JPH0615102A - Falling film type concentrator - Google Patents

Falling film type concentrator

Info

Publication number
JPH0615102A
JPH0615102A JP17322792A JP17322792A JPH0615102A JP H0615102 A JPH0615102 A JP H0615102A JP 17322792 A JP17322792 A JP 17322792A JP 17322792 A JP17322792 A JP 17322792A JP H0615102 A JPH0615102 A JP H0615102A
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
transfer tube
tube
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17322792A
Other languages
Japanese (ja)
Inventor
Toshiaki Urata
敏昭 浦田
Kimio Nishio
公男 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP17322792A priority Critical patent/JPH0615102A/en
Publication of JPH0615102A publication Critical patent/JPH0615102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow liquid to flow down with centrifugal turning while making the optimum liquid quantity matched with the quality of the liquid tight adhesive to the inner surface of a heat transfer tube by providing vertical slits on a distribution tube connected to the heat transfer tube and providing feeding liquid introducing parts over the total length of the slits along a tangential direction. CONSTITUTION:A distribution tube 1 is connected to a heat transfer tube 5 by inserting an insert part 2 into the heat transfer tube 5 extending in the extending direction of the distribution tube 1. Plural vertical slits A are provided on the wall surface of the distribution tube 1 and the lower end B of each slit A is provided on the level or above of a lower end C of the distribution tube 1, that is, the inlet of the heat transfer tube and the lower end B and an upper end T of each slit are at the substantially the same levels, respectively. Also feeding liquid introducing parts 3 opened over the total length of the slit A and along the tangential direction of the distribution tube 1 are provided. Feeding liquid is introduced into the heat transfer tube 5, with centrifugal turning force given by the feeding liquid introducing parts 3 and flows down under a cylindrical turning while bringing the liquid into tight adhesion to the inner wall surface of each heat transfer tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特殊な供給液分配管を備
えた自己蒸気圧縮法フォーリングフィルム型濃縮装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self vapor compression falling film type concentrator equipped with a special feed liquid distribution pipe.

【0002】[0002]

【従来の技術】日本における火力発電プラントとこれに
付属する湿式排煙脱硫設備は通常臨海にあり、排水中の
各対象成分の効率的除去方法の工夫改良を重ねながら排
水を公共海域へ放流している。一方、発電プラントにお
ける燃料炭は海外炭に依存しており、その品質劣化によ
って排ガス量当りの排水が増加傾向にあり、また単基発
電プラント容量のスケールアップの面からも、排水量は
増大している。
2. Description of the Related Art Thermal power plants in Japan and the wet flue gas desulfurization equipment attached to them are usually located at seaside, and the wastewater is discharged to the public sea area while devising and improving the efficient removal method of each target component in the wastewater. ing. On the other hand, the fuel coal in the power plant depends on overseas coal, and the quality of the coal is deteriorating, so the amount of wastewater per amount of exhaust gas tends to increase, and the amount of wastewater also increases from the perspective of scaling up the capacity of the single unit power plant. There is.

【0003】更に、洗浄脱硫後の処理排煙にはその温度
の吸収液分圧に見合う水分が処理排煙の一成分として系
外へ排出されており、この水分を補給するための莫大な
量の補給水が必要である。そして、排水および補給水を
含めた発電プラント全体の合理的な用水の節減がはから
れて来た。
Further, in the treated flue gas after cleaning and desulfurization, water corresponding to the partial pressure of the absorbing liquid at that temperature is discharged out of the system as one component of the treated flue gas, and a huge amount for replenishing this moisture. Make-up water is required. And, the rational water saving of the entire power plant including drainage water and makeup water has been achieved.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、火力発電プラント全体の合理的な用水節減
を更に徹底させ、排水を蒸発乾固 (蒸発水の回収) する
ための前段階としての排水を蒸発濃縮するための濃縮装
置を提供することにある。
The problem to be solved by the present invention is to further thoroughly implement rational water saving of the entire thermal power plant and to evaporate the waste water to dryness (recover the evaporated water). An object of the present invention is to provide a concentrating device for evaporating and concentrating the waste water as a waste.

