフ導波管モードの電界成分により結合調整ねじ2
7+  ないし27りに電界が集中して結合電界が強く
なり、これに応じて結合磁束密度も大となるので結合調
整ねじの挿入長に応じて段間結合度を密ならしめること
が出来る。尚、シールドケース1の土壁から結合調整ね
じを挿入する代りにシールドケース1の底壁から挿入し
てもよく、土壁及び底壁の双方から挿入するように構成
してもよい。第20図ないし第22図には共振器登コの
字形に配設した場合を例示したが一列に配設しでもよい
こと勿論である。
Furthermore, by interposing a gap between the resonators, it is possible to adjust the degree of coupling by inserting a coupling adjustment screw as shown in FIGS. 20 to 22. 21 is a sectional view taken along line C, FIG. 21 is a sectional view taken along line A-A in FIG. The coupling adjustment screw is inserted into the gaps 81 to 85 from the soil wall of the shield case 1 corresponding to gaps 8 to 85, and each insertion length can be changed freely, and it is formed so that it can be fixed at any insertion length. Other symbols are shown in Figures 14 to 1.
6, and the coupling operation and transmission characteristics are the same as in the embodiments shown in FIGS. 14 to 16 without the indirect coupling port, but in this embodiment, the coupling adjustment screw 27r Depending on the insertion length of the cut-off waveguide mode, the coupling adjustment screw 2
The electric field is concentrated between 7+ and 27, and the coupling electric field becomes stronger, and the coupling magnetic flux density increases accordingly, so that the degree of interstage coupling can be made denser according to the insertion length of the coupling adjustment screw. Note that instead of inserting the coupling adjustment screw from the earth wall of the shield case 1, it may be inserted from the bottom wall of the shield case 1, or it may be configured to be inserted from both the earth wall and the bottom wall. Although FIGS. 20 to 22 illustrate cases in which the resonators are arranged in a U-shaped configuration, it goes without saying that they may be arranged in a line.

第23図は、この実施例の等価回路図で、符号は第19
図と同様である。
FIG. 23 is an equivalent circuit diagram of this embodiment, and the reference numeral is 19th.
It is similar to the figure.

以上何れの実施例においても共振器として第5図に示す
ように誘電体部分を直方体11に形成したものを用いた
場合を例示したが、誘電体部分を肉厚の円筒形に形成し
、その側面の中、結合面を除いた部分と底面とに外部導
体を形成する金属被膜を付着ぎせて成る共振器を用いて
も本発明を実施することが出来る。
In each of the above embodiments, as shown in FIG. The present invention can also be practiced using a resonator in which a metal coating forming an external conductor is adhered to the side surfaces excluding the coupling surface and the bottom surface.

第24図は、上記円筒形誘電体共振器を用いた一実施例
を示す断面図(第25図のB−B断面図)、第25図は
、第24図のA−A断面図で、両図において61 ない
し6′6 は円筒形誘電体共振器で、他の符号は第10
図及び第11図と同様である。
FIG. 24 is a sectional view (BB sectional view in FIG. 25) showing an embodiment using the above-mentioned cylindrical dielectric resonator, and FIG. 25 is a sectional view taken along AA in FIG. 24. In both figures, 61 to 6'6 are cylindrical dielectric resonators, and the other symbols are the 10th
It is similar to FIG.

第26図は、円筒形誘電体共振器をコの字形に配設した
一例を示す断面図(第27図のc−c断面図)、第27
図は、第26図のA−/L断面図、第28図は、第26
図のB−B断面図で、各図においで61ないし6t は
円筒形誘電体共振器で、他の符号は第14図ないし第1
6図と同様である。
FIG. 26 is a cross-sectional view (cc cross-sectional view in FIG. 27) showing an example of cylindrical dielectric resonators arranged in a U-shape;
The figure is an A-/L sectional view of Fig. 26, and Fig. 28 is a sectional view of Fig. 26.
In the BB cross-sectional view of the figure, 61 to 6t in each figure are cylindrical dielectric resonators, and other symbols are 14 to 1.
It is the same as Figure 6.

