JPH0920575A - Silicon carbide composite material and its production - Google Patents

Silicon carbide composite material and its production

Info

Publication number
JPH0920575A
JPH0920575A JP17096795A JP17096795A JPH0920575A JP H0920575 A JPH0920575 A JP H0920575A JP 17096795 A JP17096795 A JP 17096795A JP 17096795 A JP17096795 A JP 17096795A JP H0920575 A JPH0920575 A JP H0920575A
Authority
JP
Japan
Prior art keywords
silicon carbide
film
composite material
reaction tube
carbide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17096795A
Other languages
Japanese (ja)
Other versions
JP3208045B2 (en
Inventor
Masuzo Yamada
益三 山田
Kichiya Yano
吉弥 谷野
Yasuhiro Akune
安博 阿久根
Seiji Onishi
誠次 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP17096795A priority Critical patent/JP3208045B2/en
Publication of JPH0920575A publication Critical patent/JPH0920575A/en
Application granted granted Critical
Publication of JP3208045B2 publication Critical patent/JP3208045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite material developing no atmospheric contamination even under high-temperature conditions, and suitable for e.g. the reaction tubes for semiconductor diffusion oven, by specifying the spectrum absorption end of silicon carbide film. SOLUTION: This composite material is made up of a basal body as a porous silicon carbide sintered compact produced by molding and sintering high-purity silicon carbide powder to a specified reaction tube shape and silicon carbide film(s) as β-SiC chemical vapor deposition film(s) on one or both of the circumferential surfaces of the basal body depending on e.g. the working conditions for the reaction tube. Since the content of heavy metal elements such as Fe, Cu and Cr in the silicon carbide film(s) is extremely low, wafer contamination due to evaporation of such impurities does not occur. Although there are some limitations in the film-forming conditions, it is so specified that the spectrum absorption end falls between 520 and 550nm. This composite material is obtained by the following process: the basal body is placed in a CVD oven which is then depressurized to 0.1-200Torr and then fed with monomethyl trichlorosilane as reaction gas at 1400-1500 deg.C followed by continuous exhaustion to effect CVD so as to be 50-150μm in film thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体拡散炉にお
いて使用される反応管や均熱管等として好適に使用され
る炭化珪素質複合材に関するものであって、特に、炭化
珪素焼結体である多孔質の基体とその表面に化学蒸着さ
れた炭化珪素膜とからなる炭化珪素質複合材に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide based composite material which is preferably used as a reaction tube or a soaking tube used in a semiconductor diffusion furnace, and more particularly to a silicon carbide sintered body. The present invention relates to a silicon carbide composite material including a porous substrate and a silicon carbide film chemically deposited on the surface thereof.

【0002】[0002]

