JPS59107201A - Measuring device of foreign matter in fluid - Google Patents

Measuring device of foreign matter in fluid

Info

Publication number
JPS59107201A
JPS59107201A JP21685182A JP21685182A JPS59107201A JP S59107201 A JPS59107201 A JP S59107201A JP 21685182 A JP21685182 A JP 21685182A JP 21685182 A JP21685182 A JP 21685182A JP S59107201 A JPS59107201 A JP S59107201A
Authority
JP
Japan
Prior art keywords
light
foreign matter
section
measured
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21685182A
Other languages
Japanese (ja)
Inventor
Shuichi Hanajima
花島 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21685182A priority Critical patent/JPS59107201A/en
Publication of JPS59107201A publication Critical patent/JPS59107201A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To improve the reliability of measured data by providing two optical foreign matter detectors in directions different from each other. CONSTITUTION:A light-transmissive part 3 is formed on the way of a tube 2 where a liquid 1, where mixed foreign matters 9 should be measured, is flowed. Two optical foreign matter detectors 4 and 11 are provided to cross each other in the transverse section of the liquid 1 in the light-transmissive part 3. Detectors 4 and 11 consist of light sources 5 and 12, slits 6 and 13, and photodetectors 7 and 14. If the light source 5 projects light momently when the foreign matter 9 passes a measuring region 15, the quantity of received light of the photodetector 7 is reduced, and the area of a section of the foreign matter 9 orthogonal to the measuring axis is attained. Similarly, the area of a section different from said section by 90 deg. is attained with the light source 12 and the photodetector 14. Since the section is measured in two directions orthogonal to each other, the size of the foreign matter 9 is measured accurately.

Description

【発明の詳細な説明】 本発明は流体中の異物測定装置に関する。[Detailed description of the invention] The present invention relates to a device for measuring foreign matter in a fluid.

一般に、半導体装置の製造過程においては、超微細加工
が行なわれるので、洗浄用純水、エツチング用液等のよ
うな液体の中に塵埃や微生物等のような異物が混入して
いることをきらう。そこで。
Generally, in the manufacturing process of semiconductor devices, ultrafine processing is performed, so it is important to avoid foreign substances such as dust and microorganisms being mixed into liquids such as purified water for cleaning and etching liquid. . Therefore.

このような液体中の異物の混入数量や太き支を測定する
ことが実施されている。
Measurement of the number of foreign substances mixed in such a liquid and the thickness of the liquid has been carried out.

従来のこの種の液体中の異物検査装置として。As a conventional foreign matter inspection device of this type in liquid.

例えば、第1図に示すようなものがある。For example, there is one shown in FIG.

第1図において、この装置は測定すべき液体lを一定の
速度で流す管2を備えており、この管2の途中には透光
部3がその管壁の一部を切除されて、または石英、ガラ
ス等の透明体を嵌め込まれることによって形成されてい
る。この透光部3の外方には光学的な異物検出器4が1
組だけ設けられており、この検出器4は光源5と、透光
スリット6と、受光器7とを備えており、スリット6を
透過した光が透光部3を横断して受光器7で受光される
ように構成されている。
In FIG. 1, this device is equipped with a tube 2 through which a liquid to be measured 1 flows at a constant speed, and in the middle of this tube 2 there is a transparent section 3 with a part of the tube wall cut out or It is formed by fitting a transparent material such as quartz or glass into it. An optical foreign object detector 4 is installed outside the light-transmitting part 3.
This detector 4 is provided with a light source 5, a light-transmitting slit 6, and a light receiver 7, and the light transmitted through the slit 6 crosses the light-transmitting part 3 and reaches the light receiver 7. It is configured to receive light.

そして、前記光と液体lとの交差域が構成する測定領域
8を液体中の異物9が通過すると、異物9が遮光するの
で、受光器7における受光量が減少する。したがって、
この減少回数により異物の混入数量を測定し、減少光量
の割合により異物の大きさを推定することとしている。
When a foreign object 9 in the liquid passes through the measurement region 8 formed by the intersection area of the light and the liquid 1, the foreign object 9 blocks light, so that the amount of light received by the light receiver 7 decreases. therefore,
The number of foreign particles mixed in is measured based on the number of decreases, and the size of the foreign particles is estimated based on the rate of decrease in the amount of light.

異物の大きさが投光波長と等しいオーダになると遮光斌
は計測しがたいので、その場合は散乱光を測定している
If the size of the foreign object is on the same order as the wavelength of the emitted light, it is difficult to measure the shading, so in that case the scattered light is measured.