【0005】[0005]

【課題を解決するための手段】本発明のフォーリングフ
ィルム型濃縮装置は、供給液槽に分配管を立設し、該分
配管に複数の縦型スリットを形成すると共に、該スリッ
トの各下端および上端を実質的に同一水平レベルとし、
該スリットの全長にわたって該分配管の接線方向に沿っ
て開口した供給液導入部を設け、該分配管の下端を該分
配管の延長方向に延びる伝熱管に連結したことを特徴と
する。以下、本発明のフォーリングフィルム型濃縮装置
の実施例を図面にもとづき説明する。
A falling film type concentrator according to the present invention is provided with a distribution pipe standing in a supply liquid tank, and a plurality of vertical slits are formed in the distribution pipe, and each lower end of the slit is formed. And the upper end are at substantially the same horizontal level,
A supply liquid introducing portion opened along the tangential direction of the distribution pipe over the entire length of the slit is provided, and a lower end of the distribution pipe is connected to a heat transfer tube extending in an extension direction of the distribution pipe. An embodiment of the falling film type concentrating device of the present invention will be described below with reference to the drawings.

【0006】[0006]

【実施例】まずはじめに、本発明の装置としてフォーリ
ングフィルム型装置を採用する理由について述べる。本
発明の装置における被濃縮液、すなわち本発明の装置へ
の供給液は、たとえば湿式排煙脱硫装置における排煙の
接触洗浄液である。
EXAMPLES First, the reason why a falling film type apparatus is used as the apparatus of the present invention will be described. The liquid to be concentrated in the device of the present invention, that is, the liquid supplied to the device of the present invention is, for example, a contact cleaning liquid for flue gas in a wet flue gas desulfurization device.

【0007】従って、供給液中に主として石膏からなる
固体微粒子を含み、かつ濃縮にともなって供給液中より
晶析する塩類を含み、スケーリング傾向の高いものであ
り、析出物の種晶がスケーリング防止のために予め添加
されている。一方、腐蝕性、摩蝕性も高い。かかる性状
の液体の蒸発濃縮装置の型式としては、耐蝕材質使用面
より当然外熱型の濃縮装置、その中でも自己蒸気圧縮型
フォーリングフィルム型が適している。その根拠は下記
のとおりである。
Therefore, the feed liquid contains solid fine particles mainly composed of gypsum, and also contains salts that crystallize from the feed liquid upon concentration, and has a high scaling tendency, and seed crystals of the precipitate prevent scaling. Is added in advance. On the other hand, it is also highly corrosive and abrasive. As a model of the evaporative concentrating device for the liquid having such a property, an external heat type concentrating device, of which a self-vapor compression type falling film type is naturally suitable from the viewpoint of using a corrosion resistant material. The rationale is as follows.

【0008】(イ) 液深圧、沸点上昇にともなう被加熱
側の温度上昇は、自己蒸気圧縮型の場合、圧縮動力を増
大させるので省エネルギーにならない。従って液深圧の
小さいフォーリングフィルム型がよい。 (ロ) 設備がコンパクトで、耐蝕 (腐蝕、摩蝕) 性の材
質を使用する接液部が少ない。
(A) In the self-vapor compression type, the increase in temperature on the heated side due to the liquid deep pressure and the increase in boiling point increases the compression power, so that energy saving is not achieved. Therefore, a falling film type having a small liquid pressure is preferable. (B) The equipment is compact, and there are few wetted parts that use corrosion-resistant (corrosion, corrosion) materials.

【0009】(ハ) 伝熱エレメントの内外温度差が高す
ぎ、濃縮速度にともなう塩析出が供給液中の種晶濃度、
供給液量とバランスし、かつ流下液の混合が良く行われ
ないとスケール発生の疑念がある。 (ニ) 供給液供給を停止すれば管内は空となり、スケー
ルトラブルの除去、その他保全性がよい。
(C) The temperature difference between the inside and the outside of the heat transfer element is too high, and salt precipitation due to the concentration rate causes seed crystal concentration in the feed liquid,
There is a suspicion that scale will be generated if it is in balance with the amount of the supplied liquid and the falling liquid is not mixed well. (D) If the supply of the supply liquid is stopped, the inside of the pipe will be empty, eliminating scale troubles and other good maintainability.

【0010】図1においてフォーリングフィルム型濃縮
装置の伝熱管5は通常50mm程度の内径のものが多く、分
配管1は、その差込部2で分配管1の延長方向に延びる
伝熱管5、たとえば間接熱交換器の内管に差込まれて連
結しているが、分配管1の垂直度が維持固定できるよう
にこの差込部2の差込み深さを決定している。なお、図
1から明らかなように、この差込部2における分配管1
の径は伝熱管5の径よりも小さい。
In FIG. 1, the heat transfer tube 5 of the falling film type concentrating device usually has an inner diameter of about 50 mm, and the distribution pipe 1 has a heat transfer tube 5 extending in the extension direction of the distribution pipe 1 at its insertion portion 2. For example, although it is inserted and connected to the inner pipe of the indirect heat exchanger, the insertion depth of this insertion portion 2 is determined so that the verticality of the distribution pipe 1 can be maintained and fixed. As is apparent from FIG. 1, the distribution pipe 1 in the insertion portion 2
Is smaller than the diameter of the heat transfer tube 5.

