JPS5910954B2 - Method for manufacturing silicon carbide bodies for semiconductor manufacturing - Google Patents

Method for manufacturing silicon carbide bodies for semiconductor manufacturing

Info

Publication number
JPS5910954B2
JPS5910954B2 JP6276176A JP6276176A JPS5910954B2 JP S5910954 B2 JPS5910954 B2 JP S5910954B2 JP 6276176 A JP6276176 A JP 6276176A JP 6276176 A JP6276176 A JP 6276176A JP S5910954 B2 JPS5910954 B2 JP S5910954B2
Authority
JP
Japan
Prior art keywords
silicon carbide
manufacturing
semiconductor manufacturing
less
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6276176A
Other languages
Japanese (ja)
Other versions
JPS52145419A (en
Inventor
一成 伴
英一 田路
秀逸 松尾
伊佐男 坂下
重勝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP6276176A priority Critical patent/JPS5910954B2/en
Publication of JPS52145419A publication Critical patent/JPS52145419A/en
Publication of JPS5910954B2 publication Critical patent/JPS5910954B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体製造用炭化珪素体の製造方法に関し、詳
しくは半導体材料載置治具、均熱管等に使用される表面
に緻密質炭化珪素膜を有する炭化珪素体の製造方法に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon carbide body for semiconductor manufacturing, and more specifically to a method for manufacturing a silicon carbide body having a dense silicon carbide film on the surface used for semiconductor material mounting jigs, soaking tubes, etc. This relates to the manufacturing method.

従来、この種の部材は熱伝導率が大きく、かつ5 耐ス
ポーリング性の優れた再結晶炭化珪素材(炭化珪素素材
)から形成されているが、反面この炭化珪素素材は20
%前後の見掛気孔率を有する。
Conventionally, this type of member has been made of recrystallized silicon carbide material (silicon carbide material) that has high thermal conductivity and excellent spalling resistance.
It has an apparent porosity of around %.

このため、該炭化珪素素材から均熱管を形成した場合、
操業時、高温になつた炉壁から蒸発したア10ルカリ物
質がこの均熱管の気孔を容易に通過し、その内側の石英
管を失透させるばかりか、一部石英管をも通過して半導
体材料を汚染する虞れがあつた。また、該炭化珪素素材
から半導体材料載置治具を形成した場合、HF−HNO
3混酸による洗15浄時、その治具の気孔に水分や不純
物が混入して以後使用できない虞れがあつた。これに対
し、かかる欠点を改善するために炭化珪素素材の表面に
真空下で炭化珪素を気相蒸着せしめて緻密質炭化珪素膜
を有する半導体製造用炭20化珪素体の製造方法が提案
されている。
For this reason, when a soaking tube is formed from the silicon carbide material,
During operation, alkali substances that evaporate from the high-temperature furnace wall easily pass through the pores of this heat soaking tube and not only devitrify the quartz tube inside it, but also partially pass through the quartz tube and destroy semiconductors. There was a risk of contaminating the materials. In addition, when a semiconductor material mounting jig is formed from the silicon carbide material, HF-HNO
During cleaning with a mixed acid, there was a risk that moisture and impurities would enter the pores of the jig, making it unusable. In order to improve this drawback, a method for manufacturing a silicon carbide body for semiconductor production having a dense silicon carbide film has been proposed, in which silicon carbide is vapor-deposited on the surface of a silicon carbide material under vacuum. There is.