しかしながら、このような従来の液体中の異物測定装置
にあっては、異物の大きさの測定値は測定領域通過時に
おける受光器の測定軸に対する向きによって異なるため
、m定値と実体値とが相違する場合が多々あり、測定デ
ータの信頼性が極めて低いという欠点がある。
However, in such conventional foreign object measurement devices in liquid, the measured value of the size of the foreign object varies depending on the orientation of the light receiver with respect to the measurement axis when passing through the measurement area, so the m constant value and the actual value may differ. However, the reliability of the measured data is extremely low.

本発明の目的は、前記従来技術の欠点を解決し、高い信
頼性を得ることができる流体中の異物測定装置を提供す
るにある。・ 以下、本発明を図面に示す実施例にしたがって説明する
SUMMARY OF THE INVENTION An object of the present invention is to provide a foreign matter measuring device in a fluid that can overcome the drawbacks of the prior art and achieve high reliability. - Hereinafter, the present invention will be explained according to embodiments shown in the drawings.

第1図は本発明による流体中の異物測定装置の一実施例
を示す斜視図、第2図は測定タイミングを示す線図であ
る。
FIG. 1 is a perspective view showing an embodiment of a foreign matter measuring device in a fluid according to the present invention, and FIG. 2 is a diagram showing measurement timing.

本実施例において、混入した異物9を測定すべき流体と
しての液体lを一定の速度で、かつ層流状態で流す管2
の途中には透光部3が形成されており、この透光部3の
外方には2組の光学的な異物検出器4および11が透光
部3内の液体lの横断面において互に交差するように設
けられている。
In this embodiment, a tube 2 through which a liquid l as a fluid to be measured for mixed foreign matter 9 flows at a constant speed and in a laminar flow state.
A light-transmitting part 3 is formed in the middle of the light-transmitting part 3, and two sets of optical foreign object detectors 4 and 11 are arranged on the outside of the light-transmitting part 3 so as to be mutually arranged in the cross section of the liquid l in the light-transmitting part 3. It is set up so that it intersects with the

雨検出器4.11は、光源5,12と、スリット6.1
3と、受光i%7 、14とをそれぞれ備えており、第
【スリット6を透過した光が透光部3を横断して第1受
光′m7で、第2スリツト13を透過した光が透光部3
を横断して第2受光器14でそれぞれ受光されるように
構成されている。
The rain detector 4.11 includes light sources 5, 12 and a slit 6.1.
3, and light receiving parts i%7 and 14, respectively, so that the light transmitted through the second slit 6 crosses the light transmitting part 3 to the first light receiving part 'm7, and the light transmitted through the second slit 13 is transmitted. Light part 3
It is configured such that the light beams are received by the second light receiver 14 across the two directions.

管2を流れる流体1が透光部3において一定速度でかつ
層流状態になったら、第3図に示すようなタイムシュア
リングをもって、第1検出器4および第2検出器11に
おける各光源5および12が高速度で交互にそれぞれ点
滅される。
When the fluid 1 flowing through the tube 2 becomes a laminar flow state at a constant speed in the transparent part 3, each light source 5 in the first detector 4 and the second detector 11 is turned off with a time sure as shown in FIG. and 12 are flashed alternately at high speed.

流体1中に混入し、液体lと伴に流れて(・る異物9が
その流速とスリットおよび受光器の高復流れと同方向の
幅)との関係等により構成される測定領域15な通過し
ているとき、第1光源5が瞬間的に投光すると、異物9
はスリット6を透過した光を遮蔽する。この遮光状態は
、第1受光器7に通過中の異物9をそのまま投影したよ
うな状態である。したがって、第1受光器7の受光量は
遮光に応じて減少し、その減少11に基いて異物9の測
定軸に直角な断面の面積を求めることができる。
The foreign matter 9 mixed into the fluid 1 and flowing together with the liquid 1 passes through the measurement area 15, which is formed by the relationship between the flow velocity and the width in the same direction as the high return flow of the slit and photoreceiver. When the first light source 5 momentarily emits light while
blocks the light transmitted through the slit 6. This light-blocking state is a state in which the foreign object 9 passing through is directly projected onto the first light receiver 7. Therefore, the amount of light received by the first light receiver 7 decreases in accordance with the blocking of light, and based on the decrease 11, the area of the cross section of the foreign object 9 perpendicular to the measurement axis can be determined.

同一異物9が同一測定領域15な通過しているとき、今
度は第2光源12が瞬間的に投光すると。
When the same foreign object 9 is passing through the same measurement area 15, the second light source 12 momentarily emits light.