【0011】次に、本発明では、伝熱管5への供給液が
スムーズに遠心旋回しながら流下するようにしている。
すなわち、分配管1の壁面には複数の縦型スリットAを
設け、各スリットAの下端Bを分配管1の下端C、すな
わち上記伝熱管5の入口レベルまたはそれ以上の高さ
で、かつ各スリットAの下端および上端は実質的に同一
水平レベルにしており、図1の場合、スリットAの下端
Bがチューブシート4の面とほとんど同一レベルになる
ようにして、供給液中の固体粒子がスリットAから伝熱
管5内に導入されるようになっている。
Next, according to the present invention, the liquid supplied to the heat transfer tube 5 is smoothly flown down while centrifugally rotating.
That is, a plurality of vertical slits A are provided on the wall surface of the distribution pipe 1, and the lower end B of each slit A is at the lower end C of the distribution pipe 1, that is, at the inlet level of the heat transfer pipe 5 or higher, and The lower end and the upper end of the slit A are substantially at the same horizontal level, and in the case of FIG. 1, the lower end B of the slit A is almost at the same level as the surface of the tube sheet 4, so that the solid particles in the supply liquid are It is adapted to be introduced into the heat transfer tube 5 through the slit A.

【0012】なお、図1の下端Bと上端Tとで示すスリ
ットAの高さは通常50mm〜150mm 、好ましくは100mm程
度であり、スリットAの幅は3.0mm〜5.0mmとするとよ
い。また、各スリットAには図1および図2に示すよう
にスリットAの全長にわたって、かつ伝熱管1の接線方
向に沿って開口した供給液導入部3を設け、この導入部
3によって供給液に遠心旋回力を与えて伝熱管5内に導
入し、各伝熱管内壁面に密着させて円筒状に供給液旋回
流下させるようになっている。
The height of the slit A shown by the lower end B and the upper end T in FIG. 1 is usually 50 mm to 150 mm, preferably about 100 mm, and the width of the slit A is set to 3.0 mm to 5.0 mm. Further, as shown in FIGS. 1 and 2, each slit A is provided with a supply liquid introducing portion 3 which is opened along the entire length of the slit A and along the tangential direction of the heat transfer tube 1. A centrifugal swirling force is applied and introduced into the heat transfer tubes 5, and they are brought into close contact with the inner wall surface of each heat transfer tube to cause the swirling flow of the supply liquid in a cylindrical shape.

【0013】なお、スリットAの数は、図2に示すよう
にこの実施例では4個としているが、これに限定される
ものではなく、5個以上であっても良い。また、分配管
1の頂部は、閉の場合と開の場合のいずれも使用されう
るが、スケーリング性のある供給液の場合は閉とし、分
配管1を供給液に浸液し、スリットAの高さと通常の運
転浸液深さとの組合せで、伝熱管5の一本当りの液負荷
を最適とするよう設計することが望ましい。
Although the number of slits A is four in this embodiment as shown in FIG. 2, it is not limited to this and may be five or more. Although the top of the distribution pipe 1 can be used both in the case of being closed and in the case of being opened, in the case of a feed liquid having a scaling property, it is closed, and the distribution pipe 1 is immersed in the feed liquid and the slit A It is desirable to design the liquid load per heat transfer tube 5 to be optimal by a combination of the height and the normal operating immersion liquid depth.

【0014】伝熱管5には、通常ではTi、Ni−Cr系の高
級金属、ガラス管、グラスライニング管などが使用され
るので、分配管1もこれと同じか、または類似材質、セ
ラミック材、シリコンカーバイド鋳物で製作することが
でき、また耐摩耗材混入のFRP、耐摩耗材入のゴム製の
ものも適用が可能である。また、この実施例では供給液
が湿式排煙脱硫装置の排水の場合を主対象としている
が、供給液として A/H、湿式EP、 GGH等の各所より排出
される排水も対象とすることができる。
As the heat transfer tube 5, a high-grade metal of Ti, Ni-Cr system, glass tube, glass lining tube or the like is usually used, so that the distribution pipe 1 is also the same or similar material, ceramic material, It can be made of silicon carbide casting, and FRP containing wear resistant material and rubber made of wear resistant material can also be applied. Further, in this example, the supply liquid is mainly intended for the wastewater of the wet flue gas desulfurization device, but the wastewater discharged from various places such as A / H, wet EP, GGH, etc. as the supply liquid may also be the target. it can.