しかし、この方法により得た炭化珪素体はその表面の炭
化珪素膜にピンホールが発生したり、その膜の密着性が
低く機械的衝撃により容易に亀裂を起こし、とくに凹部
や屈曲部を有する複雑形状の炭化珪素25素材を使用し
た場合顕著にピンホールの発生、密着性の低下が起こる
ため上述したと同様蒸気化したアルカリ物質が通過した
り、水分や不純物が混入する虞れがあつた。このような
ことから、本発明者は炭化珪素素材30表面に形成され
た炭化珪素膜におけるピンホールの発生および密着性の
低下原因を種々研究した結果、炭化珪素素材中の不純物
が多いために、その炭化珪素素材表面に真空下で炭化珪
素を気相蒸着せしめる際、多量の低沸点物質がガス化し
、該素35材に対する炭化珪素の乗りが阻害されて、上
述したピンホールの発生、密着性の低下が起こることを
究明した。
However, the silicon carbide bodies obtained by this method often have pinholes in the silicon carbide film on the surface, the film has poor adhesion and easily cracks due to mechanical impact, and is particularly difficult to use if it has complex structures with concave or bent parts. When a silicon carbide material with a shape of 25 is used, pinholes occur and adhesion deteriorates significantly, so as mentioned above, there is a risk that vaporized alkaline substances may pass through or moisture or impurities may be mixed in. For this reason, the present inventor conducted various studies on the causes of pinhole formation and deterioration of adhesion in the silicon carbide film formed on the surface of the silicon carbide material 30, and found that due to the large amount of impurities in the silicon carbide material, When silicon carbide is vapor-deposited on the surface of the silicon carbide material under vacuum, a large amount of low-boiling point substances are gasified, inhibiting the silicon carbide from riding on the material, resulting in the formation of pinholes and poor adhesion. It was found that a decrease in

しかして、この究明結果から、さらに鋭意研究したとこ
ろ、不純物中とくに、鉄、銅、ナトリウム、カリウムお
よびリチウムの含有量を規制した高純度の炭化珪素素材
を使用し、これに真空下で炭化珪素を気相蒸着すること
により、炭化珪素素材からのガスの発生を抑制して該炭
化珪素素材の凹部、屈曲部の表面をもガス不透過性の均
一な緻密質炭化珪素膜を形成でき、操業時の蒸気化した
アルカリ物質の透過、洗浄時の水分や不純物の混入を防
止できる半導体製造用炭化珪素体が得られることを見い
出した。この場合、炭化珪素素材の最適な純度は不純物
含有量を鉄500嘔以下、銅10購以下、ナトリウム、
カリウムおよびリチウムが夫々5鬼以下にすることであ
る。以下、本発明を詳細に説明する。まず、不純物含有
量が鉄500p1m以下、銅10酵以下、ナトリウム、
カリウムおよびリチウム、それぞれ5PF以下の炭化珪
素素材に真空中好ましくは10トール以下の真空下でハ
ロゲン化珪素、二酸化珪素ガス、水素化珪素等の珪素系
ガス化物と炭化水素、二酸化炭素等の炭素系ガス化物と
を所定割合で混合した混合ガスを供給して、1300〜
1900℃の温度に加熱し、珪素系ガス化物と炭素系ガ
ス化物を反応させて該炭化珪素素材表面に炭化珪素を気
相蒸着せしめ半導体製造用炭化珪素体を造る。
Based on this investigation result, further intensive research revealed that a high-purity silicon carbide material with controlled impurity contents, particularly iron, copper, sodium, potassium, and lithium, was used, and silicon carbide was added to the material under vacuum. By vapor-phase deposition, it is possible to suppress the generation of gas from the silicon carbide material and form a uniform dense silicon carbide film that is gas impermeable even on the surface of the concave and bent parts of the silicon carbide material, making it possible to It has been found that a silicon carbide body for semiconductor manufacturing can be obtained which can prevent the permeation of vaporized alkaline substances during cleaning and the contamination of moisture and impurities during cleaning. In this case, the optimum purity of the silicon carbide material is to reduce the impurity content to less than 500% iron, less than 10% copper, sodium,
Potassium and lithium should each be below 5. The present invention will be explained in detail below. First, the impurity content is less than 500p1m of iron, less than 10% copper, sodium,
Potassium and lithium are each added to a silicon carbide material of 5PF or less in a vacuum, preferably under a vacuum of 10 torr or less, with silicon-based gasified substances such as silicon halides, silicon dioxide gas, and silicon hydride, and carbon-based hydrocarbons and carbon-based materials such as carbon dioxide. 1300~
It is heated to a temperature of 1900° C., and the silicon-based gasified material and the carbon-based gasified material are reacted to vapor-deposit silicon carbide on the surface of the silicon carbide material to produce a silicon carbide body for semiconductor manufacturing.

