JPS59109283A - Solidifying method of solvent by evaporation - Google Patents

Solidifying method of solvent by evaporation

Info

Publication number
JPS59109283A
JPS59109283A JP21801082A JP21801082A JPS59109283A JP S59109283 A JPS59109283 A JP S59109283A JP 21801082 A JP21801082 A JP 21801082A JP 21801082 A JP21801082 A JP 21801082A JP S59109283 A JPS59109283 A JP S59109283A
Authority
JP
Japan
Prior art keywords
heating
heat transfer
steam
temp
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21801082A
Other languages
Japanese (ja)
Other versions
JPS6345269B2 (en
Inventor
Michio Saito
斉藤 道男
Susumu Horiuchi
進 堀内
Yoshikazu Sugimoto
杉本 義和
Kazuo Sato
一夫 佐藤
Misoji Ebine
海老根 三十治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21801082A priority Critical patent/JPS59109283A/en
Publication of JPS59109283A publication Critical patent/JPS59109283A/en
Publication of JPS6345269B2 publication Critical patent/JPS6345269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To solidify the largest possible amt. of a solvent by evaporation within a prescribed time by increasing successively the temp. or area of the heat transmission surface for heating of a heating element or both thereof with lapse of a heating time and retarding the decrease in the quantity of heat transmission. CONSTITUTION:An aq. NaCl soln. is flooded through a flooding pipe 13 in a solidifying vessel 1 and thereafter heating steam is fed through a control valve 5 and an inlet pipe 3 into the coil 2 of a heating tube, by which the aq. NaCl soln. is heated to form drain. The drain is discharged through a discharging pipe 6 and a trap 7. The steam evaporating from the aq. soln. is admitted through a steam chamber 8 and an outlet pipe 9 into a condenser 10, where the steam is condensed by cooling water 11 and is discharged through a discharging pipe 12 to the outside. The valve 5 is automatically controlled by a temp. indicating controller 4 in this case to increase gradually the pressure of the heating steam, by which the temp. of the coil 2 is increased and the difference in the temp. of heat transmission is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は塩類等の溶液の蒸発固化方法に係り、特に原子
力発電所から出るイオシ交換樹脂の再生廃液等の放射性
液体廃棄物の処理に適する方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for evaporating and solidifying solutions of salts, etc., and is particularly suitable for treating radioactive liquid waste such as recycled waste liquid of iosi-exchange resins from nuclear power plants. Regarding.

〔従来技術〕[Prior art]

原子力発電所から発生するイオシ交換樹脂の再生廃液な
ど塩類の溶液を処理する一つの方法として、これらの溶
液を加熱して液体部分を蒸発させ、溶質のみを同化体と
して減容回収処分することが行なわれている。しかしな
がらこの方法においては、時間の経過と共に加熱体の伝
熱面への析出同化体が多くなυ熱伝達が減少して同化速
度が低下するという欠点があった。
One way to treat salt solutions, such as recycled waste fluids from iosi-exchange resins generated from nuclear power plants, is to heat these solutions to evaporate the liquid portion and reduce the volume and collect and dispose of only the solutes as assimilated substances. It is being done. However, this method has the disadvantage that as time passes, a large number of assimilated substances precipitate onto the heat transfer surface of the heating element, reducing the υ heat transfer and lowering the assimilation rate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の欠点を除き、塩類等の溶液の加熱
の初期から終了時までに亘り伝熱量の低下を極力遅延さ
せて伝熱量の確保をはかり、固化速度の低下を極力H]
えて所定時間内にできるだけ多量の溶液を蒸発固化し得
る効率の良い塩類等の溶液の蒸発固化方法を提供するに
ある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to secure the amount of heat transfer by delaying the decrease in the amount of heat transfer as much as possible from the beginning to the end of heating of solutions such as salts, and to reduce the solidification rate as much as possible.
It is an object of the present invention to provide an efficient method for evaporating and solidifying solutions of salts, etc., which can evaporate and solidify as much solution as possible within a predetermined time.