異物9はスリブ)13を透過した光を遮り、第2受光器
14に影を落とす。この投影により、第2受光器14の
受光量は減少し、その減少量に基いて異物9の測定軸に
直角な断面の面積を求めることができる。但し、今回の
第2受光器14による異物9の断面積の測定は、第1検
出器4と第2検出器11とが互に直交する方向に配設さ
れているので、前回の第1受光器7による異物9の断面
積の測定に対し直角な方向について行なわれている。
The foreign object 9 blocks the light transmitted through the sleeve 13 and casts a shadow on the second light receiver 14. Due to this projection, the amount of light received by the second light receiver 14 decreases, and based on the amount of decrease, the area of the cross section of the foreign object 9 perpendicular to the measurement axis can be determined. However, since the first detector 4 and the second detector 11 are arranged in directions orthogonal to each other, the measurement of the cross-sectional area of the foreign object 9 by the second light receiver 14 this time is based on the previous first light reception. The measurement is performed in a direction perpendicular to the measurement of the cross-sectional area of the foreign object 9 by the instrument 7.

このようにして、本実施例によれば、同一異物について
、互に直角な2方向について断面積を測定することがで
きるので、異物の大きさを正確に測定することが可能に
なり、測定の信頼性が向上する。
In this way, according to this embodiment, it is possible to measure the cross-sectional area of the same foreign object in two mutually perpendicular directions, making it possible to accurately measure the size of the foreign object. Improved reliability.

例えば、板状の異物が第1検出器の測定軸と平行な向き
を向いて流れて検出領域を通過した場合。
For example, when a plate-shaped foreign object flows in a direction parallel to the measurement axis of the first detector and passes through the detection area.

第1図に示す従来の測定装置では、当該異物の大きさを
微細なものとして測定してしまうが、第2図の測定装置
では、当該異物は第2検出器の測定軸に直角な向きにな
るので、板面積が測定されることになり、正確な測定が
実現される。
In the conventional measuring device shown in Fig. 1, the size of the foreign object is measured as minute, but in the measuring device shown in Fig. 2, the foreign object is oriented perpendicular to the measurement axis of the second detector. Therefore, the plate area is measured, and accurate measurement is achieved.

なお、前記実施例において、測定領域の設定は可及的に
小さい方がよい。なぜなら、測定領域の通過中に異物の
向きが変更すると、異物の互に直交する2方向の測定が
実行されないことになるので、この変向の危険を可及的
に抑える必要があるためである。また、第1検出器と第
2検出器との測定実行時期は互の干渉を避けるために可
及的に離隔していた方が望ましいが、過度に離隔すると
、測定領域が大きくなってしまうので、干渉を避は得る
最小限度の離隔に止めるべきである。
Note that in the embodiments described above, it is better to set the measurement area as small as possible. This is because if the direction of the foreign object changes while passing through the measurement area, measurements in two mutually orthogonal directions will not be performed, so it is necessary to reduce the risk of this change of direction as much as possible. . Additionally, it is desirable to separate the first and second detectors as much as possible to avoid mutual interference when performing measurements; however, if they are too far apart, the measurement area will become large. To avoid interference, the separation should be kept to the minimum possible.

なお、前記実施例では、第1検出器と第2検出器との測
定実行時期の離隔を両光源の点滅タイミングにより得る
ようにした場合につき説明したが、各スリットに交互に
開閉するシャ・ツタ等をそれぞれ設けてもよいし、第1
検出器と第2検出器とを互に干渉し合わない程度に流れ
方向にずらして配置してもよい。
In the above embodiment, a case has been described in which the distance between the measurement execution timings of the first detector and the second detector is obtained by the blinking timing of both light sources. etc. may be provided respectively, or the first
The detector and the second detector may be arranged offset in the flow direction to an extent that they do not interfere with each other.

また、互に直角な2方向に2組の検出器を設けた場合に
つき説明したが、これに限らず、例えば、3組の検出器
を互に直角な3方向(いわゆるXYZ方向)にそれぞれ
配設すれば、異物の3次元の大きさを正確に求めること
ができ、さらに多数組の検出器を多方向にそれぞれ配設
すれば互の測定を補償し合わせることができる。
In addition, although the case where two sets of detectors are arranged in two directions perpendicular to each other has been described, the present invention is not limited to this. For example, three sets of detectors may be arranged in three directions (so-called If a detector is installed, the three-dimensional size of a foreign object can be determined accurately, and if a large number of sets of detectors are arranged in multiple directions, mutual measurements can be compensated for.

さらK、光学的な異物検出器は前記実施例のような異物
の遮光による光量の減少を検出するものに限らず、異物
による乱反射の光量の増加を検出する検出#等であって
もよい。特にμmオーダの異物では、散乱光を用いれば
同様の効果を得ることができる。
Furthermore, the optical foreign object detector is not limited to one that detects a decrease in the amount of light due to light blocking by a foreign object as in the above embodiments, but may be a detection device that detects an increase in the amount of light due to diffuse reflection caused by a foreign object. In particular, for foreign particles on the μm order, the same effect can be obtained by using scattered light.

また、本発明は、液体中の異物の大きさ測定に限らず、
気体中の異物を測定する気体中の異物検査装置にも適用
することができる。なお、異物の数置の測定は従来例と
同様、検出器の測定光量の変化回数に基いて実行させる
ことができ、複数組の検出器の測定データで測定回数を
補正し合わせることが可能であり、測定精度を向上する
ことができろう 以上説明したように、本発明によれば、流体中の異物測
定を正確に行なうことができる。
Furthermore, the present invention is not limited to measuring the size of foreign objects in liquid;
It can also be applied to a gaseous foreign matter inspection device that measures foreign matter in gas. In addition, the measurement of a number of foreign objects can be performed based on the number of changes in the measurement light intensity of the detector, as in the conventional example, and it is possible to correct and match the number of measurements using the measurement data of multiple sets of detectors. As described above, according to the present invention, it is possible to accurately measure foreign substances in a fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す斜視図、 第2図は本発明の一実施例を示す斜視図、第3図は同じ
く制定タイミングを示す斜視図である。 l・・・液体、2・・・管、3・・・透光部、4・・・
第1検出器、5.12・・・光源、6.13・・・スリ
ット、7゜14・・・愛児−飴、9・・・異物、11・
・・第2検出器、15・・・測定領域。
FIG. 1 is a perspective view showing a conventional example, FIG. 2 is a perspective view showing an embodiment of the present invention, and FIG. 3 is a perspective view showing the establishment timing. l...Liquid, 2...Pipe, 3...Transparent part, 4...
1st detector, 5.12...Light source, 6.13...Slit, 7°14...Aiji-candy, 9...Foreign object, 11.
...Second detector, 15...Measurement area.

Claims (1)

【特許請求の範囲】[Claims] 1、流体を一定速度で流す流路に複数の光学的な異物検
出器を互に異なる方向にそれぞれ設けたことを特徴とす
る流体中の異物測定装置。
1. A device for measuring foreign matter in a fluid, characterized in that a plurality of optical foreign matter detectors are provided in different directions in a channel through which fluid flows at a constant speed.
JP21685182A 1982-12-13 1982-12-13 Measuring device of foreign matter in fluid Pending JPS59107201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21685182A JPS59107201A (en) 1982-12-13 1982-12-13 Measuring device of foreign matter in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21685182A JPS59107201A (en) 1982-12-13 1982-12-13 Measuring device of foreign matter in fluid

Publications (1)

Publication Number Publication Date
JPS59107201A true JPS59107201A (en) 1984-06-21

Family

ID=16694895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21685182A Pending JPS59107201A (en) 1982-12-13 1982-12-13 Measuring device of foreign matter in fluid

Country Status (1)

Country Link
JP (1) JPS59107201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049381A (en) * 1993-10-29 2000-04-11 The United States Of America As Represented By The Secretary Of The Navy Real time suspended particle monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049381A (en) * 1993-10-29 2000-04-11 The United States Of America As Represented By The Secretary Of The Navy Real time suspended particle monitor

Similar Documents

Publication Publication Date Title
JP4594206B2 (en) Improved differential refractometer and measurement method for measuring refractive index differential
US9250544B2 (en) Particle counter and immersion exposure system including the same
CN107490563A (en) A kind of measurement apparatus and method of monitoring instrument diaphragm laying dust
CA2436976A1 (en) Particle sizing and concentration sensor using a hollow shaped beam
JPH05231985A (en) Method and device for measuring refractive power in optical system
JPS59107201A (en) Measuring device of foreign matter in fluid
JP3530078B2 (en) Flow cell and particle measuring apparatus using the flow cell
US4501969A (en) Photometric apparatus and process
JPS6319506A (en) Detecting method for drop of dropping liquid
JPS58165015A (en) Measuring device for minute cubic volume
KR102479361B1 (en) Curtain flow design for optical chambers
JPH0565020B2 (en)
JPS59154341A (en) Measuring device of foreign matter
JP2002250692A (en) Instrument and method for measuring oil concentration in oily water containing contaminant
JPH0812098B2 (en) Correlation flow meter
CN201903498U (en) Integrating sphere for dry type chemical detection
JPS6032594Y2 (en) gas analyzer
JP2000266661A (en) Flow cell and particle-measuring apparatus using the same
JP2565274B2 (en) Height measuring device
JPH0442621B2 (en)
JPS6318243A (en) Method and apparatus for measuring fine particle in liquid
SU857812A1 (en) Photoelectric counter of disperced particles
JPS59160744A (en) Foreign matter detecting device
JPS6011145A (en) Measuring device of foreign matter
JPH01140044A (en) Measuring method and apparatus for particulate in liquid