JPH0135245B2 - - Google Patents

Info

Publication number
JPH0135245B2
JPH0135245B2 JP55144331A JP14433180A JPH0135245B2 JP H0135245 B2 JPH0135245 B2 JP H0135245B2 JP 55144331 A JP55144331 A JP 55144331A JP 14433180 A JP14433180 A JP 14433180A JP H0135245 B2 JPH0135245 B2 JP H0135245B2
Authority
JP
Japan
Prior art keywords
feed water
pressure
deaerator
water
pressure feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55144331A
Other languages
Japanese (ja)
Other versions
JPS5768184A (en
Inventor
Yasuaki Nakamura
Toshio Horiuchi
Osami Takita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP55144331A priority Critical patent/JPS5768184A/en
Publication of JPS5768184A publication Critical patent/JPS5768184A/en
Publication of JPH0135245B2 publication Critical patent/JPH0135245B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はクリーンアツプ方法及び装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cleanup method and apparatus.

一般に、火力発電所の蒸気タービンにおいて、
復水器で復水した水は、脱塩装置、各種冷却器、
低圧給水加熱器(以下低圧ヒータという)、脱気
器及び高圧給水加熱器(以下高圧ヒータという)
を経てボイラに達する。このような系統に流れる
給水には、配管及びヒータに付着している鉄、
銅、その他の元素からなる不純物が含まれてい
る。これらの不純物がボイラに持ち込まれると蒸
発管の管壁に付着してスケールとなり、伝熱を阻
害して管材が過熱され蒸発管破裂となる場合もあ
る。このため、タービンおよびボイラ内に腐触生
成物の堆積が生じないように、ボイラ給水の水質
基準を定めているが、発電プラントの運転停止中
に給水中の汚染物の濃度が起動時の水質基準によ
る制限値を超えるおそれがあるので、ボイラにお
けるクリーンアツプを行なつている。
Generally, in steam turbines of thermal power plants,
The water condensed in the condenser is sent to desalination equipment, various coolers,
Low pressure feed water heater (hereinafter referred to as low pressure heater), deaerator and high pressure feed water heater (hereinafter referred to as high pressure heater)
It reaches the boiler through. The water supply that flows into such systems is contaminated with iron attached to the pipes and heaters.
Contains impurities consisting of copper and other elements. When these impurities are brought into the boiler, they adhere to the walls of the evaporator tubes and form scales, inhibiting heat transfer and overheating the tube material, which may lead to rupture of the evaporator tubes. For this reason, water quality standards for boiler feed water have been established to prevent the accumulation of corrosion products inside the turbine and boiler. As there is a risk that the limits set by the standards may be exceeded, a cleanup is being carried out at the boiler.

ところで、一般的なボイラのクリーンアツプに
ついて、第1図より説明する。このボイラのクリ
ーンアツプは、復水再循環ライン、低圧ライン、
高圧ライン、この順で行なわれる。先ず、復水再
循環ラインのクリーンアツプにおいては、復水器
1→復水ポンプ2→脱塩装置3→復水再循環ライ
ン10→復水器1の閉回路を形成し、この回路に
おいて、ブロー、循環を行ない、低圧ヒータの通
水基準値を満足させた後、次のステツプの低圧ラ
インのクリーンアツプに進む。次に、低圧ライン
のクリーンアツプにおいては、復水器1→復水ポ
ンプ2→脱塩装置3→低圧ヒータ4→復水系統1
1→脱気槽5→脱気器貯水槽6→低圧クリーンア
ツプライン(脱気装置再循環ライン)13→復水
器1の閉回路を形成し、系統内の不純物をブロ
ー、循環により水質を向上させ、高圧ヒータ通水
基準値を満足させた後、次の高圧ラインのクリー
ンアツプとなる。更に、高圧ラインのクリーンア
ツプにおいては、復水器1→復水ポンプ2→脱塩
装置3→低圧ヒータ4→脱気槽5→脱気器貯水槽
6→給水ブースタポンプ7→給水ポンプバイパス
ライン14→高圧ヒータ9→給水系統15→高圧
クリーンアツプライン16→復水器1の閉回路を
形成し、ブローと循環により水質を向上させ、ボ
イラ通水基準値を満足させる。尚、ここで、17
はサンプリング系統、18はブロー系統を示す。
By the way, a general boiler cleanup will be explained with reference to FIG. The cleanup of this boiler consists of a condensate recirculation line, a low pressure line,
High pressure line, in this order. First, in cleaning up the condensate recirculation line, a closed circuit of condenser 1 → condensate pump 2 → desalination device 3 → condensate recirculation line 10 → condenser 1 is formed, and in this circuit, After performing blowing and circulation to satisfy the water flow standard value of the low pressure heater, proceed to the next step, cleaning up the low pressure line. Next, in cleaning up the low pressure line, condenser 1 → condensate pump 2 → desalination device 3 → low pressure heater 4 → condensate system 1
1 → Deaeration tank 5 → Deaerator water tank 6 → Low pressure clean up line (deaerator recirculation line) 13 → Forms a closed circuit of condenser 1, blows out impurities in the system and improves water quality by circulation. After improving the water flow and satisfying the high pressure heater water flow standard value, the next step is to clean up the high pressure line. Furthermore, when cleaning up the high pressure line, condenser 1→condensate pump 2→desalination device 3→low pressure heater 4→deaerator tank 5→deaerator water tank 6→water booster pump 7→water pump bypass line 14 → high pressure heater 9 → water supply system 15 → high pressure clean up line 16 → condenser 1 A closed circuit is formed, and water quality is improved by blowing and circulation to satisfy the boiler water flow standard value. Furthermore, here, 17
18 indicates a sampling system, and 18 indicates a blow system.