【0015】さらに、上記湿式排煙脱硫装置からの排水
を含む混合排水を供給液とする場合は、灰分離方式や灰
混合方式のいずれであってもよく、その対象物は特に限
定されるものではない。本発明において被濃縮液が上記
排水の場合には、通常全溶解塩量が30,000〜80,000ppmw
で、pHは灰分離方式の場合ほぼpH=1〜2、灰混合方式
の場合、pH=4〜5で両者いずれの場合も100〜500pp
mwの懸濁物を含み、また主流の排煙脱硫装置が石灰石−
石こう法であるため、溶解塩の大部分はカルシュームの
塩化物、硫酸塩類、マグネシュームの硫酸塩類などでカ
ルシューム硫酸塩に関しては飽和濃度前後のものもあ
り、濃縮により当然のことながら過飽和塩は加熱面に析
出し、スケーリングを起し、伝熱管5の総括熱伝達係数
の劣化を起す。そこで、この劣化防止のため供給液中に
スケーリングとして析出する塩の種晶を加え、スタート
後は加熱濃縮に見合い析出する各種の成長速度以上の析
出面を有する種晶を供給液中に保持し、濃縮により析出
する塩を種晶面上に析出させ、加熱面への析出を防止す
る。種晶の濃度は通常30〜60μm(平均)×3〜10WT%を
使用する。使用温度は100〜110℃で濃縮液はTDSが、30,
000〜40,000に達し、塩化物、フッ化物、硝酸塩も多く
含むので、分配管1は上記の条件にも十分な耐摩耗、耐
蝕性を持つ材料である必要がある。
Furthermore, when the mixed liquid containing the waste water from the wet flue gas desulfurization apparatus is used as the supply liquid, either the ash separation system or the ash mixing system may be used, and the object is not particularly limited. is not. In the present invention, when the liquid to be concentrated is the above-mentioned waste water, the total dissolved salt amount is usually 30,000 to 80,000 ppmw.
In the case of the ash separation method, the pH is approximately 1 to 2; in the case of the ash mixing method, the pH is 4 to 5 and in both cases, 100 to 500 pp
It contains mw of suspension and the mainstream flue gas desulfurization equipment is limestone-
Since it is a gypsum method, most of the dissolved salts are calcium chloride, sulfate, magnesium sulfate, etc., and there are some saturated concentrations of calcium sulfate. To cause scaling, and cause deterioration of the overall heat transfer coefficient of the heat transfer tube 5. Therefore, in order to prevent this deterioration, seed crystals of salts that precipitate as scaling are added to the feed solution, and after the start, seed crystals that have precipitation surfaces of various growth rates or higher that are precipitated in proportion to the heating concentration are kept in the feed solution. , The salt that is deposited by concentration is deposited on the seed crystal surface to prevent deposition on the heating surface. The seed crystal concentration is usually 30 to 60 μm (average) × 3 to 10 WT%. The working temperature is 100-110 ℃, TDS of the concentrate is 30,
Since it reaches 000 to 40,000 and contains a lot of chlorides, fluorides, and nitrates, the distribution pipe 1 needs to be a material having sufficient wear resistance and corrosion resistance even under the above conditions.

【0016】次に上記本発明のフォーリングフィルム型
濃縮装置の作用について述べる。本発明の濃縮装置にお
いては上記のように分配管に複数の縦型スリットが形成
され、このスリットの全長にわたってこの分配管の接線
方向に沿って開口した供給液導入部が設けられている。
従って、各スリットより供給された供給液 (被濃縮液)
は遠心力が与えられ、伝熱管の内壁面に密着して旋回し
ながら円筒状に流下するので、伝熱管内壁における流下
速度は早く、大きな総括伝熱係数がとれる。
Next, the operation of the falling film type concentrating device of the present invention will be described. In the concentrating device of the present invention, a plurality of vertical slits are formed in the distribution pipe as described above, and the supply liquid introducing portion opened along the tangential direction of the distribution pipe is provided over the entire length of the slit.
Therefore, the supply liquid (concentrated liquid) supplied from each slit
The centrifugal force is applied to the inner wall surface of the heat transfer tube, and the material flows in a cylindrical shape while swirling, so that the inner wall of the heat transfer tube has a fast downflow speed and a large overall heat transfer coefficient.