〔発明の概要〕[Summary of the invention]

一般に伝熱機構において伝熱量Qは、総括伝熱係数U、
伝熱温度差△を及び伝熱面積Aの槓U・△t−Aとなる
。塩類等の溶液の蒸発固化作業の場合には、溶質たる塩
類等が加熱体伝熱面上へ同化体として析出し堆積して行
くので、本質的に時間の経過と共に総括伝熱係数Uの値
が小さくなってゆくという形で伝熱量の低下が生じ、し
かも総括伝熱係数は固化の進行につれて低下する一方で
ある。従って蒸発固化に必要とする伝熱量を確保するに
は、総括伝熱係数の低下を補うために他の二つの因子す
なわち伝熱温度差△を及び/又は伝熱面積Aを蒸発同化
の進行につれて経時的に変化せしめればよい。本発明に
係る塩類等の溶液の蒸発固化方法は、上記原理に基づき
、固化容器内に供給された塩類等の溶液を加熱する加熱
体の加熱伝熱面の温度、面積又はその双方を加熱時間の
経過と共に逐次増大させることによって、総括伝熱係数
の低下を補い、蒸発同化操作中、長期間に亘り所期の伝
熱量を確保するようにしたものである。
Generally, in a heat transfer mechanism, the amount of heat transfer Q is the overall heat transfer coefficient U,
The heat transfer temperature difference Δ and the heat transfer area A become U·Δt−A. In the case of evaporation and solidification of solutions of salts, etc., salts, etc., which are solutes, precipitate and accumulate as assimilates on the heat transfer surface of the heating element, so the value of the overall heat transfer coefficient U essentially decreases over time. As solidification progresses, the amount of heat transfer decreases, and the overall heat transfer coefficient continues to decrease as solidification progresses. Therefore, in order to secure the amount of heat transfer required for evaporation and solidification, two other factors must be used to compensate for the decrease in the overall heat transfer coefficient: the heat transfer temperature difference △ and/or the heat transfer area A as the evaporation and assimilation progresses. It may be changed over time. The method for evaporating and solidifying a solution of salts, etc. according to the present invention is based on the above-mentioned principle, and the temperature, area, or both of the heating heat transfer surface of the heating body that heats the solution of salts, etc. supplied in the solidification container is controlled by the heating time. By gradually increasing the heat transfer coefficient with the passage of time, the reduction in the overall heat transfer coefficient is compensated for, and the desired amount of heat transfer is ensured over a long period of time during the evaporation and assimilation operation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面によって説明する0 第1図はNaclの水溶液を加熱してNaC1の固化体
を生成させる場合の実施例である。第1図において1は
加熱管]イル2を内蔵する固化容器、3は熱媒としての
加熱蒸気を加熱管コイル2に導く加熱蒸気入口管、4は
温度指示調節器5は調節弁、6は加熱管コイルのドレシ
排出管7はドレシトラップ、8は容器l中の水溶液から
の蒸発蒸気を受ける蒸気室、9は蒸発蒸気出口管、10
は凝縮器、11は冷却水、12は凝縮水排出管、13t
ri水溶液張込管を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 shows an embodiment in which a solidified body of NaCl is produced by heating an aqueous solution of NaCl. In FIG. 1, 1 is a solidification container containing a heating tube] 2, 3 is a heating steam inlet pipe that guides heated steam as a heating medium to the heating tube coil 2, 4 is a temperature indicating regulator 5 is a control valve, and 6 is a The heating tube coil's dore discharge pipe 7 is a dore trap, 8 is a steam chamber for receiving evaporated steam from the aqueous solution in the container l, 9 is an evaporated steam outlet pipe, and 10
is a condenser, 11 is cooling water, 12 is a condensed water discharge pipe, 13t
RI aqueous solution charging tube is shown.

まずNaC4水溶液が張込管13により固化容器1に張
り込筐れる。次に加熱蒸気が調節弁5、人口管3を経て
加熱管コイル2に送入され、上記水溶液を加熱してドレ
シとな9、ド1ノシ排出管6及びドレシトラッJj7を
経て排出される。
First, an NaC4 aqueous solution is charged into the solidification container 1 through the filling pipe 13. Next, the heated steam is sent to the heating tube coil 2 via the control valve 5 and the artificial tube 3, heats the aqueous solution, and is discharged through the drain pipe 6 and the drain rack Jj7.

一方 水溶液より蒸発した水蒸気は蒸気室8、出口管9
を経で凝縮器10に入り、冷却水11によシ冷却凝縮さ
れて排出管12を経て排出される。このようにして水溶
液中の水分が蒸発するにつれてN ac7が加熱管コイ
ル20力■熱伝熱面上に析出固化するので次第に総括伝
熱係数が低下し、それに対する対策を講じなければ伝熱
量が次第に減少して固化速度が低下する。このような事
態を防止して伝熱量を確保するだめの対策として本実施
例では、NaCzの析出固化の進行につれて加熱管コイ
ル2の温度を逐次上昇せしめ、伝熱温度差を犬にする。
On the other hand, water vapor evaporated from the aqueous solution enters the steam chamber 8 and the outlet pipe 9.
It enters the condenser 10 through the cooling water 11, is cooled and condensed, and is discharged through the discharge pipe 12. In this way, as the water in the aqueous solution evaporates, Nac7 precipitates and solidifies on the heat transfer surface of the heating tube coil, so the overall heat transfer coefficient gradually decreases, and if no measures are taken, the amount of heat transfer will decrease. It gradually decreases and the solidification rate decreases. As a measure to prevent such a situation and ensure the amount of heat transfer, in this embodiment, the temperature of the heating tube coil 2 is gradually increased as the precipitation and solidification of NaCz progresses, thereby reducing the difference in heat transfer temperature.

即ち、温度指示調節器4によって調節弁5を自動制御し
て加熱蒸気圧力を漸増させることにより加熱管コイルの
温度を逐次上昇せしめる。この結果、第2図に示す如く
、上記のような対策を講じない場合の蒸発速度曲線Aが
、上記の対末を講じることにより蒸発速度曲線Bの如く
に改善され、伝熱量の増大により蒸発速度の低下が経時
的に遅延される。これに伴って累計処理量曲線Cから上
記対策を講じた場合の処理量曲線りに示す如く増大し、
同化速度の早期の低ト″が防止される。
That is, the temperature indicating regulator 4 automatically controls the regulating valve 5 to gradually increase the heating steam pressure, thereby gradually increasing the temperature of the heating tube coil. As a result, as shown in Fig. 2, the evaporation rate curve A without taking the above measures is improved to the evaporation rate curve B by taking the above measures, and the evaporation rate increases due to the increase in the amount of heat transfer. The decrease in speed is delayed over time. Along with this, the cumulative processing amount curve C increases as shown in the processing amount curve when the above measures are taken,
Premature decline in assimilation rate is prevented.

第3図にボす実施例は加熱前コイ)しを複数に分割(本
実施例では二分割)し、加熱蒸気を各谷独立に流すよう
にしたものである。第3図において2は上部加熱管コイ
ル、14は下部加熱前コイルである。上部加熱管コイル
と同様に、′F部加熱管コイル14にも、温度調節器1
5、調節弁16.加熱蒸気入口管17、ドレシ排出’、
4− t s 、ドレシトラップ19が付属している。
In the embodiment shown in FIG. 3, the pre-heated carp is divided into a plurality of sections (in this embodiment, it is divided into two sections), and heating steam is made to flow through each valley independently. In FIG. 3, 2 is an upper heating tube coil, and 14 is a lower pre-heating coil. Similarly to the upper heating tube coil, the 'F section heating tube coil 14 is also equipped with a temperature controller 1.
5. Control valve 16. Heating steam inlet pipe 17, dressing discharge',
4-ts, dress trap 19 is attached.

本実施例においては、同化操作の初期には下部加熱管コ
イル14のみに加熱蒸気を流してNaCt水溶液の加熱
蒸発を行なう。時間の経過と共に前述の理由で固化速度
が低下し始めたならば上部加熱管コイル2にも加熱蒸気
を流す。上部加熱管コイ)しには低温の状態ではNaC
tの析出が起っていないため新しい伝熱面積が確保され
ており伝熱量の維持に寄与し得て、前記と同様に蒸発速
度の早期低下の防止及び累計処理量の増大が可能となる
In this embodiment, at the beginning of the assimilation operation, heated steam is flowed only through the lower heating tube coil 14 to heat and evaporate the NaCt aqueous solution. If the solidification rate begins to decrease over time due to the above-mentioned reasons, heating steam is also caused to flow into the upper heating tube coil 2. In the upper heating tube carp), NaC is
Since precipitation of t has not occurred, a new heat transfer area is secured, which can contribute to maintaining the amount of heat transfer, and similarly to the above, it is possible to prevent an early decrease in the evaporation rate and increase the cumulative throughput.

第4図に示した他の実施例においては加熱伝熱面が上γ
1bに多く、かつ下部に少々いような加熱管コイル2を
使用する。この実施例((おいては、加熱蒸気を加熱1
イ]イル2に流して蒸発同化操作を行なう場合、N’a
Clの結晶は固化容器1のF部から堆積して行くだめ、
上部の云熱面は蒸発固化操作の後半壕で有効な状態にあ
り、全体として新しい伝熱面積の確保がなされて、やは
り伝熱量の維持に寄与し得る。従って第2回に示すよう
な蒸発速度の早期低下の防止及び累計処理量°の増大と
いう効果を同様に期待し得る。
In another embodiment shown in FIG. 4, the heating heat transfer surface is
The heating tube coil 2 is used, which has a large amount in 1b and a small amount in the lower part. In this example ((), heating steam is heated to 1
b) When performing evaporation assimilation operation by flowing the
Cl crystals must be deposited from the F section of the solidification container 1.
The upper heating surface is in an effective state in the latter half of the evaporation solidification operation, and a new heat transfer area is secured as a whole, which can also contribute to maintaining the amount of heat transfer. Therefore, the effects of preventing an early drop in the evaporation rate and increasing the cumulative throughput as shown in the second article can be similarly expected.

上記の第3図、第4図に示した実施例においても、第1
図について説明したような加熱管コイル温度の逐次上昇
方式を併用することが可能であり、そのような併用によ
って固化効率を更に高めることができる。
In the embodiments shown in FIGS. 3 and 4 above, the first
It is possible to use the method of gradually increasing the temperature of the heating tube coil as described with reference to the figures, and the solidification efficiency can be further increased by such a combination.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶液の蒸発固化操作中 長期に亘って
加熱伝熱面から溶液への伝熱量を確保し得ろため、蒸発
速度の低下を防ぎ 累計処理量を増大させることができ
、これによって従来より高い固化効率を以て塩類等の溶
液の蒸発同化を遂行することができる。
According to the present invention, it is possible to secure the amount of heat transferred from the heating heat transfer surface to the solution over a long period of time during the evaporation and solidification operation of the solution, thereby preventing a decrease in the evaporation rate and increasing the cumulative throughput. It is possible to evaporate and assimilate solutions such as salts with higher solidification efficiency than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の略解図、第2図は従来技術
と該実施例による場合の固化操作の性能比較図、第3図
及び第4図は夫々本発明の他の実施例の略解図である。 ■ ・同化容器    2・・・加熱管コイル3・・・
熱媒(加熱蒸気)入口管 4・・・温度指示調節器 5・・・調節弁6・・・ド1
ノシ排出y   7 、、、ドレシトラ′ツブ8・・・
蒸気室     9・・・蒸発蒸気出口管10・・・凝
縮器    l[・・・冷却水12・・・凝縮水排出管
 13・・・溶液張込管14・・下部加熱管コイル 1
5・・・温度調節器16・・調節弁     17・・
・熱媒(加熱蒸気)入口管18・・・ドlノル排出管 
L9・・・ド1ノシトラップmダ←θ1曲4 m1m+
l 辻J11i+口粧ン(胃■1出ガ 凶像贋乾
Fig. 1 is a schematic illustration of one embodiment of the present invention, Fig. 2 is a performance comparison diagram of the solidification operation according to the prior art and the embodiment, and Figs. 3 and 4 are respectively other embodiments of the present invention. This is a schematic diagram. ■ ・Assimilation vessel 2... Heating tube coil 3...
Heat medium (heated steam) inlet pipe 4...Temperature indicator controller 5...Control valve 6...Do 1
Noshi discharge y 7...
Steam chamber 9... Evaporated steam outlet pipe 10... Condenser l [... Cooling water 12... Condensed water discharge pipe 13... Solution filling pipe 14... Lower heating tube coil 1
5... Temperature controller 16... Control valve 17...
・Heat medium (heated steam) inlet pipe 18...Dorol exhaust pipe
L9...do 1 nosi trap m da←θ1 song 4 m1m+
l Tsuji J11i + makeup (stomach)

Claims (1)

【特許請求の範囲】 l 固化容器に供給された塩類等の溶液を該容器内に設
置された加熱体で加熱して液体を蒸発させ、塩類等の溶
質のみ析出させてその固化体を生成する溶液の蒸発固化
方法において、加熱体の加熱伝熱面の温度、面積又はそ
の双方を加熱時間の経過と共に逐次増大させて伝熱量の
低下を遅延させることを特徴とする溶液の蒸発同化方法
。 2 加熱体は加熱蒸気の流れる伝熱管コイルであり、該
伝熱管コイルに流れる加熱蒸気の圧力を変化させること
により、該加熱温度を加熱時間の経過と共に逐次増大さ
せることを特徴とする特許請求の範囲第1項記載の溶液
の蒸発固化方法。 3 加熱体の加熱伝熱面を複数に分割し、この分割され
た加熱伝熱面ごとにその加熱開始時点及び加熱時間を異
ならしめることを特徴とする特許請求の範囲第1項記載
の溶液の蒸発固化方法。 4 加熱体の加熱伝熱面を同化容器の上部に多く下部に
少く配置し、これら加熱伝熱面を同時に加熱することを
特徴とする特許請求の範朋第1項記載の溶液の蒸発固化
方法。
[Claims] l A solution of salts, etc., supplied to a solidification container is heated by a heating element installed in the container to evaporate the liquid, and only solutes such as salts are precipitated to produce a solidified product. A method for evaporating and assimilating a solution, characterized in that the temperature, area, or both of the heating heat transfer surface of a heating body is increased sequentially as the heating time elapses to delay a decrease in the amount of heat transfer. 2. The heating body is a heat exchanger tube coil through which heating steam flows, and the heating temperature is gradually increased with the elapse of heating time by changing the pressure of the heating steam flowing through the heat exchanger tube coil. A method for evaporating and solidifying a solution according to scope 1. 3. The solution according to claim 1, characterized in that the heating heat transfer surface of the heating body is divided into a plurality of parts, and the heating start time and heating time are made different for each of the divided heating heat transfer surfaces. Evaporation solidification method. 4. A method for evaporating and solidifying a solution as set forth in claim 1, characterized in that the heating heat transfer surface of the heating body is arranged more in the upper part of the assimilation container and less in the lower part, and these heating heat transfer surfaces are heated simultaneously. .
JP21801082A 1982-12-13 1982-12-13 Solidifying method of solvent by evaporation Granted JPS59109283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21801082A JPS59109283A (en) 1982-12-13 1982-12-13 Solidifying method of solvent by evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21801082A JPS59109283A (en) 1982-12-13 1982-12-13 Solidifying method of solvent by evaporation

Publications (2)

Publication Number Publication Date
JPS59109283A true JPS59109283A (en) 1984-06-23
JPS6345269B2 JPS6345269B2 (en) 1988-09-08

Family

ID=16713207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21801082A Granted JPS59109283A (en) 1982-12-13 1982-12-13 Solidifying method of solvent by evaporation

Country Status (1)

Country Link
JP (1) JPS59109283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165196A (en) * 1984-08-31 1986-04-03 シーメンス、アクチエンゲゼルシヤフト Method of reducing volume of radioactive liquid and rib bodyused for said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020981A (en) * 1973-06-26 1975-03-05
JPS53147200A (en) * 1977-05-27 1978-12-21 Hitachi Ltd Treating method of radioactive waste liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020981A (en) * 1973-06-26 1975-03-05
JPS53147200A (en) * 1977-05-27 1978-12-21 Hitachi Ltd Treating method of radioactive waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165196A (en) * 1984-08-31 1986-04-03 シーメンス、アクチエンゲゼルシヤフト Method of reducing volume of radioactive liquid and rib bodyused for said method

Also Published As

Publication number Publication date
JPS6345269B2 (en) 1988-09-08

Similar Documents

Publication Publication Date Title
US3032482A (en) Process of recovering fresh water from salt water with a hot heavy material
US5807410A (en) Process for removing elemental sulfur from a gas stream
CA1201651A (en) Process and apparatus for the volume reduction of pwr liquid wastes
US4526713A (en) Process and system for treatment of radioactive waste
CN112125463A (en) Power plant variable load coal-fired boiler desulfurization wastewater zero discharge system
CN208603941U (en) High-salt wastewater low-temperature evaporation device
JPS59109283A (en) Solidifying method of solvent by evaporation
GB1585855A (en) Method and apparatus for crystallisation of solution containing salts
US3335083A (en) Solid-liquid sea water heater with scale removing features
JPH0631519B2 (en) Dual-purpose treatment method for geothermal water
CN206051600U (en) A kind of low-temperature evaporation crystal system for processing thermal power plant's high slat-containing wastewater
US4237007A (en) Apparatus and method for the thermal regeneration of matter in water treatment plants
US4019951A (en) Magma cooling tower
SE443227B (en) VACCINE HEATER RECOVERY WITH VERMEROR
SU691106A3 (en) Method and apparatus for control of heat output from utilizing heat-exchangers
JPS5949077B2 (en) Method for preventing scale adhesion in geothermal hot water
JPS6026290A (en) Waste heat recovery device
JPH09122635A (en) Apparatus for removing impurity in water
JPH0615102A (en) Falling film type concentrator
JPS63141604A (en) Method for removing deposit in centrifugal thin film drier
CN208883648U (en) A kind of circulating-water in thermal power plant processing system
CN206751922U (en) A kind of steel phosphating plant
SU1040190A1 (en) Heat-supply-system replenishment plant
JPH0135245B2 (en)
JPS5676201A (en) Control for evaporator