以上の如く、各クリーンアツプラインにおい
て、鉄及びその他不純物の多い初期の汚水は系外
にブローさせ、ある程度まで純度が高まつたとこ
ろで循環に切り替え、各循環回路内の脱塩装置に
よつて除去し、水質目標値に達するようにクリー
ンアツプを行ない、順次クリーンアツプ範囲を拡
大させる。このため、高圧ラインクリーンアツプ
においては、低圧ラインクリーンアツプにて除去
された低圧ラインに、高圧ライン中の水質の悪化
された汚水を再び流入させ、特に鉄分の多い高圧
ヒータ回りの汚水を脱塩装置を通し、ブロー、循
環によりクリーンアツプを行なうので、純水は多
量に使用され、時間も長く費し、さらに脱塩装置
に大きな負担がかかる等の欠点がある。
As mentioned above, in each cleanup line, the initial wastewater containing a lot of iron and other impurities is blown out of the system, and when the purity has increased to a certain degree, it is switched to circulation, and removed by the desalination equipment in each circulation circuit. Then, cleanup will be carried out to reach the water quality target value, and the cleanup range will be gradually expanded. For this reason, in high-pressure line clean-up, wastewater with deteriorated water quality in the high-pressure line is allowed to flow back into the low-pressure line that was removed in low-pressure line clean-up, and the waste water around the high-pressure heater, which has a particularly high iron content, is desalinated. Since cleanup is carried out by blowing and circulating through the equipment, there are disadvantages such as a large amount of pure water is used, a long time is consumed, and a heavy burden is placed on the desalination equipment.

本発明の目的は、上記従来技術の欠点を補なう
ため、低圧ヒータラインへの汚水流入を極力少な
くして、効率の良いクリーンアツプを行ない得る
クリーンアツプ方法及び装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a clean-up method and apparatus that can perform clean-up efficiently by minimizing the amount of sewage flowing into the low-pressure heater line, in order to compensate for the drawbacks of the prior art.

本発明においては、高圧給水加熱器からの高圧
給水を前記脱気装置へ帰還させ、再度高圧給水加
熱器に送つて給水加熱し、蒸気発生装置への高圧
給水が水質基準を満足させるまで上記高圧給水加
熱器回りの帰還回路を循環させるようにしたもの
で、これにより、せつかくクリーンアツプされた
低圧給水加熱器に汚れた汚水を送り込ませること
なく、また、効率的なクリーンアツプを行なうこ
とができる。
In the present invention, the high-pressure feed water from the high-pressure feed water heater is returned to the deaerator and sent to the high-pressure feed water heater again to heat the feed water until the high-pressure water feed to the steam generator satisfies the water quality standards. This system is designed to circulate the feedback circuit around the feedwater heater, which prevents dirty wastewater from being sent to the low-pressure feedwater heater that has been carefully cleaned up, and enables efficient cleanup. can.

以下、本発明の一実施例を第2〜6図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 6.