これら2実施例共にその結合作用及び伝送特性は誘電体
部分を直方体に形成した共振器を用いた前記各実施例を
全く同様であり、間接結合回路を設けることにより有極
形となし得ること、空隙部分に結合調整ねじを挿入する
ことによって股間磁界結合度を密ならしめ、かつ結合度
を変化させ得ること等も前記各実施例と全く同様である
The coupling action and transmission characteristics of these two embodiments are exactly the same as those of the above embodiments using a resonator in which the dielectric portion is formed into a rectangular parallelepiped, and by providing an indirect coupling circuit, it can be made into a polar type. It is exactly the same as in each of the above-mentioned embodiments that the crotch magnetic field coupling degree can be made denser and the coupling degree can be changed by inserting a coupling adjustment screw into the gap.

又、第24図及び第26図に示すように、円筒形誘電体
共振器と接するシールドケース1の側壁及び端壁に断面
弧状の溝状凹部を設けることにより共振器を安定に保持
し得ると共に円筒形誘電体の外表面に金属被膜を付着す
ることなくシールドケース1を外部導体に兼用する場合
、シールドケース1と円筒形誘電体の側面との接触面積
を大ならしめ得るので、シールドケース1を外部導体と
して有効に利用し得ることとなる。
Furthermore, as shown in FIGS. 24 and 26, by providing groove-shaped recesses with an arcuate cross section in the side walls and end walls of the shield case 1 that are in contact with the cylindrical dielectric resonator, the resonator can be held stably. When the shield case 1 is used as an external conductor without attaching a metal film to the outer surface of the cylindrical dielectric, the contact area between the shield case 1 and the side surface of the cylindrical dielectric can be increased. can be effectively used as an external conductor.