【0017】一方、伝熱管内壁における供給液の液深
(厚み) による温度上昇は供給液が比較的薄いフィルム
状なので小さく、この小さい蒸発濃縮速度にともなって
析出する供給液中の可溶塩の結晶量は供給液中の含有種
結晶析出量以下となる。伝熱管の内外管側の温度差は、
自己蒸発圧縮圧力と供給液流量と調節により制御され
る。供給液流量は、循環液槽55 (図4) から循環ポンプ
56による液供給槽52への流量によって液供給槽52におけ
る供給液深さを調節することにより行なうことができ
る。この結果、スケーリングのない安定した効率の良い
濃縮が可能となる。
On the other hand, the liquid depth of the supply liquid on the inner wall of the heat transfer tube
The temperature rise due to (thickness) is small because the feed liquid is in the form of a relatively thin film, and the crystal amount of soluble salts in the feed liquid that precipitates with this small evaporative concentration rate is less than the amount of seed crystal precipitation in the feed liquid Become. The temperature difference between the inner and outer tubes of the heat transfer tube is
It is controlled by adjusting the self-evaporating compression pressure and the feed liquid flow rate. The supply liquid flow rate is from the circulating liquid tank 55 (Fig. 4) to the circulating pump.
This can be performed by adjusting the supply liquid depth in the liquid supply tank 52 according to the flow rate of the liquid supplied to the liquid supply tank 52. As a result, stable and efficient concentration without scaling becomes possible.

【0018】次に、図3は本発明のフォーリングフィル
ム型濃縮装置を用いた排煙脱硫排水濃縮設備の一例を示
す系統図であるが、この設備は濃縮により発生した蒸気
を圧縮し、これと被濃縮液とも併流させるベーパコンプ
レッサ型のベーパ液併流型二重効用缶21を使用してお
り、本発明の装置における分配管1を、濃縮缶21の伝熱
管5の入口に取りつけている。
Next, FIG. 3 is a system diagram showing an example of flue gas desulfurization wastewater concentration equipment using the falling film type concentration equipment of the present invention. This equipment compresses vapor generated by concentration and A vapor-compressor-type vapor-liquid co-current double-effect can 21 that co-flows with the liquid to be concentrated is used, and the distribution pipe 1 in the device of the present invention is attached to the inlet of the heat transfer pipe 5 of the concentrating can 21.

【0019】図3において、脱硫排水11は消石灰水溶液
12と中和槽24で混合攪拌され中和された後、中和液供給
ポンプ25によりプレート熱交換器26に送られて加熱さ
れ、加熱中和排水13は、真空発生器28で脱気される脱気
槽27に導入される。そして、脱気排水14は循環液ポンプ
23により被濃縮供給液として管路15を介して、濃縮缶21
の頂部に設けた供給液槽19に供給される。
In FIG. 3, desulfurization drainage 11 is a slaked lime aqueous solution.
After being mixed and stirred in the 12 and the neutralization tank 24 to be neutralized, it is sent to the plate heat exchanger 26 by the neutralization liquid supply pump 25 and heated, and the heated neutralization wastewater 13 is degassed by the vacuum generator 28. Is introduced into the degassing tank 27. The degassing drainage 14 is a circulating fluid pump.
As a supply liquid to be concentrated by 23, via a pipe 15,
It is supplied to the supply liquid tank 19 provided at the top of the.

【0020】一方、供給液の濃縮により発生した蒸気
は、蒸気圧縮ポンプ22により管路16を経て濃縮缶21の外
套管側に供給されて、伝熱管5を旋回流下する供給液と
間接的に熱交換しながら併流流下し、供給液とその蒸発
ベーパーは下方に流れて循環液槽32に流下する。分離し
たベーパーは、循環液槽32の頂部に設けたエリミネータ
ー33でミストを除去した後にコンプレッサー22によって
昇圧して濃縮管21の外套側に導き内管5の加熱源として
使用する。凝縮水は濃縮管21の下部から取り出し、凝縮
水受槽29から凝縮水移送ポンプ30によりプレート熱交換
器26で熱交換する凝縮回収水18として使用される。
On the other hand, the vapor generated by the concentration of the supply liquid is supplied by the vapor compression pump 22 to the outer tube side of the concentrating can 21 via the pipe line 16 and indirectly with the supply liquid swirling down the heat transfer tube 5. While heat exchange, they flow down together, the feed liquid and its evaporation vapor flow downward, and flow down into the circulating liquid tank 32. The separated vapor is removed by a eliminator 33 provided at the top of the circulating liquid tank 32 to remove mist and then pressurized by a compressor 22 to be guided to the outer side of the concentrating tube 21 to be used as a heat source for the inner tube 5. The condensed water is taken out from the lower part of the concentrating pipe 21, and is used as condensed recovered water 18 from the condensed water receiving tank 29 by the condensed water transfer pump 30 to exchange heat with the plate heat exchanger 26.