先ず、第2図より本発明の一実施例になるボイ
ラへのクリーンアツプ系統を説明すると、本図の
復水器から低圧ヒータまでの系統は第1図に示し
たものと同じであるのでその図示及び説明を省略
し、第1図と相違する部分について以下説明す
る。
First, let us explain the clean-up system to the boiler which is an embodiment of the present invention using Fig. 2. The system from the condenser to the low pressure heater in this figure is the same as that shown in Fig. 1, so Illustrations and explanations will be omitted, and portions that are different from FIG. 1 will be explained below.

即ち、本発明において付設されたものは、高圧
ヒータ9出口から復水器へのラインである高圧ク
リーンアツプライン16より分岐して脱気器5に
至る高圧ヒータクリーンアツプライン22と、取
出元弁21と、脱気器入口弁23と、高圧クリー
ンアツプラインの元弁20である。
That is, what is added in the present invention is a high-pressure heater clean-up line 22 that branches from a high-pressure clean-up line 16 that is a line from the high-pressure heater 9 outlet to the condenser and reaches the deaerator 5, and a take-out valve. 21, a deaerator inlet valve 23, and a main valve 20 of the high-pressure clean-up line.

本発明による系統の運用方法を順次下記に示
す。本系統の水漲り方法としては、低圧クリーン
アツプが完了している場合には、高圧ヒータ回り
水漲りを、復水器から復水系統11より脱気器5
に導入できるが、クリーンアツプ短縮化の点より
復水器ホツトウエルブロー時、あるいは、復水再
循環ラインクリーンアツプ時と同時に実施するの
が有効であるため、水漲りには脱気器水漲り系統
19より行なう。
The system operation method according to the present invention will be sequentially shown below. As for the water filling method for this system, when the low pressure cleanup has been completed, the water around the high pressure heater is pumped from the condenser to the deaerator 5 from the condensate system 11.
However, from the point of view of shortening the clean-up time, it is effective to perform this at the same time as when blowing the condenser hot well or when cleaning up the condensate recirculation line. Perform from line 19.

高圧ヒータ回りの水漲り完了後、給水ブースタ
ポンプ7を起動させ、脱気器5→脱気器貯水槽6
→給水ブースタポンプ7→給水ポンプバイパス系
統14→高圧ヒータ9を経て、本発明による高圧
ヒータクリーンアツプライン22より脱気器5に
至る閉回路により循環を行なう。この時、高圧ヒ
ータ9に付着している鉄分の除鉄効果を高めるた
め、脱気器5に補助蒸気系統12より補助蒸気を
投入させ、加温する。さらに、循環流量に変化を
与えるため、取付元弁21を絞り流量シツクを行
ない、PHを薬液注入系統24よりNH3を投入し
PH9.4程度に調整する。
After filling the area around the high-pressure heater with water, start the water supply booster pump 7 and move the deaerator 5 to the deaerator water tank 6.
→ Water booster pump 7 → Water pump bypass system 14 → High-pressure heater 9. Circulation is performed by a closed circuit from the high-pressure heater clean-up line 22 according to the present invention to the deaerator 5. At this time, in order to enhance the effect of removing iron adhering to the high-pressure heater 9, auxiliary steam is supplied to the deaerator 5 from the auxiliary steam system 12 to heat it. Furthermore, in order to change the circulation flow rate, the installation valve 21 is throttled to increase the flow rate, and NH 3 is injected from the chemical injection system 24 to adjust the pH.
Adjust the pH to about 9.4.

このように、補助蒸気による加温と流量変化、
およびNH3によるPH調整は、鉄分の除去に対し
非常に効果的である。水質のサンプリングは、サ
ンプリング系統17より適宜行ない、初期値の鉄
分に対し、十分除去でき飽和状態に達したと判断
されれば、ブロー系統18より全水ブローを行な
い系統内の汚水を排出し、清浄な給水を脱気器水
漲り系統19より補給する。
In this way, heating by auxiliary steam and flow rate changes,
PH adjustment with NH 3 and NH 3 is very effective for iron removal. Sampling of water quality is carried out as appropriate through the sampling system 17, and when it is judged that the initial value of iron has been sufficiently removed and the saturation state has been reached, all the water is blown through the blow system 18 and the sewage in the system is discharged. Clean water is supplied from the deaerator water filling system 19.

上記の、本発明による高圧ヒータ回りクリーン
アツプによる除鉄効果を第3図に示す。
FIG. 3 shows the effect of removing iron by cleaning up the area around the high-pressure heater according to the present invention.

本図に示す如く、補助蒸気量を循環aとブロー
bを繰り返し行なうことにより、水質の悪化は低
減され除鉄が図れる。
As shown in this figure, by repeatedly performing circulation a and blow b of the auxiliary steam amount, deterioration of water quality can be reduced and iron removal can be achieved.