【従来の技術】例えば半導体拡散炉用の反応管の構成材
としては、伝統的には黒鉛が、そして近年では石英が使
用されている。しかし、黒鉛を使用した場合、黒鉛に含
まれる不純物が極めて多く、Siウエハが汚染されると
いった問題があり、また石英は高温条件下では変形,失
透現象等による消耗が激しく、寿命が短い。そこで、処
理時間の短縮化等の要請から熱処理温度を高くする傾向
にあることとも相俟って、近時、炭化珪素焼結体である
多孔質の基体とその表面に化学蒸着された炭化珪素膜と
からなる炭化珪素質複合材で構成された反応管が提案さ
れている。焼結体の表面を炭化珪素の化学蒸着膜で被覆
してなる炭化珪素質複合材で構成しておくことが提案さ
れている。かかる炭化珪素質複合材は、基体が多孔質の
炭化珪素焼結体であるため、耐熱性,耐熱衝撃性に富む
ものである。しかも、基体は多孔質である故に気密性に
乏しいが、基体表面を緻密な炭化珪素の化学蒸着膜で被
覆することによって、全体として十分な気密性を確保で
きるものである。したがって、このような炭化珪素質複
合材で構成される反応管は、反応管として石英製のもの
と同等の機能を発揮させることができることは勿論、高
温条件下での寿命を石英製のものに比して大幅に向上さ
せ得るものである。
2. Description of the Related Art For example, graphite has been traditionally used as a constituent material of a reaction tube for a semiconductor diffusion furnace, and quartz has been used in recent years. However, when graphite is used, there is a problem that the amount of impurities contained in the graphite is extremely large and the Si wafer is contaminated. Further, quartz has a short life due to deformation and devitrification under a high temperature condition. Therefore, in conjunction with the tendency to increase the heat treatment temperature due to the demand for shortening the treatment time, etc., recently, a porous substrate which is a silicon carbide sintered body and silicon carbide chemically vapor-deposited on the surface thereof have been recently used. A reaction tube composed of a silicon carbide composite material including a film has been proposed. It has been proposed that the surface of the sintered body is composed of a silicon carbide based composite material obtained by coating the surface of the sintered body with a chemical vapor deposition film of silicon carbide. Such a silicon carbide based composite material has excellent heat resistance and thermal shock resistance because the substrate is a porous silicon carbide sintered body. Moreover, the substrate is poor in airtightness because it is porous, but it is possible to secure sufficient airtightness as a whole by coating the surface of the substrate with a dense chemical vapor deposition film of silicon carbide. Therefore, a reaction tube made of such a silicon carbide composite material can exhibit the same function as that made of quartz as a reaction tube, and, of course, has a long life under high temperature conditions made of quartz. It can be greatly improved in comparison with the above.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような炭
化珪素質複合材は、高温条件下で使用した場合、不純物
が発生し易く、実用上問題があった。例えば、反応管と
して半導体拡散炉に使用した場合、不純物の発生により
ウエハが汚染し、石英製反応管を使用した場合に比して
欠陥品の発生率が極めて高くなるといった問題があっ
た。
However, such a silicon carbide composite material has a problem in practical use because impurities are likely to be generated when it is used under high temperature conditions. For example, when used as a reaction tube in a semiconductor diffusion furnace, there is a problem that the wafer is contaminated due to the generation of impurities and the generation rate of defective products becomes extremely higher than that when a quartz reaction tube is used.

【0004】そこで、本発明者は、かかる不純物の発生
原因を究明すべく、種々の実験,研究を行ったところ、
基体中に含まれる不純物の発生は炭化珪素膜によって阻
止されるものの、炭化珪素膜自体から不純物が発生して
いることが判明した。すなわち、例えば炭化珪素膜に含
まれるFe,その他の重金属類やSiCの当量比から外
れた過剰なSiが高温雰囲気中において蒸発し、反応管
として使用した場合には、かかる蒸発不純物がウエハを
汚染することが判明した。
Therefore, the present inventor has conducted various experiments and studies in order to investigate the cause of generation of such impurities.
Although the generation of impurities contained in the substrate was blocked by the silicon carbide film, it was found that the impurities were generated from the silicon carbide film itself. That is, for example, Fe, other heavy metals contained in the silicon carbide film, and excess Si deviating from the equivalence ratio of SiC evaporate in a high temperature atmosphere, and when used as a reaction tube, such evaporated impurities contaminate the wafer. It turned out to be.

【0005】本発明は、このような点に鑑みてなされた
もので、高温条件下においても不純物の蒸発による雰囲
気汚染を生じず、半導体拡散炉用反応管等として好適に
使用することができる炭化珪素質複合材を提供し、併せ
てかかる炭化珪素質複合材を好適に製造できる方法を提
供することを目的とするものである。
The present invention has been made in view of the above points, and does not cause atmospheric pollution due to evaporation of impurities even under high temperature conditions, and can be suitably used as a reaction tube for a semiconductor diffusion furnace. It is an object of the present invention to provide a silicon-based composite material and, at the same time, to provide a method by which such a silicon carbide-based composite material can be preferably produced.

【0006】[0006]

【課題を解決するための手段】本発明の炭化珪素質複合
材にあっては、上記の目的を達成すべく、特に、炭化珪
素膜を、そのスペクトル吸収端が550nm以下となる
ものとしておくことを提案する。
In the silicon carbide based composite material of the present invention, in order to achieve the above object, in particular, the silicon carbide film has a spectrum absorption edge of 550 nm or less. To propose.