以上の説明から明らかなように、本発明BPFにおいて
は従来のように微小容量を介して段間結合を行うことな
く、誘電体共振器における結合面からのもれ磁界によっ
て段間結合を行うように構成しであるので、所要の伝送
特性を得ること及び特性をそろえること等が極めて容易
で、又、隣接対向する誘電体共振器の結合面間に空隙を
介在させであるので動作を安定ならしめ得る等の特長を
有するものでその効果甚だ大である。
As is clear from the above explanation, in the BPF of the present invention, the interstage coupling is not performed through a microcapacitance as in the conventional case, but is performed by the leakage magnetic field from the coupling surface of the dielectric resonator. Because of this structure, it is extremely easy to obtain the required transmission characteristics and to align the characteristics, and since there is a gap between the coupling surfaces of adjacent dielectric resonators facing each other, operation can be stabilized. It has features such as being able to tighten the skin, and its effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の帯域通過ら波器の一例を示す断面図、
第2図は、その等価回路図、第3図、第4図、第10図
、第11図、第14図ないし第16図、第20図ないし
第22図及び第24図ないし第28図は本発明の一実施
例を示す断面図、第5図は、本発明における共振器の一
例を示す拡大断面図、第6図は、共振器間の結合距離と
磁界結合度の関係を示す曲線図、第7図、第9図、第1
3図、第17図及び第18図は、本発明ろ波器の伝送特
性を示す曲線図、第8図、第12図、第19図及び第2
3図は、本発明ろ波器の等価回路図で、1:シールドケ
ース、2.ないし2◆:誘電体共振器の構成素子、31
 ないし33:シールド板、41 % 42.91及び
9.:入出力同軸端子、5ar 454s、 IO+及
び102=入出力結合容量素子、512.5コ3及び5
34:段間結合容量素子、6I ないし醸及び61 な
いし6t:誘電体共振器、7I  ないし7n:固定用
ねじ、81 ないしan−7:空隙、1ド誘電体より成
る直方体、12及び15:金属被膜、13:棒状導体、
14:ねじ孔、16二開接結合線路、+77 、 +7
2 、+91−19+、231及び232:結合素子、
18:導体より成る仕切壁、20及び24:孔隙、21
及び26:接続導体、22及び25:絶縁物、271 
及び275二結合凋整ねじ、LJIないしり、l14及
びLl ないしLn=共振回路、TI及びT−二人出力
端子、CoI、 C4t、、 C(及びCコニ入出力結
合容量、012 % Cja3及びC34:段間結合容
量、M、ユないしM(FL−1)7L’共振回路間の等
価相互インダクタンス、CC:間接結合線路、MtqL
%M、31及びMお2:間接結合回路の等価相互インダ
クタンス、C/72、C1qt及びC/91 ’間接結
合容量である。 第1図 第2図 第3図 第4図 第5図 第6図 1、Ll cl、ii 第7図 第8図 第9図 第10図 第11図 第12図 第13図 第14図   第16図 第15図 第17図 第18図 第19図
FIG. 1 is a cross-sectional view showing an example of a conventional band-pass wave generator;
Fig. 2 is an equivalent circuit diagram, Fig. 3, Fig. 4, Fig. 10, Fig. 11, Fig. 14 to 16, Fig. 20 to 22, and Fig. 24 to 28 are 5 is an enlarged sectional view showing an example of a resonator according to the present invention; FIG. 6 is a curve diagram showing the relationship between the coupling distance between resonators and the degree of magnetic field coupling. , Fig. 7, Fig. 9, Fig. 1
Figures 3, 17, and 18 are curve diagrams showing the transmission characteristics of the filter of the present invention, Figures 8, 12, 19, and 2.
Figure 3 is an equivalent circuit diagram of the filter of the present invention, in which 1: shield case, 2. or 2◆: component of dielectric resonator, 31
to 33: Shield plate, 41% 42.91 and 9. : Input/output coaxial terminal, 5ar 454s, IO+ and 102=input/output coupling capacitance element, 512.5 pieces 3 and 5
34: Interstage coupling capacitance element, 6I to 61 and 61 to 6t: Dielectric resonator, 7I to 7n: Fixing screw, 81 to an-7: Air gap, rectangular parallelepiped made of dielectric, 12 and 15: Metal Film, 13: Rod-shaped conductor,
14: Screw hole, 16 double junction coupling line, +77, +7
2, +91-19+, 231 and 232: coupling element,
18: Partition wall made of conductor, 20 and 24: Pore, 21
and 26: connection conductor, 22 and 25: insulator, 271
and 275 double coupling adjustment screw, LJI index, l14 and Ll to Ln = resonant circuit, TI and T-two output terminals, CoI, C4t,, C (and C input/output coupling capacitance, 012% Cja3 and C34 : Interstage coupling capacitance, M, Equivalent mutual inductance between Yu to M(FL-1)7L' resonant circuit, CC: Indirectly coupled line, MtqL
%M, 31 and M2: equivalent mutual inductance of the indirect coupling circuit, C/72, C1qt and C/91' indirect coupling capacitance. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 16 Figure 15 Figure 17 Figure 18 Figure 19

Claims (1)