第4図にスケール付着量S及び腐食量R、と温
度Tの関係を示す。この図より温度が高い程スケ
ールは析出され、腐食量は低下されるが、補助蒸
気との関係で温度は制限されるが、流量変化によ
りなるべく高温度とする。
FIG. 4 shows the relationship between the scale adhesion amount S, the corrosion amount R, and the temperature T. As shown in this figure, the higher the temperature, the more scale is precipitated and the amount of corrosion is reduced, but the temperature is limited due to the relationship with the auxiliary steam, but the temperature is kept as high as possible by changing the flow rate.

第5図に某プラントのエコノマイザー入口
(Eco)におけるPHとFeの関係を示す。この図よ
りFeはPHが9.4以上では低下されず、高PHは逆に
復水器のアンモニアアタツクが生ずる場合がある
ので、PHは9.4程度となるようにNH3にて調整す
ることがわかる。
Figure 5 shows the relationship between PH and Fe at the economizer inlet (Eco) of a certain plant. From this figure, it can be seen that Fe will not be reduced if the PH is over 9.4, and that high PH may cause ammonia attack on the condenser, so the PH should be adjusted with NH 3 to about 9.4. .

次に本発明の他の実施例を第6図により説明す
る。即ち、第2図と異なるところは、高圧クリー
ンアツプライン16から分岐した高圧ヒータクリ
ーンアツプライン22を脱気器貯水槽6に接続し
た点と、脱気器の再循環ライン25を、復水系統
11と、脱気器6と給水ブースタポンプ7の間に
接続した点にある。尚、この再循環ライン25に
は、脱気器再循環ポンプ26及び止弁27が設け
られている。
Next, another embodiment of the present invention will be described with reference to FIG. That is, the difference from FIG. 2 is that the high-pressure heater clean-up line 22 branched from the high-pressure clean-up line 16 is connected to the deaerator water tank 6, and the recirculation line 25 of the deaerator is connected to the condensate system. 11 and a point connected between the deaerator 6 and the water supply booster pump 7. Note that this recirculation line 25 is provided with a deaerator recirculation pump 26 and a stop valve 27.

以上述べたように、本発明の実施例によれば、
ボイラ系で最も鉄分の多い高圧ヒータ回りで、高
圧ヒータ出口より脱気器への別系統を設け、脱塩
装置を介さずに補助蒸気による加温と流量変化お
よびPH調整を行ない、ブロー、循環を繰り返し効
果的に除鉄を単独に実施することにより、クリー
ンアツプ時間の短縮、純水の節約、脱塩装置の軽
負担等が可能となる。また、本装置の設置によ
り、化学、洗浄、水フラツシングの省略化にも寄
与することができる。
As described above, according to the embodiments of the present invention,
Around the high-pressure heater, which has the highest iron content in the boiler system, a separate system is installed from the high-pressure heater outlet to the deaerator, and heating with auxiliary steam, flow rate changes, and PH adjustment are performed without going through the desalination equipment, allowing for blowing and circulation. By repeatedly and effectively carrying out iron removal independently, cleanup time can be shortened, pure water can be saved, and the burden on desalination equipment can be reduced. Additionally, the installation of this device can contribute to the omission of chemicals, cleaning, and water flushing.

本発明によれば、低圧ヒータラインへの汚水流
入を極力少なくして、効率の良いクリーンアツプ
を行なうことができる。
According to the present invention, efficient clean-up can be performed by minimizing the amount of sewage flowing into the low-pressure heater line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なプレボイラクリーンアツプの
全体系統を示す図、第2図は本発明の一実施例に
なる高圧ヒータ回りのクリーンアツプ系統図、第
3図は本発明を採用した場合の除鉄効果を表わす
グラフ、第4図はスケール付着量、腐食量と温度
との関係を示すグラフ、第5図は某プラントのエ
コノマイザー入口におけるPHとFeの関係を示す
グラフ、第6図は本発明の他の実施例を示す高圧
ヒータ回りのクリーンアツプ系統図である。 1……復水器、4……低圧ヒータ、5……脱気
器、9……高圧ヒータ、10……復水再循環ライ
ン、11……復水系統、12……補助蒸気系統、
16……高圧クリーンアツプライン、22……高
圧ヒータクリーンアツプライン、24……薬液注
入系統。
Fig. 1 is a diagram showing the overall system of a general preboiler cleanup, Fig. 2 is a diagram of the cleanup system around the high pressure heater which is an embodiment of the present invention, and Fig. 3 is a diagram showing the cleanup system around the high pressure heater which is an embodiment of the present invention. Figure 4 is a graph showing the iron removal effect, Figure 4 is a graph showing the relationship between scale adhesion amount, corrosion amount, and temperature, Figure 5 is a graph showing the relationship between PH and Fe at the economizer inlet of a certain plant, and Figure 6 is a graph showing the relationship between PH and Fe at the economizer inlet of a certain plant. FIG. 7 is a clean-up system diagram around a high-pressure heater showing another embodiment of the present invention. 1... Condenser, 4... Low pressure heater, 5... Deaerator, 9... High pressure heater, 10... Condensate recirculation line, 11... Condensate system, 12... Auxiliary steam system,
16... High pressure clean up line, 22... High pressure heater clean up line, 24... Chemical injection system.

Claims (1)

【特許請求の範囲】 1 復水器と、この復水器にて凝縮した復水を給
水として導き、加熱する低圧給水加熱器と、この
低圧給水加熱器で加熱された低圧給水を脱気する
脱気装置と、この脱気装置で脱気された給水を加
熱し、蒸気発生装置へ高圧給水を送る高圧給水加
熱器とを備え、脱気装置と高圧給圧加熱器とから
成る高圧給水系統の給水をプラント起動時にクリ
ーンアツプする方法において、前記高圧給水加熱
器からの高圧給水を前記脱気装置へ帰還させ、再
度高圧給水加熱器に送つて給水加熱し、適宜高圧
給水系統内の高圧給水を該系統外へブローしなが
ら給水を補給し、高圧給水が水質基準を満足する
まで前記高圧給水加熱器と脱気装置との間を循環
させるようにしたことを特徴とするクリーンアツ
プ方法。 2 復水器と、この復水器にて凝縮した復水を給
水として導き、加熱する低圧給水加熱器と、この
低圧給水加熱器で加熱された低圧給水を脱気する
脱気装置と、この脱気装置で脱気された給水を加
熱し、蒸気発生装置へ高圧給水を送る高圧給水加
熱器とを備え、脱気器と高圧給水加熱器とからな
る高圧給水系統の給水をプラント起動時にクリー
ンアツプするクリーンアツプ装置において、前記
高圧給水加熱器と脱気装置との間に設けられ、プ
ラント起動時高圧給水加熱器からの高圧給水を前
記脱気装置へ帰還する帰還ライン、高圧給水系統
内の給水を系外へブローするブロー系統、高圧給
水系統へ給水を補給する補給水系統を設け、帰還
ラインにより、前記蒸気発生装置への高圧給水が
水質基準を満足するまで前記高圧給水加熱器と脱
気装置との間を循環させることを特徴とするクリ
ーンアツプ装置。 3 前記帰還ラインを、前記高圧給水加熱器の出
口側の給水系統と前記脱気装置の脱気槽との間に
設けたことを特徴とする特許請求の範囲第2項記
載のクリーンアツプ装置。 4 前記帰還ラインを、前記高圧給水加熱器の出
口側の給水系統と前記脱気装置の脱気器貯水槽と
の間に設けたことを特徴とする特許請求の範囲第
2項記載のクリーンアツプ装置。 5 前記脱気装置に補助蒸気系統を接続したこと
を特徴とする特許請求の範囲第2項又は第3項又
は第4項記載のクリーンアツプ装置。 6 前記脱気装置に薬液注入系統を接続したこと
を特徴とする特許請求の範囲第2項又は第3項又
は第4項又は第5項記載のクリーンアツプ装置。
[Scope of Claims] 1. A condenser, a low-pressure feed water heater for guiding and heating the condensed water condensed in the condenser as feed water, and deaerating the low-pressure feed water heated by the low-pressure feed water heater. A high-pressure water supply system comprising a deaerator and a high-pressure feed water heater that heats the feed water deaerated by the deaerator and sends the high-pressure feed water to a steam generator. In this method, the high-pressure feed water from the high-pressure feed water heater is returned to the deaerator, and is sent to the high-pressure feed water heater again to heat the feed water, and the high-pressure water supply in the high-pressure water supply system is cleaned up at the time of plant start-up. A clean-up method characterized in that the feed water is replenished while blowing the water out of the system, and the high-pressure feed water is circulated between the high-pressure feed water heater and the deaerator until the high-pressure feed water satisfies water quality standards. 2. A condenser, a low-pressure feed water heater that guides and heats the condensed water condensed in this condenser as feed water, a deaerator that deaerates the low-pressure feed water heated by this low-pressure feed water heater, and Equipped with a high-pressure feed water heater that heats the feed water deaerated by the deaerator and sends the high-pressure feed water to the steam generator, the feed water of the high-pressure water system consisting of the deaerator and the high-pressure feed water heater is cleaned at the time of plant startup. In the clean-up equipment, a return line is provided between the high-pressure feed water heater and the deaerator, and returns high-pressure water from the high-pressure feed water heater to the deaerator at plant startup, and a return line in the high-pressure water supply system. A blow system that blows the feed water out of the system and a make-up water system that supplies water to the high-pressure water supply system are provided, and a return line connects the high-pressure feed water heater to the high-pressure water heater until the high-pressure water supply to the steam generator satisfies water quality standards. A clean-up device characterized by circulating air between the air and the air device. 3. The clean-up device according to claim 2, wherein the return line is provided between the water supply system on the outlet side of the high-pressure feed water heater and the deaerator tank of the deaerator. 4. The clean-up system according to claim 2, wherein the return line is provided between the water supply system on the outlet side of the high-pressure feed water heater and the deaerator water tank of the deaerator. Device. 5. The clean-up device according to claim 2, 3, or 4, characterized in that an auxiliary steam system is connected to the deaerator. 6. The clean-up device according to claim 2, 3, 4, or 5, characterized in that a chemical injection system is connected to the deaerator.
JP55144331A 1980-10-17 1980-10-17 Cleaning-up method and its device Granted JPS5768184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55144331A JPS5768184A (en) 1980-10-17 1980-10-17 Cleaning-up method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55144331A JPS5768184A (en) 1980-10-17 1980-10-17 Cleaning-up method and its device

Publications (2)

Publication Number Publication Date
JPS5768184A JPS5768184A (en) 1982-04-26
JPH0135245B2 true JPH0135245B2 (en) 1989-07-24

Family

ID=15359618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55144331A Granted JPS5768184A (en) 1980-10-17 1980-10-17 Cleaning-up method and its device

Country Status (1)

Country Link
JP (1) JPS5768184A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190710A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Device and method for cleaning up water supply system
JP2015190709A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Cleanup device and cleanup method for water supply system
JP2015190711A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Device and method for cleaning up water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064256A (en) * 1983-09-19 1985-04-12 Hitachi Ltd Automatic analytical apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682301A (en) * 1979-12-08 1981-07-06 Fuji Electric Co Ltd Filter for feeddwater system in steammatomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682301A (en) * 1979-12-08 1981-07-06 Fuji Electric Co Ltd Filter for feeddwater system in steammatomic power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190710A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Device and method for cleaning up water supply system
JP2015190709A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Cleanup device and cleanup method for water supply system
JP2015190711A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Device and method for cleaning up water supply system

Also Published As

Publication number Publication date
JPS5768184A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
JPH10141606A (en) Boiler plant
RU2568033C2 (en) Method of completing chemical cleaning of electric power plant
JPH0135245B2 (en)
JPH11505585A (en) Condensate degassing method and apparatus
RU97120761A (en) METHOD AND DEVICE FOR DEGASING CONDENSATE
US4813237A (en) Apparatus for making up feed water for a power station
JP4095738B2 (en) Nuclear power generation equipment
JPS61134509A (en) High pressure system clean-up system of plant
JPH0979504A (en) Cleaning method for exhaust heat recovery boiler
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
RU9016U1 (en) HEAT POWER PLANT
JP3085785B2 (en) Boiler feedwater heating device
JP3888894B2 (en) Condensate treatment system and condensate treatment method
JP7039781B2 (en) Water supply system cleanup equipment and methods
JP4599326B2 (en) Filtration equipment and power plant
JPS6191404A (en) Pre-boiler cleanup system
US1634776A (en) Deaerating water
JP2002055193A (en) Feed water system for neuclear power plant and its clad reducing method
JP3691019B2 (en) Power plant cleanup operation device and operation method
JP3833411B2 (en) Circulating water cooling system and power generation equipment equipped with this circulating water cooling system
JPS6144204A (en) Clean-up method of steam power plant
JPH09126410A (en) Feed-water treatment method in thermal power plant
JP2023008637A (en) Water supply apparatus and method
JPS58190690A (en) Power generating plant having sidestream type condensed water purification system
JPH0148519B2 (en)