【0007】また、この炭化珪素質複合材を製造するた
めの本発明の方法にあっては、炭化珪素焼結体である多
孔質の基体を配置したCVD炉内に所定の反応ガスを供
給させることによって、基体表面に炭化珪素膜を化学蒸
着させる場合において、CVD炉から常時排気を行っ
て、CVD炉内を減圧雰囲気に保持させると共に、上記
基体表面ないしその周辺領域に排気流を生じさせるよう
にしておくことを提案する。
Further, in the method of the present invention for producing this silicon carbide composite material, a predetermined reaction gas is supplied into a CVD furnace in which a porous substrate which is a silicon carbide sintered body is arranged. Thus, when the silicon carbide film is chemically vapor-deposited on the surface of the substrate, the CVD furnace is constantly evacuated to maintain the inside of the CVD furnace in a reduced pressure atmosphere and generate an exhaust gas flow on the surface of the substrate or its peripheral region. I suggest you keep it.

【0008】[0008]

【発明の実施の形態】本発明の熱処理炉用部材は、主と
して、高温条件下で且つクリーンな雰囲気で使用される
半導体拡散炉用反応管等の構成材として好適に使用され
るものであり、以下、好ましい実施の形態を、半導体拡
散炉用反応管の構成材として使用した場合について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The heat treatment furnace member of the present invention is preferably used mainly as a constituent material of a reaction tube for a semiconductor diffusion furnace used under high temperature conditions and in a clean atmosphere, Hereinafter, the case where the preferred embodiment is used as a constituent material of a reaction tube for a semiconductor diffusion furnace will be described.

【0009】半導体拡散炉用反応管は、炭化珪素焼結体
である多孔質の基体と、その表面に化学蒸着された炭化
珪素膜とからなる。
The reaction tube for a semiconductor diffusion furnace comprises a porous substrate which is a silicon carbide sintered body, and a silicon carbide film chemically deposited on the surface thereof.

【0010】基体は、高純度炭化珪素粉末を所定の反応
管形状(例えば、筒状又はベルジャー型灼熱管形状)に
成形,焼結してなる多孔質の炭化珪素焼結体である。焼
結に際しては、基体中に含まれる不純物を可及的に排除
するために、結合剤を使用しないことが好ましい。基体
における平均気孔径及び気孔率は、反応管の使用条件等
に応じて任意に設定することができるが、静的強度及び
耐熱衝撃性等を考慮して決定しておくことが好ましい。
なお、炭化珪素膜は、反応管の使用条件等に応じて、反
応管形状をなす基体の内外周面の一方又は両方に形成さ
れる。
The substrate is a porous silicon carbide sintered body obtained by molding and sintering high-purity silicon carbide powder into a predetermined reaction tube shape (for example, a cylindrical shape or a bell jar type ablation tube shape). In sintering, it is preferable not to use a binder in order to eliminate impurities contained in the substrate as much as possible. The average pore diameter and the porosity of the substrate can be arbitrarily set according to the use conditions of the reaction tube and the like, but it is preferable to determine them in consideration of static strength and thermal shock resistance.
The silicon carbide film is formed on one or both of the inner and outer peripheral surfaces of the reaction tube-shaped substrate depending on the usage conditions of the reaction tube and the like.

【0011】炭化珪素膜は、そのスペクトル吸収端が5
50nm以下となるように形成された、β−SiCの化
学蒸着膜である。スペクトル吸収端が550nm以下で
ある炭化珪素膜、つまり550nm以下の波長の光を吸
収しうる炭化珪素膜にあっては、膜中におけるFe,C
u,Cr等の重金属元素の含有量が極めて少なく、高温
条件下においても不純物の蒸発によるウエハ汚染を生じ
ない。スペクトル吸収端が550nm以下である炭化珪
素膜にあっては、例えば、Feが30ppb以下であ
り、Cuが50ppb以下であり、Crが40ppb以
下である。これに対して、不純物の含有量が多くなる
と、550nmを超える波長の光は吸収できるが、55
0nm以下の波長の光は吸収できない。このようなスペ
クトル吸収端が550nmを超える炭化珪素膜を形成し
た反応管を半導体拡散炉に使用した場合には、炭化珪素
膜中の不純物(FeやSiCの当量比から外れた過剰な
Si等)が高温雰囲気中で蒸発してウエハを汚染するこ
となる。
The silicon carbide film has a spectrum absorption edge of 5
It is a chemical vapor deposition film of β-SiC formed to have a thickness of 50 nm or less. For a silicon carbide film having a spectral absorption edge of 550 nm or less, that is, a silicon carbide film capable of absorbing light of a wavelength of 550 nm or less, Fe and C in the film are used.
The content of heavy metal elements such as u and Cr is extremely low, and wafer contamination due to evaporation of impurities does not occur even under high temperature conditions. In a silicon carbide film having a spectral absorption edge of 550 nm or less, for example, Fe is 30 ppb or less, Cu is 50 ppb or less, and Cr is 40 ppb or less. On the other hand, when the content of impurities increases, light with a wavelength of more than 550 nm can be absorbed, but 55
Light with a wavelength of 0 nm or less cannot be absorbed. When such a reaction tube formed with a silicon carbide film having a spectral absorption edge of more than 550 nm is used in a semiconductor diffusion furnace, impurities (excess Si, etc. deviating from the equivalent ratio of Fe or SiC) in the silicon carbide film are used. Evaporate in a high temperature atmosphere and contaminate the wafer.

【0012】ところで、本発明の目的を達成する上にお
いては、炭化珪素膜のスペクトル吸収端が550nmを
最長限度とするが、短くなればなる程好ましい結果が得
られることはいうまでもない。すなわち、スペクトル吸
収端が550nm以下の範囲において、可及的に短くな
るようにすることが好ましい。但し、スペクトル吸収端
を短くするにも、成膜条件等(主として原材料の純度や
設備条件等)によっては限度があり(520nm程
度)、実際に実施する上では、通常、炭化珪素膜のスペ
クトル吸収端が520〜550nmの範囲にあれば、所
期の目的を十分に達成することができる。
In the meantime, in order to achieve the object of the present invention, the spectral absorption edge of the silicon carbide film has a maximum limit of 550 nm, but it goes without saying that the shorter the length, the better the result obtained. That is, it is preferable to make the spectrum absorption edge as short as possible in the range of 550 nm or less. However, even if the spectrum absorption edge is shortened, there is a limit (about 520 nm) depending on the film forming conditions (mainly the raw material purity and equipment conditions, etc.), and in practice, the spectrum absorption of the silicon carbide film is usually used. When the edge is in the range of 520 to 550 nm, the intended purpose can be sufficiently achieved.

【0013】炭化珪素膜の形成はCVD法によるが、具
体的には、本発明の方法によって次のように行う。
The silicon carbide film is formed by the CVD method, specifically, by the method of the present invention as follows.

【0014】すなわち、まず、基体を適宜のCVD炉内
に配置した上、CVD炉の排気口から真空ポンプにより
排気を行い、CVD炉内を減圧雰囲気に保持させる。
That is, first, the substrate is placed in an appropriate CVD furnace, and then the interior of the CVD furnace is maintained in a reduced pressure atmosphere by evacuation from the exhaust port of the CVD furnace by a vacuum pump.

【0015】そして、かかる減圧雰囲気に保持させた状
態で、基体を所定温度に加熱,保持させた上で、所定の
反応ガスをCVD炉内に連続供給させる。このとき、排
気は停止させることなく継続的に行い、CVD炉内を所
定の減圧雰囲気に保持させておく。通常、200Tor
r以下に保持させておくのが好ましい。但し、真空ポン
プ能力等を考慮した経済的理由から、0.1〜200T
orrとしておくのが好ましい。また、基体は、140
0〜1500℃に加熱,保持させておくことが好まし
い。また、反応ガスとしては、例えば、モノメチルトリ
クロルシランと所定当量比(通常、20当量比程度)の
水素との混合ガスを使用する。
Then, the substrate is heated and held at a predetermined temperature while being kept in such a reduced pressure atmosphere, and then a predetermined reaction gas is continuously supplied into the CVD furnace. At this time, the exhaust is continuously performed without stopping, and the inside of the CVD furnace is kept at a predetermined reduced pressure atmosphere. Usually 200 Tor
It is preferable to keep it at r or less. However, for economic reasons considering the vacuum pump capacity etc., 0.1-200T
It is preferable to set it as orr. The base is 140
It is preferable to heat and hold at 0 to 1500 ° C. Further, as the reaction gas, for example, a mixed gas of monomethyltrichlorosilane and hydrogen at a predetermined equivalent ratio (usually about 20 equivalent ratio) is used.

【0016】反応ガスを供給すると、CH3 SiCl3
+H2 →SiC+3HClの反応により、基体表面つま
り基体の内外周面又はその一方に炭化珪素膜が形成され
る。
When a reaction gas is supplied, CH 3 SiCl 3
By the reaction of + H 2 → SiC + 3HCl, a silicon carbide film is formed on the surface of the substrate, that is, the inner and outer peripheral surfaces of the substrate, or one of them.

【0017】ところで、炭化珪素膜の形成は、一般に、
CVD炉内を常圧に保持させた状態で反応ガス供給を行
う常圧CVD法によって行われる。しかし、この常圧C
VD法では、スペクトル吸収端が550nm以下となる
炭化珪素膜を形成することができない。すなわち、常圧
CVD法では、基材中における不純物の拡散を防止する
ことができず、CVD炉の壁面から飛散する汚染粒子が
炭化珪素膜を形成しようとする基体表面ないしその周辺
領域に滞留することになるからである。また、成膜法と
しては、常圧CVD法以外にも、排気と反応ガス供給と
を一定サイクルで交互に繰り返す間欠CVD法があり、
この間欠CVD法によれば、排気時に上記汚染粒子等が
或る程度排出されることになり、炭化珪素膜の純度向上
が期待される。しかし、排気工程において汚染粒子等が
完全に排出される訳ではなく、反応ガスの供給工程開始
時において残存する虞れがあり、常圧CVD法と同様
に、スペクトル吸収端が550nm以下となる炭化珪素
膜を形成することは到底できない。このように、従来採
用されている何れのCVD法によっても、基体表面ない
しその周辺領域に不純物が滞留して排除されないため
に、蒸着条件を如何に工夫しようとも、炭化珪素膜に多
量のFe等やSiCの当量比から外れた過剰なSiとい
った不純物が含まれることになり、スペクトル吸収端が
550nm以下となる高純度の炭化珪素膜を形成するこ
とができない。
Incidentally, the formation of the silicon carbide film is generally performed by
It is carried out by the atmospheric pressure CVD method in which the reaction gas is supplied while the inside of the CVD furnace is kept at atmospheric pressure. However, this normal pressure C
The VD method cannot form a silicon carbide film having a spectral absorption edge of 550 nm or less. That is, the atmospheric pressure CVD method cannot prevent the diffusion of impurities in the base material, and the contaminant particles scattered from the wall surface of the CVD furnace stay on the surface of the substrate on which the silicon carbide film is to be formed or in the peripheral region thereof. Because it will be. In addition to the atmospheric pressure CVD method, there is an intermittent CVD method in which exhaust and reaction gas supply are alternately repeated in a constant cycle as a film forming method.
According to this intermittent CVD method, the pollutant particles and the like are discharged to some extent at the time of exhaust, and it is expected that the purity of the silicon carbide film is improved. However, the pollutant particles and the like are not completely discharged in the exhaust step and may remain at the start of the reaction gas supply step. As with the atmospheric pressure CVD method, the carbon absorption at which the spectrum absorption edge becomes 550 nm or less is obtained. It is impossible to form a silicon film. As described above, since any of the conventional CVD methods does not remove impurities by staying on the surface of the substrate or the peripheral region thereof, no matter how the vapor deposition conditions are devised, a large amount of Fe or the like is added to the silicon carbide film. Impurities such as excess Si deviating from the equivalent ratio of SiC and SiC are included, and a high-purity silicon carbide film having a spectrum absorption edge of 550 nm or less cannot be formed.

【0018】しかし、上記した如く、CVD炉内を減圧
雰囲気に保持し、反応ガスの供給中においても排気を継
続して行うと、炭化珪素膜を形成しようとする基体表面
ないしその周辺領域に排気口方向への排気流が生じて、
不純物の表面への移行(マイグレーション)と相俟っ
て、基体表面ないしその周辺領域がクリーンに保持され
ることになる。すなわち、CVD炉の壁面に付着してい
る汚染粒子や反応ガス残渣等の不純物は、排気流によっ
て速やかにCVD炉外へと排出され、CVD炉内をクリ
ーンに保持する。その結果、基体表面には、スペクトル
吸収端が550nm以下となる高純度の炭化珪素膜が良
好に形成されるのである。なお、反応ガスの供給は、連
続的ではなく間欠的に行ってもよいが、排気は反応ガス
の供給,停止に拘わらず、継続して行うことが必要であ
る。
However, as described above, when the inside of the CVD furnace is kept in a reduced pressure atmosphere and the exhaust is continuously performed even while the reaction gas is being supplied, the exhaust is performed on the surface of the substrate on which the silicon carbide film is to be formed or its peripheral region. An exhaust flow toward the mouth occurs,
Along with the migration of impurities to the surface, the surface of the substrate or its peripheral region is kept clean. That is, impurities such as pollutant particles and reaction gas residues adhering to the wall surface of the CVD furnace are promptly discharged to the outside of the CVD furnace by the exhaust flow, and the inside of the CVD furnace is kept clean. As a result, a high-purity silicon carbide film having a spectral absorption edge of 550 nm or less is satisfactorily formed on the surface of the substrate. Note that the supply of the reaction gas may be performed intermittently instead of continuously, but it is necessary to continuously exhaust the gas regardless of whether the reaction gas is supplied or stopped.

【0019】ところで、炭化珪素膜の膜厚は、基体との
接着強度が十分で且つ気密性を有する緻密なものであれ
ばよく、反応管の使用条件等に応じて適宜に設定できる
が、一般には、50〜150μmとしておくのが好まし
い。膜厚が50μm未満である場合には、膜厚のバラツ
キ(プラス・マイナス20μm)を考慮に入れると、貫
通孔による欠陥が危惧されるし、逆に膜厚が150μm
を超えると、結晶の粗大化によって表面の滑らかさを欠
くと共に成膜に時間を要してコスト高となるからであ
る。
By the way, the thickness of the silicon carbide film may be a dense one having sufficient adhesive strength to the substrate and airtightness, and can be appropriately set according to the use conditions of the reaction tube, etc. Is preferably 50 to 150 μm. If the film thickness is less than 50 μm, if the variation in film thickness (plus or minus 20 μm) is taken into consideration, defects due to through holes may occur, and conversely, the film thickness may be 150 μm.
This is because if the value exceeds, the surface of the crystal lacks in smoothness due to the coarsening of the crystal, and it takes time to form the film, resulting in a high cost.

【0020】[0020]

【実施例】高純度炭化珪素粉末(粒径:1μm未満)を
結合剤を使用することなく成形,焼成して、外径:27
0mm,内径:250mm,長さ:600mmの円筒状
の再結晶炭化珪素焼結体(平均気孔径:1μm,気孔
率:40〜45%)である多孔質の基体を製作した。そ
して、基体をCVD炉内に配置して、1500℃に加
熱,保持した状態で、CVD炉内にモノメチルトリクロ
ルシランと20当量比の水素とを連続的に供給させた。
この間においては、CVD炉の排気口に接続した真空ポ
ンプにより排気を継続して行い、炉内を50Torrの
減圧雰囲気に保持させた。而して、基体の内外周面に、
膜厚:120μm,スペクトル吸収端:520nmの炭
化珪素膜(β−SiC)が形成された半導体拡散炉用反
応管(以下「実施例反応管」という)を得た。なお、炭
化珪素膜中に含まれる不純物は極めて微量で、Fe:3
0ppb,Cu:50ppb以下,Cr:40ppb以
下であった。
EXAMPLES High-purity silicon carbide powder (particle size: less than 1 μm) was molded and fired without using a binder to give an outer diameter of 27.
A porous substrate which is a cylindrical recrystallized silicon carbide sintered body (average pore diameter: 1 μm, porosity: 40 to 45%) having a diameter of 0 mm, an inner diameter of 250 mm and a length of 600 mm was manufactured. Then, the substrate was placed in a CVD furnace, heated to 1500 ° C. and held therein, and monomethyltrichlorosilane and hydrogen in a 20 equivalent ratio were continuously supplied into the CVD furnace.
During this time, the evacuation was continued by a vacuum pump connected to the exhaust port of the CVD furnace, and the inside of the furnace was kept at a reduced pressure atmosphere of 50 Torr. Thus, on the inner and outer peripheral surfaces of the base,
A reaction tube for a semiconductor diffusion furnace (hereinafter referred to as “Example reaction tube”) having a silicon carbide film (β-SiC) having a film thickness of 120 μm and a spectrum absorption edge of 520 nm was obtained. It should be noted that the impurities contained in the silicon carbide film are extremely small, and Fe: 3
It was 0 ppb, Cu: 50 ppb or less, and Cr: 40 ppb or less.

【0021】また、比較例として、上記したと同一の基
体を製作し、この基体の内外周面に常法(常圧CVD
法)により炭化珪素膜を形成して、実施例反応管と同一
寸法の半導体拡散炉用反応管(以下「比較例反応管」と
いう)を得た。炭化珪素膜の形成に使用したCVD炉及
び反応ガス並びに基体の加熱温度は、実施例反応管にお
けると同一である。比較例反応管における炭化珪素膜の
膜厚は250μmであるが、スペクトル吸収端は620
nmであった。
As a comparative example, the same substrate as described above was manufactured, and the inner and outer peripheral surfaces of this substrate were subjected to a conventional method (normal pressure CVD).
Method) to form a silicon carbide film to obtain a reaction tube for a semiconductor diffusion furnace (hereinafter referred to as “comparative example reaction tube”) having the same size as that of the example reaction tube. The CVD furnace used for forming the silicon carbide film, the reaction gas, and the heating temperature of the substrate are the same as those in the example reaction tube. The thickness of the silicon carbide film in the comparative reaction tube is 250 μm, but the spectral absorption edge is 620.
was nm.

【0022】而して、実施例反応管と比較例反応管と
を、同一条件下で半導体拡散炉において使用したとこ
ろ、実施例反応管を使用した場合にはウエハの汚染が全
くなく、高品質のものを得ることができた。しかし、比
較例反応管を使用した場合には、炭化珪素膜から不純物
が蒸発してウエハが汚染され、高品質のウエハを得るこ
とができなかった。
Thus, when the reaction tube of the example and the reaction tube of the comparative example were used in a semiconductor diffusion furnace under the same conditions, there was no contamination of the wafer when the reaction tube of the example was used, and high quality was obtained. I was able to get one. However, when the comparative reaction tube was used, impurities were evaporated from the silicon carbide film and the wafer was contaminated, and a high quality wafer could not be obtained.

【0023】[0023]

【発明の効果】以上の説明から容易に理解されるよう
に、本発明の炭化珪素質複合材は、炭化珪素膜のスペク
トル吸収端を550nm以下としたものであるから、高
温条件下においても炭化珪素膜からの不純物蒸発がな
く、半導体拡散炉等に使用した場合にもクリーンな雰囲
気を保持することができるものである。したがって、ウ
エハを汚染させない極めて実用的な半導体拡散炉用反応
管等として好適に使用することができる。また、本発明
の炭化珪素質複合材の製造方法によれば、基体表面にス
ペクトル吸収端が550nm以下の高純度の炭化珪素膜
を良好に形成することができる。
As can be easily understood from the above description, the silicon carbide based composite material of the present invention has a spectrum absorption edge of the silicon carbide film of 550 nm or less, so that it is carbonized even under high temperature conditions. There is no evaporation of impurities from the silicon film, and a clean atmosphere can be maintained even when used in a semiconductor diffusion furnace or the like. Therefore, it can be suitably used as a very practical reaction tube for a semiconductor diffusion furnace that does not contaminate the wafer. Further, according to the method for manufacturing a silicon carbide based composite material of the present invention, a high-purity silicon carbide film having a spectrum absorption edge of 550 nm or less can be satisfactorily formed on the surface of the substrate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 25/10 C30B 25/10 (72)発明者 大西 誠次 兵庫県三田市下内神字打場541番地の1 日本ピラー工業株式会社三田工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location C30B 25/10 C30B 25/10 (72) Inventor Seiji Onishi Shimouchi Shinji, Sanda City, Hyogo Prefecture No. 541, No. 1 in Japan Pillar Industry Co., Ltd. Mita factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素焼結体である多孔質の基体とそ
の表面に化学蒸着された炭化珪素膜とからなる炭化珪素
質複合材において、炭化珪素膜を、そのスペクトル吸収
端が550nm以下となるものとしたことを特徴とする
炭化珪素質複合材。
1. A silicon carbide-based composite material comprising a porous substrate which is a silicon carbide sintered body and a silicon carbide film chemically vapor-deposited on the surface thereof, wherein the silicon carbide film has a spectral absorption edge of 550 nm or less. A silicon carbide based composite material characterized in that
【請求項2】 炭化珪素焼結体である多孔質の基体を配
置したCVD炉内に所定の反応ガスを供給させることに
よって、基体表面に炭化珪素膜を化学蒸着させる場合に
おいて、CVD炉から常時排気を行って、CVD炉内を
減圧雰囲気に保持させると共に、上記基体表面ないしそ
の周辺領域に排気流を生じさせるようにしたことを特徴
とする、炭化珪素質複合材の製造方法。
2. When a silicon carbide film is chemically vapor-deposited on the surface of a substrate by supplying a predetermined reaction gas into the CVD furnace in which a porous substrate that is a silicon carbide sintered body is placed, the CVD furnace is always used. A method for producing a silicon carbide based composite material, characterized in that exhaust is carried out to keep the inside of the CVD furnace in a reduced pressure atmosphere and an exhaust flow is generated on the surface of the substrate or in the peripheral region thereof.
JP17096795A 1995-07-06 1995-07-06 Silicon carbide composite for high temperature Expired - Fee Related JP3208045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17096795A JP3208045B2 (en) 1995-07-06 1995-07-06 Silicon carbide composite for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17096795A JP3208045B2 (en) 1995-07-06 1995-07-06 Silicon carbide composite for high temperature

Publications (2)

Publication Number Publication Date
JPH0920575A true JPH0920575A (en) 1997-01-21
JP3208045B2 JP3208045B2 (en) 2001-09-10

Family

ID=15914691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17096795A Expired - Fee Related JP3208045B2 (en) 1995-07-06 1995-07-06 Silicon carbide composite for high temperature

Country Status (1)

Country Link
JP (1) JP3208045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073139A (en) * 1999-09-07 2001-03-21 Asahi Glass Co Ltd Production of silicon carbide molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073139A (en) * 1999-09-07 2001-03-21 Asahi Glass Co Ltd Production of silicon carbide molded body

Also Published As

Publication number Publication date
JP3208045B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
KR100364095B1 (en) Massive purification method of carbon nanotubes
US11047041B2 (en) Method and system for preparing polycrystalline group III metal nitride
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JPH06206718A (en) Extra-high purity silicon carbide and high temperature semiconductor processing device produced by said silicon carbide
JPH11278857A (en) Production of silica glass
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
JPH06279015A (en) Production of ultrafine silicon particle
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH062637B2 (en) Single crystal pulling device
JP2008509071A (en) Production method of reactor for gas decomposition
JPH0920575A (en) Silicon carbide composite material and its production
JPH107488A (en) High-purity graphite material for single-crystal pulling apparatus, and its production
JP2011088771A (en) Method of molding quartz glass material using mold material
JPS5910954B2 (en) Method for manufacturing silicon carbide bodies for semiconductor manufacturing
JP2000265275A (en) Cleaning method
JPH11279761A (en) Corrosion resistant member
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JP4925152B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2004196631A (en) Method for manufacturing nano-carbon
JP2007320810A (en) Method and apparatus for producing carbon nanotube
JPH08259209A (en) Furnace for highly purifying graphite member
US7767275B2 (en) Method for synthesizing self-aligned carbon nanomaterials on large area
JP2006077302A (en) Method for producing silicon carbide member
JPH0494117A (en) Vapor growth device
JPH07223899A (en) Production of silicon laminate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees