JPS59107503A - Method of manufacturing magnetic powders with iron as main constituent for magnetic recording - Google Patents

Method of manufacturing magnetic powders with iron as main constituent for magnetic recording

Info

Publication number
JPS59107503A
JPS59107503A JP57218072A JP21807282A JPS59107503A JP S59107503 A JPS59107503 A JP S59107503A JP 57218072 A JP57218072 A JP 57218072A JP 21807282 A JP21807282 A JP 21807282A JP S59107503 A JPS59107503 A JP S59107503A
Authority
JP
Japan
Prior art keywords
iron
axis length
magnetic
powder
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57218072A
Other languages
Japanese (ja)
Other versions
JPH032321B2 (en
Inventor
Shintaro Suzuki
鈴木 新太郎
Yoshimi Moriya
好美 守谷
Yoshishige Koma
駒 佳茂
Katsuhiro Takano
勝弘 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP57218072A priority Critical patent/JPS59107503A/en
Publication of JPS59107503A publication Critical patent/JPS59107503A/en
Publication of JPH032321B2 publication Critical patent/JPH032321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70615Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Fe metal or alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide magnetic powders with sufficiently large coercive force and improve saturated magnetic flux density, by a method wherein Co, Ni or the like is adhered to iron oxyhydroxide with specified major axis length and minor axis lenght or to that doped by Co, Ni or the like, and then reduction is performed in a reducing gas atmosphere. CONSTITUTION:Iron oxyhydroxide such as alpha-FeOOH having mean major axis length of 0.2-2mum perferably 0.5-1.5mum and mean minor axis length of 0.01- 0.1mum preferably 0.03-0.08mum, iron oxide such as alpha-Fe2O3, and doped substance of metal such as Ni, Co or alloy thereof onto above-mentioned iron oxyhydroxide or iron oxide are used. Hydroxide or oxide of Co, Ni is adhered, adsorbed or deposited to iron oxyoxide or iron oxide and the surface coating treatment is performed. The treated substance is dried and then reduced in a reducing gas atmosphere such as hydrogen at a temperature of 600 deg.C or less. In this constitution, magnetic powders are obtained at iron content 70-98wt% and coercive force of 160Oe or more.

Description

【発明の詳細な説明】 本発明は高密度記録に適した保磁力及び飽和磁束密度の
高い磁気記録用磁性粉末、特にマスターテープ用の磁性
粉末の製造法に関するものである5、 接触転写方式による磁気記録の複製方法においては、マ
スターテープには磁気転写される磁気テープよりも格段
に大きな保磁力が要求され、マスターテープに使用され
る磁性粉は16000e以上め保磁力が必要とされてい
る6更にノイズが低(、BlN比が高いなどの浸れた磁
気特性も要求される。従ってマスターテープに使用する
磁性粉末には高い保磁力に加え、高い飽和磁束密度、そ
して高分散性も要求される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic powder for magnetic recording with high coercive force and saturation magnetic flux density suitable for high-density recording, particularly magnetic powder for master tapes. 5. By contact transfer method. In the magnetic recording duplication method, the master tape is required to have a much larger coercive force than the magnetic tape to which magnetic transfer is performed, and the magnetic powder used in the master tape is required to have a coercive force of 16,000 e or more6. Furthermore, excellent magnetic properties such as low noise (and high BlN ratio) are also required. Therefore, in addition to high coercive force, the magnetic powder used for the master tape is also required to have high saturation magnetic flux density and high dispersion. .

本発明の目的は、上記条件を満たす保磁力が十分に大き
く、飽和磁束密度の高い分散性に優れたマスターテープ
用の磁性粉末の製造方法を提供することである。
An object of the present invention is to provide a method for producing magnetic powder for a master tape that satisfies the above conditions and has a sufficiently large coercive force, a high saturation magnetic flux density, and excellent dispersibility.

保磁力が16000e以上であるマスターテープ用の磁
性粉末の製造方法としては従来から次の様な方法が検討
されてきた。
As a method for producing magnetic powder for master tapes having a coercive force of 16,000 e or more, the following methods have been considered.

(1)強磁性金属、合金を不活性ガス中で蒸発させる方
法。
(1) A method in which ferromagnetic metals and alloys are evaporated in an inert gas.

(2)強磁性を有する金属の塩を、その溶液中で水素化
ホウ素ナトリウムで湿式還元する方法。
(2) A method of wet reduction of a ferromagnetic metal salt with sodium borohydride in its solution.

しかし、これらの方法はいずれも工業的あるいは実用的
な面から考えると決定的方法とは言い難い。即ち(1)
の蒸発法は複雑な装置及び作業を必要とするため大規模
な実施には不向きである欠点を有しており、また(2)
の湿式還元法では得られた磁性粉の表面活性度が高いた
め自燃性が強く、また全気中の酸素や湿気に弱く磁気特
性の低下′5r:まねきやすい欠点を有している上に、
個々の粒子が糸状をしており、バインダーとの混合分数
処理の過程において、その粒子形状が破壊され、磁場配
向性が悪くなり、磁気記録体の磁気特性、特に角形比が
悪くなる欠点を有している。− これらの方法に比ベオキシ水酸化鉄等を出発原料とする
乾式の踵元方法は大量生産に適しており経所的に有利で
あるが、この方法で保磁力が16000O以上の磁性粉
は令名に製造されていない。
However, none of these methods can be considered definitive from an industrial or practical standpoint. That is (1)
The evaporation method requires complicated equipment and operations, making it unsuitable for large-scale implementation, and (2)
In the wet reduction method, the magnetic powder obtained has a high surface activity, so it is highly self-combustible, and it is also weak against oxygen and moisture in the air, resulting in a decrease in magnetic properties.
The individual particles are filamentous, and during the mixing process with the binder, the particle shape is destroyed, the magnetic field orientation deteriorates, and the magnetic properties of the magnetic recording medium, especially the squareness ratio, deteriorate. are doing. - Compared to these methods, the dry heel method using iron beoxyhydroxide as a starting material is suitable for mass production and is economically advantageous; Not manufactured in the name.

この理由は還元が通常水素気流中高温で行われるため、
体積の減少、多孔質化、形状の変化、焼結が生じてしま
いマスターテープ用に適した磁性粉が得られなかったこ
とにある。
The reason for this is that reduction is usually carried out at high temperatures in a hydrogen stream;
This is because a magnetic powder suitable for use in master tapes could not be obtained because volume reduction, porosity, shape change, and sintering occurred.

本発明者らは上記還元方法の欠点を解決し、マスターテ
ープ用として適した磁性粉を得るべく鋭意研究の結果本
発明に到達した。即ち、本発明は平均長軸長が0.2〜
2μmであり、且署均短軸長が0.01〜0.1μmで
あるオキシ水酸化鉄、酸化鉄、又はこれらにco 、 
Ni 、 Mn 、 z’nなどの金属をドープしたも
のに、oo 、 Ni 、 Mn 及びZnの化合物か
ら選ばれた1つもしくけ2つ以上の化合物を付着、又は
吸着、あるいは沈澱させる処理をした後、該処理物を乾
燥し、次いで還元性ガス雰囲気中で200〜6oo℃の
温度で還元することから成る、保磁力がf6000O以
上であり且つ鉄を70〜98重量係含む磁気記録用磁性
粉末の製造法を提供するものである。
The present inventors have arrived at the present invention as a result of intensive research in order to solve the drawbacks of the above reduction method and obtain magnetic powder suitable for use in master tapes. That is, in the present invention, the average major axis length is 0.2 to
Iron oxyhydroxide, iron oxide, or co-co
Doped with metals such as Ni, Mn, and z'n, treated with one or more compounds selected from compounds of oo, Ni, Mn, and Zn to attach, adsorb, or precipitate them. After that, the treated product is dried and then reduced at a temperature of 200 to 600°C in a reducing gas atmosphere, and the magnetic powder for magnetic recording has a coercive force of f6000O or more and contains 70 to 98% iron by weight. The present invention provides a method for manufacturing.

本発明の出発物質には平均長軸長が0.2〜2μmであ
り且つ平均短軸長が0.01〜0.1μm%より好まし
くは平均長軸長が0.5〜1.5μmであり。
The starting material of the present invention has an average major axis length of 0.2 to 2 μm and an average minor axis length of 0.01 to 0.1 μm%, more preferably an average major axis length of 0.5 to 1.5 μm. .

且つ平均短軸長が0.03〜0.08 pmのα−Fe
20H。
α-Fe with an average minor axis length of 0.03 to 0.08 pm
20H.

β−FeOOH、y−FeOOH等のオキシ水酸化鉄、
α−Fe20. 、7−Pa、、O,、re、O,、7
−Fe、、O,−Fe、0Ll(BerthOri(l
e 化合物)等の酸化鉄及びこれらにNi 、 Co 
、 Mn及びZll等の金属又はそれらの化合物の1又
は2以上がドープされたものを用いる。
iron oxyhydroxides such as β-FeOOH and y-FeOOH,
α-Fe20. ,7-Pa,,O,,re,O,,7
-Fe,,O,-Fe,0Ll(BerthOri(l
iron oxides such as e compounds) and these with Ni and Co
, doped with one or more of metals such as Mn and Zll, or compounds thereof.

また、本発明で用いるOo 、 Ni 、 Mn及びz
nの化合物は水可溶性のものもしくはコロイド状のもの
であればいずれでも使用できる。好適に使用される化合
物としてはco O4T Ni cZ2 t Mn 0
4及びZn Oh ノ様な塩化物%0oSO,、N15
O,、Mn80゜及びZn S Ouの様な硫酸塩及び
硝酸塩などの塩類、00 (0H)x a!2− x 
+ N1 (oH)x cA2− X T MnX(o
H)x c!2− x及びZn(0H)Xc−”2−x
 (xは1又は2)の様な水酸化物もしくは部分水酸化
物、コロイド化合物等が例示される。
In addition, Oo, Ni, Mn and z used in the present invention
Any compound n can be used as long as it is water-soluble or colloidal. Preferably used compounds include co O4T Ni cZ2 t Mn 0
4 and Zn Oh-like chlorides%0oSO,,N15
O,, salts such as sulfates and nitrates such as Mn80° and Zn S Ou, 00 (0H) x a! 2-x
+ N1 (oH)x cA2- XT MnX(o
H) x c! 2-x and Zn(0H)Xc-”2-x
Examples include hydroxides or partial hydroxides such as (x is 1 or 2), colloidal compounds, and the like.

本発明において得られた磁性粉については鉄の含有量・
が原子吸光分析によって分析したとき70〜98重t%
である必要がある。磁性粉の保磁力はその合金組成、結
晶磁気異方性或いは形状異方性等によって変って来るの
であるが、本発明の鉄を主成分とする磁性粉におりては
上記範囲外の鉄含量ではその保磁力が16000O未満
になってしまり。
Regarding the magnetic powder obtained in the present invention, the iron content and
70-98 wt% when analyzed by atomic absorption spectrometry
It must be. The coercive force of magnetic powder varies depending on its alloy composition, magnetocrystalline anisotropy, shape anisotropy, etc., but in the magnetic powder of the present invention whose main component is iron, the iron content outside the above range is Then, the coercive force becomes less than 16,000O.

次′に本発明の磁性粉末を得る方法の好ましい実施態様
を説明する。
Next, preferred embodiments of the method for obtaining magnetic powder of the present invention will be explained.