【特許請求の範囲】 (1)共振波長のほぼ錫の軸長を有する内部導体の外周
を誘電体で囲み、この誘電体の外表面に隣接共振器との
結合面及び開放面を除いて外部導体を形成する金属被膜
を付着して成る共振器を複数個シールドケース内におい
て同一極性を保つと共に空隙を介して縦続的に配設した
ことを特徴とするコムライン形帯域通過ろ波器。 (2ン共振波長のほぼ4の軸長を有する内部導体の外周
を誘電体で囲み、この誘電体の外表面に隣接共振器との
結合面及び開放面を除いて外部導体を形成する金属被膜
を付着して成る共振器を複数個シールドケース内におい
て同一極性を保つと共に空隙を介して縦続的に配設し、
かつ前記複数個の共振器の中、2個又はその整数倍の個
数の共振器を隔てた共振器相互を間接結合したこと2特
徴とするコムライン形帯域通過ろ波器。 (3)共振波長のほぼ錫の軸長を有する内部導体の外周
を誘電体で囲み、この誘電体の外表面に隣接共振器との
結合面及び開放面を除いて外部導体を形成する金属被膜
を付着して成る共振器を複数個シールドケース内におい
て同一極性を保つと共に空隙を介して縦続的に配設し、
前記空隙に挿入長を変化し得る結合調整ねじを挿入した
ことを特徴とするコムライン形帯域通過ろ波器。 (4)複数個の共振器が一列に配設された特許請求の範
囲第1項ないし第3項の何れかに記載のコムライン形帯
域通過ろ波器。 (5)複数個の共振器がコの字形に配設された特許請求
の範囲第1項ないし第3項の何れかに記載のコムライン
形帯域通過ろ波器。 (6)共振器が、誘電体より成る直方体の中心軸にほぼ
一致させて共振波長のほぼ錫の軸長を翁する内部導体を
内装し、前記誘電体より成る直方体の外表面に隣接共振
器との結合面及び開放面を除いて外部導体を形成する金
属被膜を付着して成る特許請求の範囲第1項ないし第3
項の何れかに記載のコムライン形帯域通過ろ波器。 (7)共振器が、誘電体より成る円筒体の中心軸にほぼ
一致ぎせて共振波長のほぼジの軸長を有する内部導体を
内装し、前記誘電体より成る円筒体の外表面に隣接共振
器との結合面及び開放面を除いて外部導体を形成する金
属被膜を付着して成る特許請求の範囲第1項ないし第3
項の何れかに記載のコムライン形帯域通過ろ波器。 (8)共振器が、共振波長のほぼ4の軸長を有する内部
導体の外周を誘電体で囲み、共振器が内装されるシール
ドケースを外部導体に兼用して成る特許請求の範囲第1
項ないし第3項の何れかに記載のコムライン形帯域通過
ろ波器。
[Scope of Claims] (1) The outer periphery of an inner conductor having an axial length approximately equal to that of tin at the resonant wavelength is surrounded by a dielectric material, and the outer surface of this dielectric material is provided with an external A combline type bandpass filter characterized in that a plurality of resonators each having a metal film attached thereto forming a conductor are arranged in series in a shielded case while maintaining the same polarity with an air gap interposed therebetween. (The outer periphery of an inner conductor having an axial length of approximately 4 times the resonant wavelength of 2 is surrounded by a dielectric material, and the outer surface of this dielectric material is coated with a metal coating that forms an outer conductor except for the coupling surface with the adjacent resonator and the open surface. A plurality of resonators each having the same polarity maintained in a shield case and arranged cascaded through a gap,
A combline type bandpass filter characterized in that two or an integral multiple of two or an integral multiple thereof of the plurality of resonators are indirectly coupled to each other. (3) A dielectric surrounds the outer periphery of an inner conductor having an axial length approximately equal to that of tin at the resonant wavelength, and a metal coating forms the outer conductor on the outer surface of the dielectric except for the coupling surface with the adjacent resonator and the open surface. A plurality of resonators each having the same polarity maintained in a shield case and arranged cascaded through a gap,
A combline type bandpass filter characterized in that a coupling adjustment screw whose insertion length can be changed is inserted into the gap. (4) A combline type bandpass filter according to any one of claims 1 to 3, wherein a plurality of resonators are arranged in a line. (5) A combline type bandpass filter according to any one of claims 1 to 3, in which a plurality of resonators are arranged in a U-shape. (6) The resonator includes an internal conductor that is approximately aligned with the center axis of the rectangular parallelepiped made of a dielectric material and has an axial length of approximately the tin axis of the resonant wavelength, and the resonator is adjacent to the outer surface of the rectangular parallelepiped made of the dielectric material. Claims 1 to 3, in which a metal coating forming an outer conductor is attached to the outer conductor except for the bonding surface and the open surface.
The combline type bandpass filter according to any one of paragraphs. (7) The resonator includes an internal conductor having an axial length approximately equal to the resonant wavelength approximately coincident with the central axis of the cylinder made of a dielectric, and resonates adjacent to the outer surface of the cylinder made of the dielectric. Claims 1 to 3 are formed by attaching a metal coating forming an external conductor except for the connecting surface with the container and the open surface.
The combline type bandpass filter according to any one of paragraphs. (8) Claim 1 in which the resonator is formed by surrounding the outer periphery of an inner conductor having an axial length of approximately 4 times the resonant wavelength with a dielectric material, and the shield case in which the resonator is housed also serves as the outer conductor.
The combline type bandpass filter according to any one of Items 1 to 3.
JP9884682A 1982-06-09 1982-06-09 Comb-line type band-pass filter Pending JPS58215803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9884682A JPS58215803A (en) 1982-06-09 1982-06-09 Comb-line type band-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9884682A JPS58215803A (en) 1982-06-09 1982-06-09 Comb-line type band-pass filter

Publications (1)

Publication Number Publication Date
JPS58215803A true JPS58215803A (en) 1983-12-15

Family

ID=14230605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9884682A Pending JPS58215803A (en) 1982-06-09 1982-06-09 Comb-line type band-pass filter

Country Status (1)

Country Link
JP (1) JPS58215803A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073934A1 (en) * 2007-12-13 2009-06-18 Triasx Pty Ltd A microwave filter
CN104241802A (en) * 2013-06-24 2014-12-24 深圳光启创新技术有限公司 Manufacturing method of harmonic oscillator, harmonic oscillator, filter and electromagnetic device
WO2016072647A1 (en) * 2014-11-07 2016-05-12 주식회사 이너트론 Duplexer
KR20160054853A (en) * 2014-11-07 2016-05-17 주식회사 이너트론 Duplexer
WO2016089015A1 (en) * 2014-12-03 2016-06-09 주식회사 이너트론 Filter package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368534A (en) * 1976-11-26 1978-06-19 Siemens Ag Filter for extremely short electromagnetic wave
JPS56153801A (en) * 1980-04-28 1981-11-28 Oki Electric Ind Co Ltd Dielectric filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368534A (en) * 1976-11-26 1978-06-19 Siemens Ag Filter for extremely short electromagnetic wave
JPS56153801A (en) * 1980-04-28 1981-11-28 Oki Electric Ind Co Ltd Dielectric filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073934A1 (en) * 2007-12-13 2009-06-18 Triasx Pty Ltd A microwave filter
CN104241802A (en) * 2013-06-24 2014-12-24 深圳光启创新技术有限公司 Manufacturing method of harmonic oscillator, harmonic oscillator, filter and electromagnetic device
WO2016072647A1 (en) * 2014-11-07 2016-05-12 주식회사 이너트론 Duplexer
KR20160054852A (en) * 2014-11-07 2016-05-17 주식회사 이너트론 Duplexer
KR20160054853A (en) * 2014-11-07 2016-05-17 주식회사 이너트론 Duplexer
WO2016072659A3 (en) * 2014-11-07 2016-06-23 주식회사 이너트론 Duplexer
US9768485B2 (en) 2014-11-07 2017-09-19 Innertron, Inc. Duplexer
WO2016089015A1 (en) * 2014-12-03 2016-06-09 주식회사 이너트론 Filter package

Similar Documents

Publication Publication Date Title
CA1162622A (en) High frequency filter
JPH0246082Y2 (en)
US4680560A (en) Electrical filter device
JPS5836522B2 (en) stripline bandpass filter
JPS58215803A (en) Comb-line type band-pass filter
Kallmann Equalized delay lines
WO1995027318A1 (en) Resonator and filter using it
US3577104A (en) Waveguide filter having sequence of thick capacitive irises
KR101026416B1 (en) Apparatus for fixing open type notch and notch filter with it
JPH03270501A (en) Dielectric filter
JPS58170101A (en) Band-pass filter
JPS595701A (en) Comb line type band-pass filter
JPS5989002A (en) Comb-line type band-pass filter
JPH0425722B2 (en)
JPH0467361B2 (en)
Yuan et al. Design of tunable balanced dual-band filter using SIR and EMSIW
US3460074A (en) Filter for very short electromagnetic waves
JPH0358501A (en) Resonator
JPS5896401A (en) Small sized high frequency filter
JPS5989001A (en) Comb-line type band-pass filter
JPS61280102A (en) Band-pass filter
JPS63176002A (en) Dielectric resonator device
JPS58178601A (en) Band-pass filter
JP2631268B2 (en) Resonator and filter comprising the same
KR20230136282A (en) Baand rejection filter for the mobile communications service quality improvement