本発明における炭化珪素素材としては炭化珪素粉末に有
機バインダーを混合し、成形した後、旦仮焼して該有機
バインダーを炭化し、ひきつづき珪石粉等の詰粉中にて
焼成して造られる気孔率が20%前後の再結晶炭化珪素
体を使用できるが、Jとくに、この再結晶炭化珪素体に
一旦常圧で炭化珪素を沈積せしめ気孔率5%前後のもの
として用いることが更に望ましい。
The silicon carbide material in the present invention has pores created by mixing silicon carbide powder with an organic binder, shaping it, first calcining to carbonize the organic binder, and then firing it in a filling powder such as silica powder. Although it is possible to use a recrystallized silicon carbide body having a porosity of about 20%, it is more preferable to deposit silicon carbide on this recrystallized silicon carbide body at normal pressure and use it as having a porosity of about 5%.

また、この炭化珪素素材の形状は管状、板状、或いはス
リツトを有する管状、板状等任意である。さらに、この
炭化珪素 5素材の不純物含有量を上述した範囲に限定
した理由は、各不純物の含有量が上述した上限を越える
と、その素材に炭化珪素を気相蒸着せしめる際、該素材
からガスが発生し易くなり、ピンホールを生じたり、密
着性の低下が起こりガス不透過性の 4緻密質炭化珪素
膜を有する半導体製造用炭化珪素体が得られないからで
ある。なお、炭化珪素素材に対する炭化珪素膜の密着性
を高める目的から、該炭化珪素素材の表面を研摩加工を
施して平滑化してもよい。
Further, the shape of this silicon carbide material is arbitrary, such as a tube, a plate, a tube with a slit, or a plate. Furthermore, the reason why the impurity content of this silicon carbide 5 material was limited to the range mentioned above is that if the content of each impurity exceeds the upper limit mentioned above, gas will be removed from the material when silicon carbide is vapor-deposited on the material. This is because pinholes are likely to occur and adhesion is reduced, making it impossible to obtain a silicon carbide body for semiconductor manufacturing having a gas-impermeable 4-dense silicon carbide film. Note that, for the purpose of increasing the adhesion of the silicon carbide film to the silicon carbide material, the surface of the silicon carbide material may be smoothed by polishing.

また必要に応じて、炭化珪素素材の表面に真空下で炭化
珪素を気相蒸着せしめ炭化珪素膜を形成した後、さらに
その炭化珪素膜に常圧下で炭化珪素を沈積せしめてもよ
い。次に、本発明の実施例を説明する。
If necessary, silicon carbide may be vapor-deposited on the surface of the silicon carbide material under vacuum to form a silicon carbide film, and then silicon carbide may be further deposited on the silicon carbide film under normal pressure. Next, examples of the present invention will be described.

実施例 1 鉄400P慝銅5P邑ナトリウム3P慝カリウム2PP
1.リチウム2P傳の不純物含有量の高純度炭化珪素素
材(気孔率5%、寸法30W×400LX5t7n)に
ダイヤモンドカツタを用いて巾0.8龍、深さ5m11
の溝を3m71Lおきに80か所設けた後、この炭化珪
素素材をHF−HNO3混酸で加工時の汚れを洗い、イ
オン交換水で十分洗浄して乾燥した。
Example 1 Iron 400P, copper 5P, sodium 3P, potassium 2PP
1. A high purity silicon carbide material with an impurity content of 2P lithium (porosity 5%, dimensions 30W x 400L x 5t7n) was cut with a diamond cutter to a width of 0.8mm and a depth of 5m11.
After forming 80 grooves at intervals of 3 m and 71 L, the silicon carbide material was washed with HF-HNO3 mixed acid to remove dirt from processing, thoroughly washed with ion-exchanged water, and dried.

次いで、炭化珪素素材に真空下でシリカを直接蒸発揮散
させた亜酸化珪素ガスと炭化水素とをモル比で1:1の
割合で混合したガスを供給し、1800℃の温度下で3
0時間加熱せしめ表面に炭化珪素膜を有する半導体製造
用治具を得た。得られた半導体製造用治具は溝部の表面
まで均一に0.1mmの緻密質炭化珪素膜が形成されて
いた。比較例鉄3000P臥銅30PFL.ナトリウム
10PFL.カリウム8PFL.リチウム8匹の多量の
不純物を含有する炭化珪素素材を使用した以外、前記実
施例と同様な方法により半導体製造用治具を得た。
Next, a mixture of silicon suboxide gas obtained by directly evaporating silica and hydrocarbons in a molar ratio of 1:1 was supplied to the silicon carbide material under vacuum, and the mixture was heated at a temperature of 1800°C for 30 minutes.
A semiconductor manufacturing jig having a silicon carbide film on the surface was obtained by heating for 0 hours. In the obtained semiconductor manufacturing jig, a dense silicon carbide film of 0.1 mm was uniformly formed on the surface of the groove. Comparative example: Iron 3000P, copper 30PFL. Sodium 10PFL. Potassium 8PFL. A jig for semiconductor manufacturing was obtained in the same manner as in the previous example except that a silicon carbide material containing a large amount of impurities such as 8 lithium atoms was used.

得られた半導体製造用治具は溝部の表面に炭化珪素膜が
形成されないばかりか、他の平滑な面に形成された炭化
珪素膜にピンホールが認められた。しかして、上記実施
例1および比較例の半導体製造用治具の溝部にシリコン
ウエハ一を載置し、シリコン半導体を製造した後、各治
具の表面の汚れをHF−HNO3混酸で洗浄、乾燥し、
再びシリコン半導体を製造した。その結果本発明の治具
を用いて得られた半導体は汚染されず、エツチピツトの
発生が皆無で極めてライフタイムの長いものであつた。
これに対し、従来の治具を用いて得られた半導体は、該
治具の洗浄時に混入した不純物によつて汚染され、エツ
チピツトが多数発生してライフタイムの短いものであつ
た。実施例 2 不純物含有量が鉄50PFL.銅2pyn.ナトリウム
1Pへカリウム1PFL.リチウム1PF1の高純度の
管状炭化珪素素材(気孔率5%、寸法90φ×500M
lL)を使用した以外前記実施例と同様な方法にて内面
、外面に炭化珪素膜を有する半導体製造用均熱管を得た
In the obtained semiconductor manufacturing jig, not only was no silicon carbide film formed on the surface of the groove, but also pinholes were observed in the silicon carbide film formed on other smooth surfaces. After manufacturing a silicon semiconductor by placing a silicon wafer in the groove of the semiconductor manufacturing jig of Example 1 and Comparative Example, the surface of each jig was cleaned with HF-HNO3 mixed acid and dried. death,
Silicon semiconductors were manufactured again. As a result, the semiconductor obtained using the jig of the present invention was not contaminated, had no etch pits, and had an extremely long lifetime.
On the other hand, semiconductors obtained using conventional jigs are contaminated by impurities mixed in during cleaning of the jigs, generate many etch pits, and have short lifetimes. Example 2 Impurity content is iron 50PFL. Copper 2 pyn. Sodium 1P to potassium 1PFL. Lithium 1PF1 high purity tubular silicon carbide material (porosity 5%, dimensions 90φ x 500M
A soaking tube for semiconductor manufacturing having a silicon carbide film on the inner and outer surfaces was obtained in the same manner as in the previous example except that 1L) was used.

得られた均熱管は0.1mmの均一な緻密質炭化珪素膜
が形成されており、ガス不透過性を有するものであつた
The obtained soaking tube had a uniform dense silicon carbide film of 0.1 mm formed thereon, and was gas impermeable.

以上詳述した如く、本発明によれば所望形状とくに凹部
、屈曲部を有する複雑形状の炭化珪素素材表面にガス不
透過性の均一な緻密質炭化珪素膜を形成して、操業時の
蒸気化したアルカリ物質の透過、洗浄時の水分や不純物
の混入を防止でき、かつ耐用寿命の長い半導体製造用炭
化珪素体を得ることができるものである。
As described in detail above, according to the present invention, a gas-impermeable, uniform, dense silicon carbide film is formed on the surface of a silicon carbide material having a desired shape, particularly a complex shape having concave portions and bent portions, and vaporization during operation is achieved. According to the present invention, it is possible to obtain a silicon carbide body for semiconductor manufacturing that can prevent permeation of alkaline substances and contamination of moisture and impurities during cleaning, and has a long service life.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物含有率が鉄500ppm以下、銅10ppm
以下、ナトリウム5ppm以下、カリウム5ppm以下
、リチウム5ppm以下の炭化珪素素材の表面に真空下
でより高純の炭化珪素を気相蒸着せしめることを特徴と
する半導体製造用炭化珪素体の製造方法。
1 Impurity content: iron 500ppm or less, copper 10ppm
Hereinafter, a method for manufacturing a silicon carbide body for semiconductor manufacturing, which comprises vapor-depositing higher purity silicon carbide on the surface of a silicon carbide material containing 5 ppm or less of sodium, 5 ppm or less of potassium, and 5 ppm or less of lithium under vacuum.
JP6276176A 1976-05-29 1976-05-29 Method for manufacturing silicon carbide bodies for semiconductor manufacturing Expired JPS5910954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6276176A JPS5910954B2 (en) 1976-05-29 1976-05-29 Method for manufacturing silicon carbide bodies for semiconductor manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6276176A JPS5910954B2 (en) 1976-05-29 1976-05-29 Method for manufacturing silicon carbide bodies for semiconductor manufacturing

Publications (2)

Publication Number Publication Date
JPS52145419A JPS52145419A (en) 1977-12-03
JPS5910954B2 true JPS5910954B2 (en) 1984-03-12

Family

ID=13209690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6276176A Expired JPS5910954B2 (en) 1976-05-29 1976-05-29 Method for manufacturing silicon carbide bodies for semiconductor manufacturing

Country Status (1)

Country Link
JP (1) JPS5910954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033081Y2 (en) * 1984-12-19 1991-01-28

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158622A (en) * 1979-05-30 1980-12-10 Toshiba Ceramics Co Ltd Manufacture of silicon carbide material for semiconductor
JPS57209885A (en) * 1981-06-22 1982-12-23 Toshiba Ceramics Co Member for low melting point metal melt keeping furnace
JPS5946491A (en) * 1982-09-10 1984-03-15 Toshiba Ceramics Co Ltd Heat exchanger of silicon carbide
US4761134B1 (en) * 1987-03-30 1993-11-16 Silicon carbide diffusion furnace components with an impervious coating thereon
JP2000007438A (en) * 1998-06-23 2000-01-11 Ngk Insulators Ltd High-resistance recrystallized silicon carbide, corrosion- resisting member, production of high-resistance recrystallized silicon carbide and production of corrosion-resisting member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033081Y2 (en) * 1984-12-19 1991-01-28

Also Published As

Publication number Publication date
JPS52145419A (en) 1977-12-03

Similar Documents

Publication Publication Date Title
JP3545459B2 (en) Method of making crystalline silicon carbide coating at low temperature
JPH05294781A (en) Glassy carbon-coated graphite component for producing silicon crystal and production thereof
US5993770A (en) Silicon carbide fabrication
JP3902225B2 (en) Method and apparatus for producing silicon carbide single crystal by sublimation breeding
JPS5910954B2 (en) Method for manufacturing silicon carbide bodies for semiconductor manufacturing
US5882807A (en) Jig for heat treatment and process for fabricating the jig
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
US6258741B1 (en) Corrosion-resistant member
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH062637B2 (en) Single crystal pulling device
JPH1045474A (en) Production of graphite material coated with pyrolyzed carbon
US5759646A (en) Vessel of pyrolytic boron nitride
JPH107488A (en) High-purity graphite material for single-crystal pulling apparatus, and its production
US20020144647A1 (en) Method of producing silicon carbide
JPS61132579A (en) Silicon carbide body for manufacturing semiconductor
US20030233977A1 (en) Method for forming semiconductor processing components
JPH031271B2 (en)
JPS61268442A (en) Heat-resistant vessel having multilayer structure
JP2787164B2 (en) High oxidation resistant carbonaceous insulation
JPH0920575A (en) Silicon carbide composite material and its production
JP3925884B2 (en) Method for coating SiC film
JPH07153370A (en) Discharge tube
JPH07147277A (en) Member for semiconductor
JP2855458B2 (en) Processing material for semiconductor
JPH0229745B2 (en)