【0021】次に、図4に示すのは本発明者等により実
験を行なったテスト設備の概略配置側断面図であり、石
炭燃焼排ガスの湿式脱硫装置から排出される固体濃度20
0ppmw 、MgSO4 濃度3wt%、カルシューム塩濃度CaC
l2 , CaSO4・2H2O 2wt%の排水スラリーを予め消石灰
スラリーでpH=5〜7に調整後、石こう種晶を約5重量
パーセント (40μm平均) 添加した液41を、図4に示す
ように50mm径のチタン製の内管53と、1.5mのジャケッ
トパイプ54からなる間接熱交換器の内管に、前記縦型ス
リットAを介して内管周辺長さ1m当り1000L〜2000L
/時の流量で供給し、循環濃縮した。
Next, FIG. 4 is a schematic cross-sectional side view of the layout of the test equipment which was tested by the inventors of the present invention.
0ppmw, MgSO 4 concentration 3wt%, calcium salt concentration CaC
Fig. 4 shows a liquid 41 to which about 5% by weight (40 µm average) of gypsum seed crystals was added after adjusting the pH of the slaked lime slurry to a drainage slurry of l 2 , CaSO 4・ 2H 2 O 2 wt% to 5 = 7 in advance. In the inner tube of the indirect heat exchanger consisting of the inner tube 53 made of titanium with a diameter of 50 mm and the jacket pipe 54 of 1.5 m, through the vertical slit A, the peripheral length of the inner tube is 1000 L to 2000 L per 1 m.
It was supplied at a flow rate of / hour, and concentrated by circulation.

【0022】上記のジャケットパイプ54側はスチーム加
熱とし、内管53とジャケットパイプ54との圧力差0.15kg
/cm2 にコントロールして濃縮したが、分配管51にはSU
S 317L製のものを頂部液槽52内に取り付けてテストを遂
行した。その結果、分配管51は供給液の遠心旋回下降流
れを内管53内に円筒状に形成させながら流下することを
頂部の覗き窓52Aよりの目視で確認し、また、分配管51
のスリットの浸液深さを適宜調整することにより、供給
液が内管53内面に密着して、剥離することなく遠心旋回
流下されることを確認した。
The jacket pipe 54 side is heated by steam, and the pressure difference between the inner pipe 53 and the jacket pipe 54 is 0.15 kg.
Although the concentration was controlled by controlling to / cm 2 , SU was added to the distribution pipe 51.
The test was performed by mounting the S317L product in the top liquid tank 52. As a result, it was confirmed visually through the observation window 52A at the top that the distribution pipe 51 flows down while the centrifugal swirling downward flow of the supply liquid is formed in the inner pipe 53 while forming a cylindrical shape.
It was confirmed that the supply liquid was brought into close contact with the inner surface of the inner tube 53 and was centrifugally swirled down without being separated by appropriately adjusting the immersion depth of the slit.

【0023】また、テスト結果の濃縮液の沸点上昇は3
〜5℃であり、総括伝熱係数は約2400kcal/m2.H℃前後
で順調に濃縮されることを確認した。なお、図4にて55
は循環液槽、56は循環ポンプ、57はマグネチック流量指
示制御計、58はスチーム圧指示調節計、59はスチーム放
出管、42はスチーム、43は蒸発ベーパ、44は凝縮水、45
は水、46はスチームトラップをそれぞれ示している。
Also, the boiling point of the concentrated liquid as a result of the test is 3
It was confirmed that the total heat transfer coefficient was about 2400 kcal / m 2 .H ℃, and the concentration was good. In addition, in FIG.
Is a circulating liquid tank, 56 is a circulation pump, 57 is a magnetic flow rate indicating controller, 58 is a steam pressure indicating controller, 59 is a steam discharge pipe, 42 is steam, 43 is evaporative vapor, 44 is condensed water, 45
Indicates water, and 46 indicates a steam trap.