先ず、Oo 、 Ni 、 Mnあるいはznの化合物
をオキシ水酸化鉄あるいは酸化鉄に処理するに際しては
、  Co 、 Ni 、 MnあるいはZnの化合物
として水可溶性塩を用いるときは、その溶液に前記オキ
シ水酸化鉄あるZFia化鉄を分散させ。
First, when treating a compound of Oo, Ni, Mn, or Zn to iron oxyhydroxide or iron oxide, when a water-soluble salt is used as the compound of Co, Ni, Mn, or Zn, the above-mentioned oxyhydroxide is added to the solution. Disperse ZFia iron.

一定時間攪拌してその可溶性塩と十分接触させるだけで
も効果は認められるが、より効果を上げるためにはオキ
シ水酸化鉄あるいは酸化鉄を分散後上記可溶性塩がアル
カリ性ならば塩酸、硫酸、硝酸、リン酸等の酸で、父、
可溶性塩が酸性ならば苛性ソーダ、苛性カリあるいはア
ンモニアなどのアルカリから選ばれた1もしくは2以上
のアルカリで全中和もしくは部分中和させ、co 、 
Ni 、 Mn及びZnの水酸化物又は酸化物の1又は
2以上をオキシ水酸化鉄あるいは酸化鉄に付着、吸着あ
るいは沈澱させ、表面コーティングさせるべく処理する
。また、この処理において上記オキシ水酸化鉄あるいは
酸化鉄の分散を良くするために、オレーイン酸ソーダ、
アルギン酸ソーダ等の界面活性剤を使用することも本発
明の効果を一層向上せしめ得る。
The effect can be seen just by stirring for a certain period of time and making sufficient contact with the soluble salt, but to increase the effect even more, after dispersing iron oxyhydroxide or iron oxide, if the soluble salt is alkaline, add hydrochloric acid, sulfuric acid, nitric acid, With acids such as phosphoric acid, father,
If the soluble salt is acidic, it is completely or partially neutralized with one or more alkalis selected from alkalis such as caustic soda, caustic potash, or ammonia;
One or more of the hydroxides or oxides of Ni, Mn, and Zn are deposited, adsorbed, or precipitated on iron oxyhydroxide or iron oxide, and treated to form a surface coating. In addition, in order to improve the dispersion of the iron oxyhydroxide or iron oxide in this treatment, sodium oleate,
Use of a surfactant such as sodium alginate can also further improve the effects of the present invention.

つづいて、これらの処理を施したオキシ水酸化鉄あるい
は酸化鉄を乾燥後600℃を越えない温度好ましくは5
00℃を越えない温度で水素等の還元性ガス雰囲気中で
還元する。還元温度についての下限は実際上はないが低
温においては反応が非常にゆっくり進むので実用的には
200℃以上、好ましくは250℃以上の温度で還元す
るのが良い。
Subsequently, after drying the iron oxyhydroxide or iron oxide subjected to these treatments, the temperature preferably does not exceed 500°C.
Reduction is carried out in an atmosphere of a reducing gas such as hydrogen at a temperature not exceeding 00°C. There is actually no lower limit to the reduction temperature, but since the reaction proceeds very slowly at low temperatures, it is practically preferable to carry out the reduction at a temperature of 200°C or higher, preferably 250°C or higher.

還元後、還元器を冷却し、空気14及び漬素99憾の混
合ガスを還元器に導入し、このガスの空気含有量を段階
的あるいは徐々に増し4〜5時間後には空気だけにし、
強磁性粉末を取り出す。
After the reduction, the reducer is cooled, and a mixed gas of 14 air and 99 ml of soybean is introduced into the reducer, and the air content of this gas is increased stepwise or gradually until it becomes only air after 4 to 5 hours.
Take out the ferromagnetic powder.

次に、実施例によって更に詳しく本発明を説明するが、
この実施例によって本発明の制限がなされるものではな
い。
Next, the present invention will be explained in more detail with reference to Examples.
This example does not limit the invention.

実施例−1 平′均長軸長が1.0μmであり且つ平均短軸長が0.
03μmの針状a −Fe0OH80fを6!の水に懸
濁して攪拌機で分散する。これに塩化コバルトI M/
A溶液45ccを添加し、攪拌する。その後更に2 N
−NaOH45(!cを添加し、添加後約30分間攪拌
してから濾過洗浄し湿α−FeOOHケーキを得る。こ
れを約150℃の温度で一晩乾燥する。この乾燥ケーキ
10Fを取って350℃で水素流量5!/分で約7時間
遠元し鉄含有率95重量%の強磁性粉末を得た。得られ
た磁性粉末の磁気特性は次の通りである(IQKOeで
の測定値)。
Example-1 The average long axis length is 1.0 μm and the average short axis length is 0.0 μm.
03μm needle a-Fe0OH80f 6! Suspend in water and disperse with a stirrer. Cobalt chloride IM/
Add 45 cc of solution A and stir. Then another 2 N
-NaOH45 (!c) is added, stirred for about 30 minutes after addition, filtered and washed to obtain a wet α-FeOOH cake. This is dried overnight at a temperature of about 150°C. Take 10F of this dry cake and A ferromagnetic powder with an iron content of 95% by weight was obtained by centrifugation for about 7 hours at a hydrogen flow rate of 5!/min at ℃.The magnetic properties of the obtained magnetic powder are as follows (values measured with IQKOe). .

同、Hoは保磁力、σ、は残留磁束密度、σBは飽和磁
束密度、σr/σ8は角形比である。
Similarly, Ho is coercive force, σ is residual magnetic flux density, σB is saturation magnetic flux density, and σr/σ8 is squareness ratio.

”C”  ” ” Oee  σy =82.1 em
u / tσ日 = 161 θmu/f l σr/
σ8 = 0.51実施例 平均長軸長が1.0μmであり且つ平均短軸長が0.0
4 μmの針状a −Fe0OH80tを6!の水に懸
濁して攪拌機で分散する。これに塩化ニッケルIM/A
溶液45ccを添加し、攪拌する。その後更に2N−N
aOH45ccを添加し、添加後約30分間攪拌してか
ら濾過洗浄し湿α−FeOOHケーキを得る。こ・れを
約150℃の温度で一晩乾燥する。この乾燥ケーキ10
Vを取って350 ℃で水素流量3!/分で約7時間遠
元し鉄含有率95重量係の強磁性粉末を得た。得られた
磁性粉末の磁気特性は次の通りである(10KOθでの
測定値)。
“C” “” Oee σy =82.1 em
u / tσ days = 161 θmu/f l σr/
σ8 = 0.51 Example The average major axis length is 1.0 μm and the average minor axis length is 0.0
4 μm needle-like a-Fe0OH80t 6! Suspend in water and disperse with a stirrer. In this, nickel chloride IM/A
Add 45 cc of solution and stir. Then another 2N-N
Add 45 cc of aOH, stir for about 30 minutes after addition, and filter and wash to obtain a wet α-FeOOH cake. This film is dried overnight at a temperature of about 150°C. This dried cake 10
Take V and hydrogen flow rate is 3 at 350 ℃! A ferromagnetic powder having an iron content of 95% by weight was obtained by dispersing the powder at a rate of 1/min for about 7 hours. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOθ).

Hc=18100θ 、σr= 76.5 emu、/
1clB =155 emu/j’ I dr/elB
 =[1,50実施例 平均長軸長が1.2μmであり且つ平均短軸長が0.0
4μm)針状a −Fe0O■80fを6にの水に)踵
部して攪拌機で分散する。これに塩化マンガンIM/i
溶液45ccを添加し、攪拌する。その後更に2N−N
aOH45c’cを添加し、添加後約30分間攪拌して
から濾過洗浄し湿α−FθOOHケーキを得る。これを
約150℃の温度で一晩乾燥する。この乾燥ケーキ10
ft1″取って350℃で水氷流量3!/分で約7時間
遠元し鉄含有率96重量係の強磁性粉末を得た。得られ
た磁性粉末の磁気特性は次の通りである(10KOeで
の測定値)。
Hc=18100θ, σr=76.5 emu, /
1clB = 155 emu/j' I dr/elB
= [1,50 Examples The average major axis length is 1.2 μm and the average minor axis length is 0.0
4μm) Needle-shaped a-Fe0O■80f is added to the water in step 6) and dispersed using a stirrer. In this, manganese chloride IM/i
Add 45 cc of solution and stir. Then another 2N-N
Add aOH45c'c, stir for about 30 minutes after addition, and filter and wash to obtain a wet α-FθOOH cake. This is dried overnight at a temperature of about 150°C. This dried cake 10
ft1" was taken and centrifuged at 350°C for about 7 hours at a water ice flow rate of 3!/min to obtain a ferromagnetic powder with an iron content of 96% by weight. The magnetic properties of the obtained magnetic powder are as follows ( Measured value at 10KOe).

He ” 19300e  、 (11” 72.58
mu/lσB =  148 emu/r 、 dr/
dB =、0.49実施例−4 平均長軸長が0.6μmであり且つ平均短軸長が0.0
2μmの針状(z −Fe0OH80fを6!の水に懸
濁して攪拌機で分散する。これに塩化亜鉛1M/7溶液
45ccを添加し、攪拌する。その後更に2 N −N
aOH45ccを添加し、添加後約30分間攪拌してか
ら濾過洗浄し湿α−FeOOHケーキを得る。これを約
150℃の温度で一晩乾燥する。この乾燥ケーキIQf
を取って350℃で水素流量3!/分で約7時間遠元し
鉄含有率95重量憾の強磁性粉末を得た。得られた磁性
粉末の磁気特性は次の通りである(10KO,での測定
値)。
He” 19300e, (11” 72.58
mu/lσB = 148 emu/r, dr/
dB =, 0.49 Example-4 The average major axis length is 0.6 μm and the average minor axis length is 0.0
Suspend 2 μm needle-shaped (z -Fe0OH80f in 6! of water and disperse with a stirrer. Add 45 cc of zinc chloride 1M/7 solution and stir. Then add 2 N -N
Add 45 cc of aOH, stir for about 30 minutes after addition, and filter and wash to obtain a wet α-FeOOH cake. This is dried overnight at a temperature of about 150°C. This dried cake IQf
At 350℃, hydrogen flow rate is 3! A ferromagnetic powder with an iron content of 95% by weight was obtained by spinning for about 7 hours at a speed of 100%. The magnetic properties of the obtained magnetic powder are as follows (values measured at 10 KO).

He = 18700e  、 σl = 72.5 
emu/rσ、 =  145 emu/l +σr/
σ8= 0.50実施例−5 平均長軸長が0.8μmであり且つ平均短軸長が0.0
5μmのコバルトドープ針状a −Fe0OH(O。
He = 18700e, σl = 72.5
emu/rσ, = 145 emu/l +σr/
σ8 = 0.50 Example-5 The average major axis length is 0.8 μm and the average minor axis length is 0.0
5 μm cobalt-doped needles a-Fe0OH(O.

/Fθ=11)80fを6!の水に懸濁して攪拌機で分
散する。これに硫酸コバルトI M/A溶液90ccを
添加し、攪拌する。その後更に2N−NaOH90cc
を添加し、添加後約゛130分間攪拌してから濾過洗浄
し湿α−FθOOHケーキを得る。これを約150℃の
温度で一晩乾燥する。
/Fθ=11) 80f is 6! Suspend in water and disperse with a stirrer. 90 cc of cobalt sulfate IM/A solution is added to this and stirred. After that, 90cc of 2N-NaOH
After the addition, the mixture was stirred for about 130 minutes and then filtered and washed to obtain a wet α-FθOOH cake. This is dried overnight at a temperature of about 150°C.

この乾燥ケーキ1Qrを取って550℃で水素流量3!
/分で約7時間遠元し鉄含有率90重量係の強磁性粉末
を得た。得られた磁性粉末の磁気特性は次の通りである
(10KOθでの測定値)。
Take 1Qr of this dry cake and heat it to 550°C with a hydrogen flow rate of 3!
A ferromagnetic powder having an iron content of 90% by weight was obtained by dispersing the powder at a rate of 1/min for about 7 hours. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOθ).

Hc =1980 0e   、  (y、=80,6
  emu/rσB =  155 emu/r  、
  σr/σ、 = 0.52実施例−6 平均長軸長が0.7μm′″>あり且つ平均短軸長が0
.0+μmの針状a−Fe、、0.80 fを6!の水
に懸濁して攪拌機で分散する。これに塩化コバルト1’
M/A溶液200 ccを添加し、攪拌する。その後更
に2 N −NaOH200QCを添加し、添加後約3
0分間攪拌してから濾過洗浄し湿α−Fθ20゜ケーキ
を得る。これを約150℃の温度で一晩乾燥する。この
乾燥ケーキ102を取って350℃で水素流量3!/分
で約7時間遠元し鉄含有率84N量係の強磁性粉末を得
た。得られた磁性粉末の磁気特性は次の通りである(1
0KO,での測定値)。
Hc = 1980 0e, (y, = 80,6
emu/rσB = 155 emu/r,
σr/σ, = 0.52 Example-6 Average major axis length is 0.7 μm''' and average minor axis length is 0
.. 0+μm acicular a-Fe,, 0.80 f 6! Suspend in water and disperse with a stirrer. In this, cobalt chloride 1'
Add 200 cc of M/A solution and stir. After that, 2N-NaOH200QC was further added, and after the addition, about 3
After stirring for 0 minutes, the mixture was filtered and washed to obtain a wet α-Fθ20° cake. This is dried overnight at a temperature of about 150°C. Take this dry cake 102 and heat it to 350°C with a hydrogen flow rate of 3! /min for about 7 hours to obtain ferromagnetic powder with an iron content of 84N. The magnetic properties of the obtained magnetic powder are as follows (1
Measured value at 0KO,).

Hc= 18500e  、 a、 = 79,9 e
mu/f6B =  163 emu/r t’ (1
rhB = 0.49実施例−7 平均長軸長が1.5μmであり且つ平均短軸長が0.0
6μmの針状a −Felon 80fを61/の水に
懸濁して攪拌機で分散する。これに塩化コバルト1開/
I!/溶液45cc及び塩化ニッケAt I M /j
溶液45ccを添加し、攪拌する。その後更に2N−N
aOH90ccを添加し、添加後約50分間攪拌してか
ら濾過洗浄し湿α−FeOOHケーキを得る。これを約
150℃の温度で一晩乾燥する。
Hc = 18500e, a, = 79,9e
mu/f6B = 163 emu/r t' (1
rhB = 0.49 Example-7 The average major axis length is 1.5 μm and the average minor axis length is 0.0
6 μm needle-like a-Felon 80f is suspended in 61/ml of water and dispersed with a stirrer. Cobalt chloride 1/
I! /45cc of solution and nickel chloride AtIM/j
Add 45 cc of solution and stir. Then another 2N-N
Add 90 cc of aOH, stir for about 50 minutes after addition, and filter and wash to obtain a wet α-FeOOH cake. This is dried overnight at a temperature of about 150°C.

この乾燥ケーキ10tを取って350℃で水素流量3!
/分で約7時間遠元し鉄含有率91重量係の強磁性粉末
を得た。得られた磁性粉末の磁気特性は次の通りである
(10KOeでの測定値)。
Take 10 tons of this dried cake and heat it to 350°C with a hydrogen flow rate of 3!
A ferromagnetic powder having an iron content of 91% by weight was obtained by dispersing the powder for about 7 hours at a speed of 100% by weight. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOe).

Bo=17800e  、 (11=73.Oumu/
fσ、 =  146 emu/f  +σr/σ8=
 0.50実施例−8 平均長軸長が0.3μmであり且つ平均短軸長が0.0
2μmの唾鉛ドープ針状a −Fe0OH(Zn/Fe
=1係)80tを6!の水に懸濁して攪拌機で分散する
。これに塩化コバル)IM/7溶液180CC及び塩化
マンガン1M/J溶液9occを添加し、攪拌する。そ
の後更に2 N −NaOH270ccを添加し、添加
後約30分間攪拌してから濾過洗浄し湿α−FθOOH
ケーキを得る。これを約150℃の温度で一晩乾燥する
。この乾燥ケーキ10rを取って550℃で水素流量5
7/分で約7時間遠元し鉄含有率77重量係の強磁性粉
末を得た。得られた磁性粉末の磁気特性は次の通りであ
る(IQKOeでの測定値)。
Bo=17800e, (11=73.Oumu/
fσ, = 146 emu/f +σr/σ8=
0.50 Example-8 The average major axis length is 0.3 μm and the average minor axis length is 0.0
2 μm salivary lead-doped needles a-Fe0OH (Zn/Fe
= 1 section) 80t to 6! Suspend in water and disperse with a stirrer. To this were added 180 cc of cobal chloride IM/7 solution and 9 occ of manganese chloride 1 M/J solution, and the mixture was stirred. After that, 270 cc of 2N-NaOH was added, stirred for about 30 minutes after the addition, filtered and washed, and wet α-FθOOH
get cake. This is dried overnight at a temperature of about 150°C. Take 10r of this dry cake and heat it at 550°C with a hydrogen flow rate of 5
A ferromagnetic powder having an iron content of 77% by weight was obtained by spinning at a rate of 7/min for about 7 hours. The magnetic properties of the obtained magnetic powder are as follows (values measured by IQKOe).

H(B  =  2050  oe    、  (7
y  =  68.9emu/Fσ、 =  150 
emu/f 、σr/σ8= 0.55実施例−9 平均長軸長が1.1μmであり且つ平均短軸長が0.0
8 μmの針状a−Fe2O380fを6!の水に懸濁
して攪拌機で分散する。これに塩化ニッケル1開/!溶
液50cc及び塩化亜鉛1M/!溶液30ccを添加し
、攪拌する。その後更に2N −NaOH80ccを添
加し、添加後約50分間攪拌してから濾過洗浄し湿α−
Fe20.ケーキを得る。これを約150℃の温度で一
晩乾燥する。
H(B = 2050 oe, (7
y = 68.9emu/Fσ, = 150
emu/f, σr/σ8 = 0.55 Example-9 The average major axis length is 1.1 μm and the average minor axis length is 0.0
8 μm acicular a-Fe2O380f 6! Suspend in water and disperse with a stirrer. Nickel chloride 1/! 50cc of solution and 1M of zinc chloride/! Add 30 cc of solution and stir. After that, 80 cc of 2N-NaOH was added, and after the addition, the mixture was stirred for about 50 minutes, filtered and washed, and the wet α-
Fe20. get cake. This is dried overnight at a temperature of about 150°C.

この乾燥ケーキ10Fを取って350℃で水素流量5!
/分で約7時間遠元し鉄含有率93重量係の強磁性粉末
を得た。得られた磁性粉末の磁気特性は次の通りである
(10KOeでの測定値)。
Take this dry cake at 10F and heat it to 350℃ with a hydrogen flow rate of 5!
/min for about 7 hours to obtain ferromagnetic powder with an iron content of 93% by weight. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOe).

Ho=168008  r  (II =71 、Oe
 mu/’σ、=148 θmu/f 、σr/σ、 
= 0.48比較レリー1 平均長軸長が0.1μmであり且つ平均短軸長が0.0
2μmの針状a −Fe0OH80tを6iの水に@濁
して攪拌機で分散する。これに塩化コバル)IM/A溶
液45ccを添加し、攪拌する。その優良に2 N −
NaOH45ccを添加し7、添加後約30分間撹拌し
てから濾過洗浄し湿α−FeOOHケーキを得る。これ
を約150℃の温度で一晩乾燥する。この乾燥ケーキ1
0Fを取って350℃で水素流量5!/分で約7時間遠
元し鉄含有率95重を憾の強磁性粉末を得た。得られた
磁性粉末の磁気特性は次の通りである(10KOeでの
測定値)。
Ho=168008 r (II=71, Oe
mu/'σ, = 148 θmu/f, σr/σ,
= 0.48 Comparison Rely 1 The average major axis length is 0.1 μm and the average minor axis length is 0.0
80t of acicular a-Fe0OH with a diameter of 2 μm is suspended in 6 μm of water and dispersed with a stirrer. 45 cc of IM/A solution (cobal chloride) is added to this and stirred. 2 N- for its excellence
Add 45 cc of NaOH7, stir for about 30 minutes after addition, and filter and wash to obtain a wet α-FeOOH cake. This is dried overnight at a temperature of about 150°C. This dried cake 1
Take 0F and hydrogen flow rate is 5 at 350℃! A ferromagnetic powder with an iron content of 95% was obtained by centrifugation for about 7 hours at a speed of 100%. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOe).

Ho= 13200e  、  a、−= 64,6 
emu/f6B =  170 emu/f I (l
iiろe= 0・5B比較例−2 平均長軸長が3.0μmであり且?平均短軸長が0.1
3μmの針状(z −Fe0OH80tを6!の水に懸
濁して攪拌機で分散する。これに塩化コノ(ル)IM/
7溶液asccを添加し、攪拌する。その優良に2 N
 −NaOH45coを添加し、添加後約30分間攪拌
してから濾過洗浄し湿α−FθOOHケーキを得る。こ
れを約150℃の温度で一晩乾燥す亀。この乾燥ケーキ
10Fを取って550℃で水素流量sp1分で約7時(
A還元し鉄含有率95重量係の強磁性粉末を得だ。得ら
れた磁性粉末の磁気特性は次の通りである(10KOe
での測定値)。
Ho= 13200e, a, -= 64,6
emu/f6B = 170 emu/f I (l
iiroe = 0.5B Comparative Example-2 The average major axis length is 3.0 μm and ? Average short axis length is 0.1
Suspend 80t of 3 μm needles (z -Fe0OH in 6! of water and disperse with a stirrer. Contain chloride IM/
Add 7 solution ascc and stir. 2 N for that excellence
-NaOH45co is added, stirred for about 30 minutes after addition, and filtered and washed to obtain a wet α-FθOOH cake. The turtle is dried overnight at a temperature of approximately 150°C. Take this dry cake at 10F and heat it at 550℃ for about 7 hours at a hydrogen flow rate sp of 1 minute (
A ferromagnetic powder with an iron content of 95% by weight was obtained by reduction. The magnetic properties of the obtained magnetic powder are as follows (10KOe
).

Ho =1180 Oe   、  (1r ”  7
5,5  emu/fσg =  175emu/r 
、σr/σ、 = 0.43比較例−3 平均長軸長が1.0μmであり且つ平均短軸長が0.0
3μmの針状a −Pe0OH80tを6!の水に@濁
して攪拌機で分散する。これに塩化コノくル)IM/J
溶液270 cc及び塩化ニッケル1開/!溶液450
 ccを添加し、攪拌する。その優良に2 N −Na
OH720ccを添加し、添加後約50分間攪拌してか
ら濾過洗浄し湿α−FθOOHケーキを得る。これを約
150℃の温度で一晩乾燥する。
Ho = 1180 Oe, (1r ” 7
5,5 emu/fσg = 175 emu/r
, σr/σ, = 0.43 Comparative Example-3 The average major axis length is 1.0 μm and the average minor axis length is 0.0
3μm needle-like a-Pe0OH80t 6! of water and disperse with a stirrer. In this, konol chloride) IM/J
270 cc of solution and 1 opening of nickel chloride/! solution 450
Add cc and stir. 2 N −Na for its excellence
Add 720 cc of OH, stir for about 50 minutes after addition, and filter and wash to obtain a wet α-FθOOH cake. This is dried overnight at a temperature of about 150°C.

この乾燥ケーキ10f、i取って550℃で水素流量3
!/分で約7時間遠元し鉄含有率57重量幅の強磁性粉
末を得た。得られた磁性粉末の磁気特性は次の通りであ
る(IQKOeでの測定値)。
Take 10f and i of this dry cake and heat it at 550°C with a hydrogen flow rate of 3
! /min for about 7 hours to obtain ferromagnetic powder with an iron content of 57 weight range. The magnetic properties of the obtained magnetic powder are as follows (values measured by IQKOe).

Hc= 8300e  、σ1 == 55,4 em
u/rσ、=154θmu/l 、σr/dB ” O
j6比較例−4 平均長軸長が0.1μmであり且つ平均短軸長が0.0
2 μmの針状a −Fe0OH8Q tを6!の水に
懸濁して攪拌機で分散する。これに塩化ニッケル1開/
!溶液540 cc 1に添加し、攪拌する。その優良
に2 N −NaOH540ccを添加し、添加後約3
0分間攪拌してから濾過洗浄し湿α−FeOOHケーキ
を得る。これを約150℃の温度で一晩乾燥する。この
乾燥ケーキ10Fを取って350℃で水素流f5!/分
で約7時間遠元し鉄含有率63重を憾の強磁性粉末を得
た。得られた磁性粉末の磁%吋性は次の通りである(I
QKOeでの測定値)。
Hc = 8300e, σ1 == 55,4 em
u/rσ, = 154θmu/l, σr/dB ” O
j6 Comparative Example-4 The average major axis length is 0.1 μm and the average minor axis length is 0.0
2 μm needle a -Fe0OH8Q t 6! Suspend in water and disperse with a stirrer. Add nickel chloride to this /
! Add to 540 cc of solution and stir. Add 540 cc of 2N-NaOH to the well, and after adding about 3
After stirring for 0 minutes, the mixture is filtered and washed to obtain a wet α-FeOOH cake. This is dried overnight at a temperature of about 150°C. Take this dry cake at 10F and heat it to 350℃ with hydrogen flow f5! A ferromagnetic powder with an iron content of 63 times was obtained by centrifugation for about 7 hours at a speed of 100%. The magnetic percent strength of the obtained magnetic powder is as follows (I
Measured value at QKOe).

He = 4500e  、  ar = 56+B 
emu/fσE! : 105 emu/r  、ar
/aB = Oj5比較例−5 平均長軸長が1.2μmであり且つ平均短軸長が0.0
4 μmの針状a −Fe0OH80tを6!の水に懸
濁′して攪拌機で分散する。これに塩化ニッケル1開/
!溶液540 ccを添加し、攪拌する。その優良に2
 N −NaOH540ccを添加し、添加後約30分
間攪拌してから濾過洗浄し湿α−Fe OOHケーキを
得る。これを約150℃の温度で一晩乾燥する。この乾
燥ケーキ10Fを取って350℃で水素流量3!/分で
約7時間遠元し鉄含有率63重量係の強磁性粉末を得だ
。得られた磁性粉末の磁気特性は次の通りである(10
に○θでの測定値)。
He = 4500e, ar = 56+B
emu/fσE! : 105 emu/r, ar
/aB = Oj5 Comparative Example-5 The average major axis length is 1.2 μm and the average minor axis length is 0.0
4 μm needle-like a-Fe0OH80t 6! of water and disperse with a stirrer. Add nickel chloride to this /
! Add 540 cc of solution and stir. That excellence 2
Add 540 cc of N-NaOH, stir for about 30 minutes after addition, and filter and wash to obtain a wet α-Fe OOH cake. This is dried overnight at a temperature of about 150°C. Take this dry cake at 10F and heat it to 350℃ with a hydrogen flow rate of 3! /min for about 7 hours to obtain ferromagnetic powder with an iron content of 63% by weight. The magnetic properties of the obtained magnetic powder are as follows (10
(measured value at ○θ).

HQ =4800ee (71=58 、18mu/’
σEl = 112 emu/r 、σr/σ6=0.
34比較例−6 平均長軸長が0.8μmであり且つ平均短軸長が0.0
3μmの針状α−F、OOH80fを6!の水に懸濁し
て攪拌機で分散する。これに塩化亜鉛1M/7溶液54
0 ccを添加し、攪拌する。その後更に2 N −N
aOH540ccを添加し、添加後約50分間攪拌して
から濾過洗浄し湿α−FθOOHケーキを得る。これを
約150℃の温度で一晩乾燥する。この乾燥ケーキIQ
fを取って350℃で水素流量3!/分で約7時間遠元
し鉄含有率64重量係の強磁性粉末を得た。得られた磁
性粉末の磁気特性は次の通りである(10KOeでの測
定値)。
HQ =4800ee (71=58, 18mu/'
σEl = 112 emu/r, σr/σ6=0.
34 Comparative Example-6 The average major axis length is 0.8 μm and the average minor axis length is 0.0
3μm needle α-F, OOH80f 6! Suspend in water and disperse with a stirrer. To this, zinc chloride 1M/7 solution 54
Add 0 cc and stir. Then another 2 N -N
Add 540 cc of aOH, stir for about 50 minutes after addition, and filter and wash to obtain a wet α-FθOOH cake. This is dried overnight at a temperature of about 150°C. This dried cake IQ
Take f and hydrogen flow rate is 3 at 350℃! A ferromagnetic powder having an iron content of 64% by weight was obtained by dispersing the powder at a speed of about 7 hours. The magnetic properties of the obtained magnetic powder are as follows (measured values at 10 KOe).

Hc=5200e t σj ”’ 25.Oemu/
fσ日=  78 emu/r 、σr/σ8= 0.
32比較例−7 平均長軸長が1.2μmであり且つ平均短軸長が0.0
4 μmの針状a −Fe0OH10tを350℃士水
素流量5!/分で約7時間遠元し、鉄含有率100係の
強磁性粉末を得た。得られた磁性粉末の磁気特性は次の
通りである(10KOe″r:の測定値)。
Hc=5200e t σj ”' 25. Oemu/
fσ day = 78 emu/r, σr/σ8 = 0.
32 Comparative Example-7 The average major axis length is 1.2 μm and the average minor axis length is 0.0
4 μm needle-like a-Fe0OH10t at 350℃ and hydrogen flow rate 5! /min for about 7 hours to obtain ferromagnetic powder with an iron content of 100%. The magnetic properties of the obtained magnetic powder are as follows (measured value of 10 KOe″r).

Claims (1)

【特許請求の範囲】[Claims] 平均長軸長が0.2〜2μmであり、且つ平均短軸長が
0.01〜0.1μmである。オキシ水酸化鉄、酸化鉄
、又はこれらにCo 、 Ni 、 Mn、Znなどの
金属をドープしたものに、Co 、 Ni 、 Mn及
びZnの化合物から選ばれた1つもしくは2つ以上の化
合物を付着、又は吸着、あるいは沈殿させる処理をした
後、該処理物を乾燥し、次いで還元性ガス雰囲気中で2
00〜600℃の温度で還元することから成る、保磁力
が16000θ以上であり且つ鉄を70〜98重量係含
む磁気記録用磁性粉末の製造法。
The average major axis length is 0.2 to 2 μm, and the average minor axis length is 0.01 to 0.1 μm. One or more compounds selected from Co, Ni, Mn, and Zn compounds are attached to iron oxyhydroxide, iron oxide, or these doped with metals such as Co, Ni, Mn, and Zn. , adsorption, or precipitation, the treated product is dried, and then treated in a reducing gas atmosphere for 2 hours.
1. A method for producing magnetic powder for magnetic recording which has a coercive force of 16,000 θ or more and contains iron in an amount of 70 to 98% by weight, the method comprising reducing the powder at a temperature of 00 to 600°C.
JP57218072A 1982-12-13 1982-12-13 Method of manufacturing magnetic powders with iron as main constituent for magnetic recording Granted JPS59107503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218072A JPS59107503A (en) 1982-12-13 1982-12-13 Method of manufacturing magnetic powders with iron as main constituent for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218072A JPS59107503A (en) 1982-12-13 1982-12-13 Method of manufacturing magnetic powders with iron as main constituent for magnetic recording

Publications (2)

Publication Number Publication Date
JPS59107503A true JPS59107503A (en) 1984-06-21
JPH032321B2 JPH032321B2 (en) 1991-01-14

Family

ID=16714200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218072A Granted JPS59107503A (en) 1982-12-13 1982-12-13 Method of manufacturing magnetic powders with iron as main constituent for magnetic recording

Country Status (1)

Country Link
JP (1) JPS59107503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257309A (en) * 1988-04-07 1989-10-13 Tdk Corp Magnetic powder for magnetic recording medium and manufacture thereof
JPH01294810A (en) * 1988-05-20 1989-11-28 Titan Kogyo Kk Production of magnetic metal powder for magnetic recording
CN115976538A (en) * 2022-12-12 2023-04-18 青岛农业大学 Phosphorus-doped metal nickel @ iron oxide heterogeneous multilevel structure compound, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563605A (en) * 1979-06-25 1981-01-14 Toda Kogyo Corp Production of needle crystal fe-co alloy magnetic particle powder
JPS5673408A (en) * 1979-11-21 1981-06-18 Kanto Denka Kogyo Kk Magnetic powder for magnetic recording and magnetic tape employing that magnetic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563605A (en) * 1979-06-25 1981-01-14 Toda Kogyo Corp Production of needle crystal fe-co alloy magnetic particle powder
JPS5673408A (en) * 1979-11-21 1981-06-18 Kanto Denka Kogyo Kk Magnetic powder for magnetic recording and magnetic tape employing that magnetic powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257309A (en) * 1988-04-07 1989-10-13 Tdk Corp Magnetic powder for magnetic recording medium and manufacture thereof
JPH01294810A (en) * 1988-05-20 1989-11-28 Titan Kogyo Kk Production of magnetic metal powder for magnetic recording
JPH0445561B2 (en) * 1988-05-20 1992-07-27 Titan Kogyo Kk
CN115976538A (en) * 2022-12-12 2023-04-18 青岛农业大学 Phosphorus-doped metal nickel @ iron oxide heterogeneous multilevel structure compound, and preparation method and application thereof
CN115976538B (en) * 2022-12-12 2024-05-31 青岛农业大学 Phosphorus doped metallic nickel@iron oxide heterogeneous multilevel structure compound, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH032321B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JPS5917161B2 (en) Method for producing ferromagnetic metal powder
JPS59107503A (en) Method of manufacturing magnetic powders with iron as main constituent for magnetic recording
JPS5835241B2 (en) Method for producing alloy magnetic powder mainly composed of iron and copper
JPS62139803A (en) Production of ferromagnetic metallic powder
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0122968B2 (en)
JP2002050508A (en) Method of manufacturing magnetic powder
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPS5860504A (en) Magnetic powder and method of manufacturing the same
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPH0312125B2 (en)
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS6349722B2 (en)
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPH0755827B2 (en) Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder
JPS5853045B2 (en) Manufacturing method of magnetic powder
JPH0382103A (en) Ferromagnetic metal powder
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder