JPH0425722B2 - - Google Patents

Info

Publication number
JPH0425722B2
JPH0425722B2 JP6013683A JP6013683A JPH0425722B2 JP H0425722 B2 JPH0425722 B2 JP H0425722B2 JP 6013683 A JP6013683 A JP 6013683A JP 6013683 A JP6013683 A JP 6013683A JP H0425722 B2 JPH0425722 B2 JP H0425722B2
Authority
JP
Japan
Prior art keywords
coaxial
dielectric
conductor
input
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6013683A
Other languages
Japanese (ja)
Other versions
JPS59185404A (en
Inventor
Morikazu Sagawa
Mitsuo Makimoto
Sadahiko Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6013683A priority Critical patent/JPS59185404A/en
Publication of JPS59185404A publication Critical patent/JPS59185404A/en
Publication of JPH0425722B2 publication Critical patent/JPH0425722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、構造が簡単で、阻止域が広く、かつ
高調波抑圧特性を有する誘電体共振器を用いた同
軸型波器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a coaxial wave generator using a dielectric resonator that has a simple structure, a wide stop band, and harmonic suppression characteristics.

従来例の構成とその問題点 第1図は、従来用いられている誘電体共振器を
用いた同軸型波器の断面図である。ここでは一
例として、共振器が3段の例について述べる。筐
体10に、内周面、外周面および短絡側の端面
を、金属導体で被覆した、4分の1波長の誘電体
14〜16と中心導体11〜13から共振器を構
成し、誘電体の両端面を金属導体で被覆した容量
素子22,23により段間結合を、21,24に
より入出力結合を取り、コネクタ30,31から
入出力信号を取り出している。この場合容量素子
の容量値を調整することで所望の帯域を得ている
が、微少容量であるため、寸法精度、誘電率のバ
ラツキなど製作上の理由から容量値が設計値から
ずれてしまう。そのため誘電体を削つたり、貼り
付けたりして調整する必要があり量産には不向き
である。また4分の1波長の線路を共振器に用い
ているため、3次、5次などの奇数次の高調波に
対しても通過域が生じ、高調波成分を抑圧する効
果が期待できず、発振器、C級増幅器などの出力
波器としては不都合である。
Configuration of Conventional Example and Its Problems FIG. 1 is a sectional view of a conventional coaxial wave device using a dielectric resonator. Here, as an example, an example in which there are three stages of resonators will be described. A resonator is configured in the housing 10 by quarter-wavelength dielectrics 14 to 16 and center conductors 11 to 13 whose inner peripheral surface, outer peripheral surface, and short-circuit side end surface are coated with a metal conductor. Interstage coupling is provided by capacitive elements 22 and 23 whose both end surfaces are covered with metal conductors, and input/output coupling is provided by 21 and 24, and input/output signals are taken out from connectors 30 and 31. In this case, the desired band is obtained by adjusting the capacitance value of the capacitive element, but since the capacitance is minute, the capacitance value deviates from the design value due to manufacturing reasons such as dimensional accuracy and variation in dielectric constant. Therefore, it is necessary to adjust the dielectric material by cutting or pasting it, making it unsuitable for mass production. Furthermore, since a quarter-wavelength line is used in the resonator, a passband occurs even for odd-numbered harmonics such as the third and fifth harmonics, making it impossible to expect the effect of suppressing harmonic components. This is inconvenient for output wave devices such as oscillators and class C amplifiers.

他の例として第2図に示すのは、線路の特性イ
ンピーダンスをステツプ状に変化させた誘電体4
1〜43と中心導体17〜19で共振器を構成
し、誘電体基板70の上に形成した導体71と7
2,74と75の間の容量で入出力結合を、72
と73,73と74の間の容量で段間結合を構成
し、コネクタ30,31から入出力信号を取り出
すものである。50は周波数の微調整を行うチユ
ーニングスクリユー、60は誘電体基板を固定す
る押え板、61は無負荷Qの劣化を避けるために
用いる金属リングである。図において第1図と同
一番号は、第1図と同じ作用をするものである。
この場合入出力および段間結合には、誘電体基板
上に構成した導体間の容量を利用しているため、
微少容量も精度よく実現でき、結合の無調整化が
図られ量産性に富んでいる。また線路の特性イン
ピーダンスがステツプ状に変化した構造の共振器
を用いているため、そのインピーダンス比を選ぶ
ことにより、スプリアス周波数を基本周波数の整
数倍でないところに設定することができるから高
調波抑圧効果は期待できるが、フイルタのスプリ
アス応答は低減されているわけではなく、阻止域
特性は改善されない欠点がある。
As another example, Fig. 2 shows a dielectric material 4 in which the characteristic impedance of the line is changed stepwise.
1 to 43 and center conductors 17 to 19 constitute a resonator, and conductors 71 and 7 formed on a dielectric substrate 70
2, input/output coupling with a capacitance between 74 and 75, 72
and 73, and the capacitance between 73 and 74 constitutes an interstage coupling, and input/output signals are taken out from the connectors 30, 31. 50 is a tuning screw for finely adjusting the frequency, 60 is a holding plate for fixing the dielectric substrate, and 61 is a metal ring used to avoid deterioration of the no-load Q. In the figures, the same numbers as in FIG. 1 have the same functions as in FIG. 1.
In this case, the input/output and interstage coupling utilizes the capacitance between conductors configured on the dielectric substrate, so
Minute capacitance can be achieved with high precision, and coupling adjustment is not required, making it highly suitable for mass production. In addition, since a resonator with a structure in which the characteristic impedance of the line changes in steps is used, by selecting the impedance ratio, the spurious frequency can be set to a value that is not an integer multiple of the fundamental frequency, resulting in harmonic suppression effects. However, the spurious response of the filter is not reduced and the stopband characteristics are not improved.

発明の目的 本発明は、構造が簡単で、基本周波数以外の周
波数は十分減衰され、阻止域が広くかつ高調波抑
圧特性を有する同軸型波器を提供しようとする
ものである。
OBJECTS OF THE INVENTION The present invention provides a coaxial transducer which has a simple structure, sufficiently attenuates frequencies other than the fundamental frequency, has a wide stopband, and has harmonic suppression characteristics.

発明の構成 本発明は誘電体の内周面、外周面および短絡側
の端面を金属導体で被覆した同軸構造を有し、線
路の特性インピーダンスが一様な共振器と線路の
特性インピーダンスをステツプ状に変化させた共
振器を組み合せることにより、構造が簡単で、基
本周波数以外の周波数は十分減衰され、阻止域が
広くかつ高調波抑圧特性を有する同軸型波器を
提供しようとするものである。
Structure of the Invention The present invention has a coaxial structure in which the inner circumferential surface, outer circumferential surface, and end surface on the short-circuit side of a dielectric body are coated with a metal conductor, and the characteristic impedance of the line is changed into a step-shaped resonator and a line whose characteristic impedance is uniform. By combining resonators that have been changed to .

実施例の説明 以下図面を用いて、本発明の実施例を示す。Description of examples Embodiments of the present invention will be described below using the drawings.

第3図は、本発明の一実施例を示す図である。
本例も従来例と同じ3段構成の例である。誘電体
を用いた同軸型共振器44〜46は、内周面、外
周面および短絡側の端面を金属導体で被覆(例え
ば銅メツキ、銀ペーストの焼き付け)したもの
で、中心導体17〜19を銀入りハンダ、銀ペー
ストなどで固定している。誘電体を用いた同軸型
共振器44〜46は、短絡部、外周面を筐体10
に、銀入りハンダ、銀ペーストなどで固定してお
り、開放部は、中心導体17〜19を通して、結
合用の誘電体基板70に、押え板60を用いてし
つかり固定しており、耐振性の向上を図つてい
る。チユーニングスクリユー50は、共振器とと
もに共振器回路を構成するための容量構成成分で
あり、具体的には、チユーニングスクリユー50
と押え板60の距離を機械的に変えることにより
共振周波数を可変にしている。入出力結合および
段間結合は、第2図の従来例で示したように、誘
電体基板70の上に形成した導体の間の容量を用
いて形成している。図において第2図と同一番号
は、第2図と同じ作用をするものである。共振器
は、入出力に線路の特性インピーダンスが一様な
共振器、段間に線路の特性インピーダンスをステ
ツプ状に変化させた共振器(以下SIR(Stepped
Impedance Resonator)と略す)を配置してあ
るが、この配置方法ならびに用いるSIRの個数は
この例に限らないことは言うまでもない。一様線
路は、スプリアス共振周波数を変えることはでき
ず、基本共振周波数0の3倍、5倍と奇数倍にス
プリアス共振周波数が発生するが、SIRはそのイ
ンピーダンス比(K=開放側線路の特性インピー
ダンス/短絡側線路の特性インピーダンス)によ
つて、スプリアス共振周波数を任意に変えること
ができる。例えばK=0.5に選ぶと、スプリアス
共振周波数は、基本共振周波数の4.1倍、6.1倍な
どとなり、一様線路のスプリアス共振周波数から
ずらすことができる。このように基本周波数0
一致してもスプリアス共振周波数が異なる共振器
から構成される波器は、基本周波数以外の周波
数は十分減衰され基本周波数のみに通過域を持ち
阻止域の広い波器を実現することができる。
FIG. 3 is a diagram showing an embodiment of the present invention.
This example also has the same three-stage configuration as the conventional example. The coaxial resonators 44 to 46 using a dielectric material have the inner circumferential surface, outer circumferential surface, and short-circuit side end surface coated with a metal conductor (for example, copper plating or baking with silver paste), and the center conductors 17 to 19 are It is fixed with silver solder, silver paste, etc. The coaxial resonators 44 to 46 using dielectrics have short circuit parts and outer peripheral surfaces connected to the housing 10.
It is fixed with silver-containing solder, silver paste, etc., and the open part is fixed firmly to the dielectric substrate 70 for coupling through the center conductors 17 to 19 using a holding plate 60, so that it has vibration resistance. We are trying to improve the quality of our products. The tuning screw 50 is a capacitive component for configuring a resonator circuit together with a resonator, and specifically, the tuning screw 50
By mechanically changing the distance between the presser plate 60 and the presser plate 60, the resonance frequency is made variable. The input/output coupling and the interstage coupling are formed using capacitance between conductors formed on a dielectric substrate 70, as shown in the conventional example of FIG. In the figures, the same numbers as in FIG. 2 indicate the same functions as in FIG. 2. A resonator is a resonator in which the characteristic impedance of the line is uniform at the input and output, and a resonator in which the characteristic impedance of the line is changed in steps between stages (hereinafter referred to as SIR).
Impedance Resonator)), but it goes without saying that this arrangement method and the number of SIRs used are not limited to this example. In a uniform line, the spurious resonant frequency cannot be changed, and spurious resonant frequencies occur at odd multiples such as 3 times and 5 times the fundamental resonant frequency 0 , but SIR is the impedance ratio (K = characteristic of the open side line). The spurious resonance frequency can be changed arbitrarily by changing the impedance/characteristic impedance of the shorted line. For example, if K=0.5 is selected, the spurious resonant frequency will be 4.1 times, 6.1 times, etc. the fundamental resonant frequency, and can be shifted from the spurious resonant frequency of the uniform line. In this way, a wave transmitter composed of resonators with the same fundamental frequency 0 but different spurious resonance frequencies is a wave transmitter with a wide stopband and a passband only for the fundamental frequency, with frequencies other than the fundamental frequency being sufficiently attenuated. It can be realized.

第4図は、本発明の他の実施例を示すもので、
入出力結合に同軸ケーブルの中心導体と外導体間
の静電容量を用いた例である。従前の例と同じ部
分は同一番号を付している。本例も3段構成の例
である。入出力結合は、同軸ケーブル80,90
の中心導体83,93と外導体81,91の間の
静電容量を用いている。82,92はテフロンな
どの誘電体(比誘電率εr)で形成される充填体で
ある。段間結合は、第3図の本発明の例で示した
と同じように誘電体基板上に形成した導体間の容
量を用いて形成している。入出力結合は大きな容
量を必要とするので、誘電体基板上の導体間隔
は、狭くならざるを得ない。大きな電力を扱う送
信用波器では、このため誘電体基板上の導体間
の放電が起り、誘電体基板が破壊され、波器と
しての機能を果たなくなる。本例は、入出力結合
に同軸ケーブルの中心導体と外導体間の静電容量
を用いて、放電耐圧の向上を図つたものである。
FIG. 4 shows another embodiment of the present invention,
This is an example of using capacitance between the center conductor and outer conductor of a coaxial cable for input/output coupling. The same parts as in the previous example are given the same numbers. This example is also an example of a three-stage configuration. Input/output connection is by coaxial cable 80, 90
The capacitance between the center conductors 83, 93 and the outer conductors 81, 91 is used. Reference numerals 82 and 92 indicate filling bodies made of a dielectric material (relative dielectric constant ε r ) such as Teflon. The interstage coupling is formed using capacitance between conductors formed on a dielectric substrate in the same manner as shown in the example of the present invention shown in FIG. Since input/output coupling requires large capacitance, the conductor spacing on the dielectric substrate must be narrow. In a transmitting transducer that handles large amounts of power, this causes discharge between conductors on the dielectric substrate, destroying the dielectric substrate and rendering it unable to function as a transducer. In this example, the capacitance between the center conductor and the outer conductor of the coaxial cable is used for input/output coupling to improve the discharge withstand voltage.

第5図は、本発明の他の実施例を示すもので、
入出力および段間結合とも、同軸ケーブルを用い
た例である。従前の例と同じ部分は同一番号を付
している。本例も3段構成の例である。本例は、
大きな電力を扱いかつ通過域が広く段間結合にも
大きな容量を必要とする場合に有効である。入出
力結合は、同軸ケーブル80,90の中心導体8
3,93と外導体81,91の間の静電容量を用
い、段間結合は、同軸ケーブル100,110の
中心導体101,111と外導体103,113
の間の静電容量を用いている。この際誘電体基板
70の上に形成された導体75〜77は、それぞ
れ十分離してあり、導体間の容量による結合は無
視できる程度である。また組み合せた共振器も、
入出力にSIR、段間に線路の特性インピーダンス
が一様な共振器を配置してある。特にSIRは、第
2図〜第4図に示した外導体の径を変えることで
インピーダンス比を変えるタイプではなく、中心
導体170,190の径を変えることでインピー
ダンス比を変えるタイプである。このようにSIR
を実現する手段は、中心導体径すなわち内導体径
を変えても、外導体径を変えてもどちらでもよい
ことは言うまでもない。
FIG. 5 shows another embodiment of the present invention,
This is an example of using coaxial cables for both input/output and interstage coupling. The same parts as in the previous example are given the same numbers. This example is also an example of a three-stage configuration. In this example,
It is effective when handling large power, has a wide passband, and requires large capacity for interstage coupling. The input/output coupling is the center conductor 8 of the coaxial cables 80, 90.
3, 93 and the outer conductor 81, 91, and the interstage coupling is performed using the capacitance between the center conductor 101, 111 of the coaxial cable 100, 110 and the outer conductor 103, 113.
The capacitance between is used. At this time, the conductors 75 to 77 formed on the dielectric substrate 70 are sufficiently spaced from each other, and the coupling due to capacitance between the conductors is negligible. Also, the combined resonator
SIR is placed at the input and output, and a resonator with uniform characteristic impedance of the line is placed between the stages. In particular, SIR is not a type in which the impedance ratio is changed by changing the diameter of the outer conductor shown in FIGS. 2 to 4, but a type in which the impedance ratio is changed by changing the diameters of the center conductors 170 and 190. In this way SIR
Needless to say, this can be achieved by changing the diameter of the center conductor, that is, the diameter of the inner conductor, or by changing the diameter of the outer conductor.

発明の効果 このように本発明では、誘電体の内周面、外周
面および短絡側の端面を金属導体で被覆した同軸
構造を有し、線路の特性インピーダンスが一様な
共振器と線路の特性インピーダンスをステツプ状
に変化させた共振器とを組み合せた同軸型波器
を提供するもので、共振器の構造が簡単なので、
耐振性に優れ、量産性に富む波器となる。
Effects of the Invention As described above, the present invention has a coaxial structure in which the inner circumferential surface, outer circumferential surface, and short-circuit side end surface of a dielectric are covered with a metal conductor, and has a resonator with uniform line characteristic impedance and a line characteristic. It provides a coaxial type wave generator that combines a resonator with a step-like change in impedance, and the structure of the resonator is simple.
It is a corrugator with excellent vibration resistance and is suitable for mass production.

また基本周波数以外の周波数は、十分減衰さ
れ、基本周波数のみに通過域を持ち阻止域の広い
波器を実現でき、発振器、C級増幅器などの出
力波器あるいは広帯域受信機の入力波器とし
て有用であり、その実用価値は非常に大きいもの
である。
In addition, frequencies other than the fundamental frequency are sufficiently attenuated, making it possible to realize a wave device with a passband only at the fundamental frequency and a wide stopband, which is useful as an output wave device for oscillators, class C amplifiers, etc., or as an input wave device for wideband receivers. Therefore, its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の誘電体を用いた
同軸型波器を示す断面図、第3図は、本発明に
よる誘電体を用いた同軸型波器の一実施例を示
す断面図、第4図、第5図は、本発明の他の実施
例を示す断面図である。 44,46,48……誘電体を用いた線路の特
性インピーダンスが一様な同軸型共振器、45,
47,49……誘電体を用いた線路の特性インピ
ーダンスをステツプ状に変化させた同軸型共振
器、50……チユーニングスクリユー、60……
押え板、61……金属リング、70……誘電体基
板、80,90,100,110……同軸ケーブ
ル、17〜19,170,190……中心導体、
30,31……入出力コネクタ、10……筐体。
1 and 2 are sectional views showing a conventional coaxial wave device using a dielectric, and FIG. 3 is a sectional view showing an embodiment of a coaxial wave device using a dielectric according to the present invention. , FIG. 4, and FIG. 5 are cross-sectional views showing other embodiments of the present invention. 44, 46, 48...Coaxial resonator with uniform line characteristic impedance using dielectric material, 45,
47, 49... Coaxial resonator in which the characteristic impedance of a line using a dielectric material is changed in a stepwise manner, 50... Tuning screw, 60...
Holding plate, 61... Metal ring, 70... Dielectric substrate, 80, 90, 100, 110... Coaxial cable, 17-19, 170, 190... Center conductor,
30, 31... Input/output connector, 10... Housing.

Claims (1)

【特許請求の範囲】 1 内周面と外周面とを有する誘電体の、前記内
周面及び外周面を覆つて設けられた内導体と外導
体が誘電体の一端面に設けられた導体部を介して
接続されて短絡端を構成し、上記誘電体の他端を
開放端とした構造の同軸共振器を複数個有し、上
記複数個の同軸共振器として線路の特性インピー
ダンスが一様なものと、線路の特性インピーダン
スをステツプ状に変化させたものとを組合わせて
配されていることを特徴とする同軸型波器。 2 共振器間の段間結合、入出力結合のうち少な
くとも一つの結合を、誘電体基板の両面あるいは
いずれか一方の面に形成した導体の間で行なわせ
ることを特徴とする特許請求の範囲第1項記載の
同軸型波器。 3 共振器間の段間結合、入出力結合のうち少な
くとも一つの結合を、同軸ケーブルの中心導体と
外導体間の静電容量で行なわせることを特徴とす
る特許請求の範囲第1項記載の同軸型波器。
[Scope of Claims] 1. A conductor portion of a dielectric having an inner circumferential surface and an outer circumferential surface, in which an inner conductor and an outer conductor are provided to cover the inner circumferential surface and the outer circumferential surface and are provided on one end surface of the dielectric. It has a plurality of coaxial resonators connected through the dielectric to form a short-circuited end, and the other end of the dielectric is an open end, and the plurality of coaxial resonators have a uniform line characteristic impedance. A coaxial transducer characterized by being arranged in a combination of a transducer and a transducer in which the characteristic impedance of the line is changed in a step-like manner. 2. At least one of interstage coupling between resonators and input/output coupling is performed between conductors formed on both surfaces or either surface of a dielectric substrate. The coaxial wave device described in item 1. 3. At least one of the interstage coupling between the resonators and the input/output coupling is performed by the capacitance between the center conductor and the outer conductor of the coaxial cable. Coaxial type wave device.
JP6013683A 1983-04-06 1983-04-06 Coaxial type filter Granted JPS59185404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6013683A JPS59185404A (en) 1983-04-06 1983-04-06 Coaxial type filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013683A JPS59185404A (en) 1983-04-06 1983-04-06 Coaxial type filter

Publications (2)

Publication Number Publication Date
JPS59185404A JPS59185404A (en) 1984-10-22
JPH0425722B2 true JPH0425722B2 (en) 1992-05-01

Family

ID=13133418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013683A Granted JPS59185404A (en) 1983-04-06 1983-04-06 Coaxial type filter

Country Status (1)

Country Link
JP (1) JPS59185404A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230402A (en) * 1985-04-03 1986-10-14 Murata Mfg Co Ltd Filter device
JPS61280101A (en) * 1985-06-05 1986-12-10 Murata Mfg Co Ltd Distribution constant filter
US4985690A (en) * 1988-07-07 1991-01-15 Matsushita Electric Industrial Co., Ltd. Dielectric stepped impedance resonator
JPH0468702A (en) * 1990-07-05 1992-03-04 Matsushita Electric Ind Co Ltd Coaxial filter
US6650201B2 (en) * 2000-10-26 2003-11-18 Sei-Joo Jang Dielectric filter for filtering out unwanted higher order frequency harmonics and improving skirt response
US6563397B1 (en) * 2000-10-26 2003-05-13 Sei-Joo Jang Dielectric filter for filtering out unwanted higher order frequency harmonics and improving skirt response
US6670867B2 (en) * 2000-10-26 2003-12-30 Sei-Joo Jang Dielectric filter for filtering out unwanted higher order frequency harmonics and improving skirt response

Also Published As

Publication number Publication date
JPS59185404A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
US4742562A (en) Single-block dual-passband ceramic filter useable with a transceiver
US4963843A (en) Stripline filter with combline resonators
US4578656A (en) Microwave microstrip filter with U-shaped linear resonators having centrally located capacitors coupled to ground
US5812036A (en) Dielectric filter having intrinsic inter-resonator coupling
JPS61262301A (en) Ceramic filter and wireless tranceiver using the same
JPH04284003A (en) Planar dielectric filter
JPH0370403B2 (en)
KR900008522B1 (en) Transmitting signal line device
US3959749A (en) Filter of the distributed constants type
US4389624A (en) Dielectric-loaded coaxial resonator with a metal plate for wide frequency adjustments
JPS6310602B2 (en)
JPH0425722B2 (en)
JPS61201501A (en) High frequency filter
US5374906A (en) Filter device for transmitter-receiver antenna
US5132651A (en) Filter apparatus
JPS5836522B2 (en) stripline bandpass filter
JPS62200713A (en) Integrated capacitor
JPS5826843B2 (en) bandpass filter
JP3468093B2 (en) Dielectric filter, duplexer and electronic equipment
JPH0211002A (en) Strip line resonator
JPS59185406A (en) Antenna common-use device
JPH0417481B2 (en)
CN111033884A (en) Filter, duplexer and communication equipment
JPH03173201A (en) Hybrid filter
JPH0221162B2 (en)