【0024】[0024]

【発明の効果】以上に説明した本発明のフォーリングフ
ィルム型濃縮装置によれば、分配管に縦型スリットを形
成し、このスリットの全長にわたって分配管の接線方向
に沿って供給液導入部を設けたので、濃縮される供給液
の性状いかんにかかわらず、たとえば脱硫装置の種類、
燃料炭、炭カル粉、補給水の種類によって組成、固体濃
度、濃縮に伴い析出するカルシューム塩の異なる排水を
均一に分配し、液質に合った最適液量を伝熱管内面に密
着して遠心旋回流下させることができる。さらに液の流
速が単なる垂直流に比して早く、しかも伝熱管壁面から
液の剥離がなく、伝熱・濃縮によるカルシウム塩の伝熱
面への析出を供給液の種晶の添加によって防止し、スケ
ーリングトラブルを発生することなく脱硫排液の濃縮を
行なうことができる。
According to the falling film type concentrating device of the present invention described above, a vertical slit is formed in the distribution pipe, and the feed liquid introducing portion is provided along the tangential direction of the distribution pipe over the entire length of this slit. Since it is provided, regardless of the nature of the concentrated feed liquid, for example, the type of desulfurization equipment,
Dispersion of different amounts of calcium, calcium, and salt that precipitates with composition, solid concentration, and concentration depending on the type of fuel charcoal, calcium char powder, and makeup water is evenly distributed, and the optimum amount of liquid that matches the liquid quality is closely attached to the inner surface of the heat transfer tube and centrifuged. It can be swirled down. Furthermore, the flow velocity of the liquid is faster than a mere vertical flow, and there is no separation of the liquid from the wall surface of the heat transfer tube.Precipitation of calcium salt on the heat transfer surface due to heat transfer / concentration is prevented by the addition of seed crystals of the supply liquid. Therefore, the desulfurization effluent can be concentrated without causing scaling trouble.

【0025】一方、本発明の装置による脱硫排液の濃縮
後の液中の総溶解塩濃度は 30.0〜40.0重量%迄が経済
的に望ましいが、脱硫排水の総溶解塩濃度は通常 50,00
0〜60,000ppmwであるので、従来より約6倍前後の濃縮
ができることになり、脱硫排水無排水化の前処理として
本発明の装置は極めて有効であると共に、凝縮水は脱硫
装置の補給水として再利用できるという利点もある。
On the other hand, it is economically desirable that the total dissolved salt concentration in the liquid after concentration of the desulfurization effluent by the apparatus of the present invention is up to 30.0 to 40.0% by weight, but the total dissolved salt concentration in the desulfurization effluent is usually 50,00%.
Since it is 0 to 60,000 ppmw, it can be concentrated about 6 times as much as before, and the device of the present invention is extremely effective as a pretreatment for desulfurization wastewater without drainage, and condensed water is used as makeup water for the desulfurization device. It also has the advantage that it can be reused.

【0026】なお、本発明の装置は、上記脱硫排水の処
理にのみ限定されず、一般化学品の溶液の溶剤の除去の
ための濃縮、特に熱耐性の小さい物質の溶液濃縮にも有
効に適用することができる。
The apparatus of the present invention is not limited to the treatment of the desulfurization wastewater, but is effectively applied to the concentration of a solution of a general chemical product for removing the solvent, particularly the concentration of a solution having a small heat resistance. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフォーリングフィルム型濃縮装置にお
ける供給管の一実施例を示す要部側断面図である。
FIG. 1 is a side sectional view of an essential part showing an embodiment of a supply pipe in a falling film type concentrating device of the present invention.

【図2】図1のX−X方向の平断面図である。FIG. 2 is a plan sectional view taken along line XX of FIG.

【図3】本発明の濃縮装置を用いた脱硫排水濃縮設備の
一例を示す系統図である。
FIG. 3 is a system diagram showing an example of desulfurization wastewater concentration equipment using the concentration device of the present invention.

【図4】本発明者等により実験を行なったテスト設備の
概略配置側断面図である。
FIG. 4 is a schematic cross-sectional side view of the arrangement of test equipment that was tested by the present inventors.

【符号の説明】[Explanation of symbols]

1 分配管 2 給液入口 5 伝熱管 A スリット B スリット下端 T スリット上端 1 minute piping 2 liquid supply inlet 5 heat transfer tube A slit B slit lower end T slit upper end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 供給液槽に分配管を立設し、該分配管に
複数の縦型スリットを形成すると共に、該スリットの各
下端およ上端を実質的に同一水平レベルとし、該スリッ
トの全長にわたって該分配管の接線方向に沿って開口し
た供給液導入部を設け、該分配管の下端を該分配管の延
長方向に延びる伝熱管に連結したことを特徴とするフォ
ーリングフィルム型濃縮装置。
1. A distribution pipe is provided upright in a supply liquid tank, a plurality of vertical slits are formed in the distribution pipe, and each lower end and upper end of the slit are set to substantially the same horizontal level, A falling film type concentrating device characterized in that a supply liquid introducing portion opened along the tangential direction of the distribution pipe is provided over the entire length, and the lower end of the distribution pipe is connected to a heat transfer tube extending in the extension direction of the distribution pipe. .
JP17322792A 1992-06-30 1992-06-30 Falling film type concentrator Pending JPH0615102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17322792A JPH0615102A (en) 1992-06-30 1992-06-30 Falling film type concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17322792A JPH0615102A (en) 1992-06-30 1992-06-30 Falling film type concentrator

Publications (1)

Publication Number Publication Date
JPH0615102A true JPH0615102A (en) 1994-01-25

Family

ID=15956504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17322792A Pending JPH0615102A (en) 1992-06-30 1992-06-30 Falling film type concentrator

Country Status (1)

Country Link
JP (1) JPH0615102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509057A (en) * 2006-11-08 2010-03-25 ハイドロロジック インダストリーズ,インコーポレイテッド Distillation method and apparatus
CN107362560A (en) * 2016-12-30 2017-11-21 华北水利水电大学 Falling film evaporator in the two phase countercurrent flow vertical tube of surrounding tangential admission
CN109692490A (en) * 2019-01-28 2019-04-30 何文旭 Corrosion-resistant falling film evaporator, dilute sulfuric acid concentration systems and its technique and application
CN116986661A (en) * 2023-09-26 2023-11-03 南京沿江资源生态科学研究院有限公司 Multistage coupling and separating device for organic waste liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509057A (en) * 2006-11-08 2010-03-25 ハイドロロジック インダストリーズ,インコーポレイテッド Distillation method and apparatus
CN107362560A (en) * 2016-12-30 2017-11-21 华北水利水电大学 Falling film evaporator in the two phase countercurrent flow vertical tube of surrounding tangential admission
CN107362560B (en) * 2016-12-30 2023-06-16 华北水利水电大学 Two-phase countercurrent vertical in-tube falling film evaporator with circumferential tangential feeding
CN109692490A (en) * 2019-01-28 2019-04-30 何文旭 Corrosion-resistant falling film evaporator, dilute sulfuric acid concentration systems and its technique and application
CN116986661A (en) * 2023-09-26 2023-11-03 南京沿江资源生态科学研究院有限公司 Multistage coupling and separating device for organic waste liquid
CN116986661B (en) * 2023-09-26 2023-12-15 南京沿江资源生态科学研究院有限公司 Multistage coupling and separating device for organic waste liquid

Similar Documents

Publication Publication Date Title
US5156706A (en) Evaporation of liquids with dispersant added
US4834955A (en) Chemical formulation and combined process for inhibiting deposition and corrosion in cooling water and gypsum scaling in flue gas desulfurization scrubber systems
RU2155625C2 (en) Method and device for sea water desalination
US9056261B2 (en) Water desalination system
US4428200A (en) Geothermal plant fluid reinjection system
US4168211A (en) Distillation apparatus and method
US4429535A (en) Geothermal plant silica control system
US3410796A (en) Process for treatment of saline waters
CN109110848B (en) A kind of high-salt wastewater air energy low-temperature vaporising device and air energy low-temperature method of evaporating
SE438787B (en) PROCEDURE FOR CLEANING OF EXHAUST GAS FROM INDUSTRIES AND SLUER DISPOSAL FOR IMPLEMENTATION OF THE PROCEDURE
KR101690065B1 (en) Apparatus for removing pollutant in evaporated concentrating system
US3974039A (en) Addition of finely divided BaSO4 particles to sea water for removal of scale components
JPH0615102A (en) Falling film type concentrator
GB1585855A (en) Method and apparatus for crystallisation of solution containing salts
CN111389044A (en) Anti-scaling evaporative crystallization system and method
US3912578A (en) Apparatus for and a method of purifying waste fluid
US3335083A (en) Solid-liquid sea water heater with scale removing features
CN208254297U (en) A kind of My heat recovery system of sewage
CN209338317U (en) A kind of plating garden derusting waste hydrochloric acid triple effect evaporation processing system
KR200179033Y1 (en) Waste water evaporation concentration plant having function washing
GB1577862A (en) Apparatus and process for removing dissolved solids
CN109502870A (en) A kind of plating garden derusting waste hydrochloric acid triple effect evaporation processing system and pretreating process
JPH07251162A (en) Treatment of waste liquid
JP2845540B2 (en) Quicklime slaking equipment
EP0074438A1 (en) Apparatus and process for simultaneously dissipating industrial waste heat and removing dissolved solids from water