JPS59160744A - Foreign matter detecting device - Google Patents

Foreign matter detecting device

Info

Publication number
JPS59160744A
JPS59160744A JP3455483A JP3455483A JPS59160744A JP S59160744 A JPS59160744 A JP S59160744A JP 3455483 A JP3455483 A JP 3455483A JP 3455483 A JP3455483 A JP 3455483A JP S59160744 A JPS59160744 A JP S59160744A
Authority
JP
Japan
Prior art keywords
light
angle
liquid
transmitting part
incidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3455483A
Other languages
Japanese (ja)
Inventor
Kazuya Ichikawa
一弥 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3455483A priority Critical patent/JPS59160744A/en
Publication of JPS59160744A publication Critical patent/JPS59160744A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To increase the quantity of incident light into liquid in measuring foreign matter in liquid by scattered light by projecting light to a transmitting part at Brewster's angle. CONSTITUTION:Liquid 1 in which foreign matter 2 to be measured is mixed is lased 7 from a light transmitting part 4. The transmitting part 4 of incidence side is so constituted that angle of incidence theta1 when the laser light 7 enters inside of the transmitting part 4 from air becomes Brewster's angle when the laser light 7 enters a medium forming the transmitting part 4, such as quartz, glass etc. from air, and angle of incidence theta2 when the laser light 7 enter the liquid 1 from inside of the transmitting part becomes Brewster's angle when the laser light enters the liquid 1 from quartz, glass etc. Similar constitution can be adopted for the transmitting part of out-going side.

Description

【発明の詳細な説明】 [技術分野] 本発明は、異物測定技術に関するもので、特に、半導体
装置に製造分野において使用される各種液体中の異物の
密度を測定するのに利用して効果が大である異物測定技
術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technology for measuring foreign matter, and in particular, it can be effectively used to measure the density of foreign matter in various liquids used in the field of manufacturing semiconductor devices. This is related to foreign matter measurement technology, which is a major technology.

[背景技術] 半導体装置の製造過程においては、超微細加工が行われ
ているので、洗浄用純水、工・ノチング液等のような液
体の中に塵埃や微生物等のような異物が混入しているこ
とをきらう。そこで、このような液体中における異物の
混入密度を測定することが考えられる。
[Background Art] Ultra-fine processing is performed in the manufacturing process of semiconductor devices, so foreign substances such as dust and microorganisms may get mixed into liquids such as purified water for cleaning and processing/notching fluids. I don't like it. Therefore, it is possible to measure the density of foreign matter in such a liquid.

本発明者は、以下に述べるような液体中の異物を測定す
る装置を開発した。
The present inventor has developed a device for measuring foreign substances in liquid as described below.

すなわち、液体が一定速度で流される流路内にレーザ光
線を流路に形成された透光部を通して入射せしめ、この
入射光線の液体中の異物における散乱光を検出すること
により、液体中の異物を測定するというものである。
In other words, a laser beam is made to enter a flow path through which liquid flows at a constant speed through a light-transmitting part formed in the flow path, and by detecting the scattered light of this incident light beam from foreign objects in the liquid, foreign objects in the liquid can be detected. The purpose is to measure the

しかし、かかる技術においては、レーザ光線が透光窓に
対、して直角に入射せられ、入射点における反射光量が
多大になるため、液体中への入射光量が減少し、測定精
度が低下するという問題点が生ずるということが、本発
明者によってあきらかとされた。
However, in this technique, the laser beam is incident on the transparent window at right angles, and the amount of reflected light at the point of incidence increases, which reduces the amount of light incident on the liquid and reduces measurement accuracy. The inventor of the present invention has found that this problem arises.

[発明の目的] 本発明の目的は、流体中への入射光量を増加することが
できる異物測定技術を提供するにある。
[Object of the Invention] An object of the present invention is to provide a foreign matter measurement technique that can increase the amount of light incident on a fluid.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、次の通りである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、透光部に光線をブリュースター角で入射させ
ることにより、入射点における反射光量を制御し、流体
中への入射光量を増加させ、もって目的を達成するもの
である。
That is, by making the light beam incident on the transparent part at Brewster's angle, the amount of reflected light at the point of incidence is controlled, and the amount of light incident on the fluid is increased, thereby achieving the objective.

[実施例] 以下、本発明を図面に示す実施例にしたがって説明する
[Example] The present invention will be described below according to an example shown in the drawings.

第1図は本発明による異物検査装置の一実施例を示す斜
視図、第2図は要部の拡大断面図である。
FIG. 1 is a perspective view showing an embodiment of a foreign matter inspection device according to the present invention, and FIG. 2 is an enlarged sectional view of the main parts.

本実施例において、混入した異物2を測定すべき流体と
しての液体1を一定の速度で、かつ層流状態で流す流路
としての管3には一対の透光部4.5が互いに周方向に
180度の角度で設けられている。管3の一方の透光部
4の外方にはレーザ光源6が設けられ、このレーザ光源
6からのレーザ光線7はレンズ8を通して対向する透光
部4に照射され、この透光部4を透過して管3内の液体
1を通り、他方の透光部5を透過して外部に出ていく。
In this embodiment, a pair of light-transmitting parts 4.5 are provided in a tube 3, which serves as a flow path through which liquid 1, which is a fluid to be measured for mixed foreign matter 2, flows at a constant speed and in a laminar flow state. is set at an angle of 180 degrees. A laser light source 6 is provided outside one of the transparent parts 4 of the tube 3, and a laser beam 7 from this laser light source 6 is irradiated to the opposite transparent part 4 through a lens 8. The light passes through the liquid 1 in the tube 3, passes through the other transparent part 5, and exits to the outside.

第2図に示すように、入射側透光部4は、レーザ光線7
が空気中から透光部4の内部に入射するときの入射角θ
1が、空気から石英またはガラス等透光部4を形成する
媒質ヘレーザ光線7が入射するときのブリュースター角
(偏光角)に、またレーザ光線7が透光部の内部から液
体1中に入射するときの入射角θ2が、石英またはガラ
ス等から液体1ヘレーザ光線が入射するときのブリュー
スター角にそれぞれなるように構成されている。
As shown in FIG.
The angle of incidence θ when the light enters the inside of the transparent part 4 from the air
1 is the Brewster angle (polarization angle) at which the laser beam 7 enters the medium forming the transparent part 4, such as quartz or glass, from air, and the laser beam 7 enters the liquid 1 from inside the transparent part. The incident angle θ2 at this time corresponds to the Brewster angle at which the liquid 1 laser beam enters from quartz, glass, or the like.

なお、ブリュースター角とはレーザー光線がある境界へ
入射するとき、入射光のある成分が反射損失なしで完全
に透過する場合の入射角をいい、ブリュースター角θは
境界面の両側の物性によって異なる。
The Brewster angle is the angle of incidence when a certain component of the incident light is completely transmitted without reflection loss when a laser beam enters a certain boundary, and the Brewster angle θ varies depending on the physical properties on both sides of the boundary surface. .

管2の一対の透光部4.5と直角な位置には、第3の透
光部9が設けられており、この透光部9の外方にはレン
ズ10を介して散乱光を検出する手段としての受光器1
1が設けられている。この受光器11の出力端にはアン
プ12と介してカウンタ13が設けられている。
A third light-transmitting portion 9 is provided at a position perpendicular to the pair of light-transmitting portions 4.5 of the tube 2, and a third light-transmitting portion 9 is provided outside the light-transmitting portion 9 to detect scattered light through a lens 10. Light receiver 1 as a means to
1 is provided. A counter 13 is provided at the output end of the light receiver 11 via an amplifier 12.

次に、作用を説明する。Next, the effect will be explained.

レーザ光源6からのレーザ光線7はレンズ8を通して透
光部4に照射され、透光部4を透過して管3内の液体1
中を通り、反対側の透光部5から出ていく。レーザ光線
7が液体中を通るとき異物2に照射すると、散乱光14
が発生する。この散乱光14は第3の透光部9を経て受
光器11で検出され、この検出回数はカウンタ13によ
り計数される。液体1の流速が一定で、受光器11の散
乱光検出幅が一定であれば、カウンタ13の計数により
単位面積当たりの異物2の個数が求まり、それにより、
液体1における異物2の混入量力(求まる。
The laser beam 7 from the laser light source 6 is irradiated onto the transparent part 4 through the lens 8, and is transmitted through the transparent part 4 to the liquid 1 in the tube 3.
It passes through the inside and exits from the transparent section 5 on the opposite side. When the laser beam 7 passes through the liquid and irradiates the foreign object 2, scattered light 14 is generated.
occurs. This scattered light 14 passes through the third transparent section 9 and is detected by the light receiver 11, and the number of times of detection is counted by a counter 13. If the flow rate of the liquid 1 is constant and the scattered light detection width of the light receiver 11 is constant, the number of foreign objects 2 per unit area can be determined by counting by the counter 13, and thereby,
The amount of foreign matter 2 mixed into liquid 1 is determined.

ここで、レーザ光線7の液体1中への入射光量が増加す
れば、粒径の小さな異物2につ(1)でも散乱光を発生
させることができ、また散乱光の光量も大きくするので
、セン号感度を向上させることができる。
Here, if the amount of incident light of the laser beam 7 into the liquid 1 increases, scattered light can be generated even by the foreign matter 2 with a small particle size (1), and the amount of scattered light is also increased. Sensitivity can be improved.

前記入射側透光部4において、レーザ光線用ま空気中か
ら透光部4の内部に入射するとき、ブリュースター角θ
1をもって入射するので、この入射点における反射光の
ある成分はゼロになり、入射角がθ1でないときに比べ
反射光量は少なくなり、したがって、入射光量が多くな
る。たとえbi、レーザ光を、入射面内の偏波エネルギ
ー50、入射角に平行な偏波エネルギー50とすれば、
反射光は入射面内の偏波エネルギー0、入射面に平行な
偏波エネルギー10、透過光は入射面内の偏波エネルギ
ー50、入射面に平行な偏波エネルギー40となるよう
なものである。
In the incident-side transparent section 4, when the laser beam enters the inside of the transparent section 4 from the air, the Brewster angle θ
1, a certain component of the reflected light at this point of incidence becomes zero, and the amount of reflected light is smaller than when the incident angle is not θ1, so the amount of incident light is large. For example, if bi, the laser beam has a polarization energy of 50 in the plane of incidence and a polarization energy of 50 parallel to the angle of incidence,
The reflected light has a polarized energy of 0 in the plane of incidence and 10 polarized energy parallel to the plane of incidence, and the transmitted light has a polarized energy of 50 in the plane of incidence and 40 polarized energy parallel to the plane of incidence. .

入射側透光部4において、レーザ光線7が透光部4内か
ら液体1中に入射するときも、ブリユースクー角θ2を
もって入射するので、同様に、入射光量が多くなる。
When the laser beam 7 enters the liquid 1 from within the light-transmitting portion 4 on the incident side, it also enters at the Brieux-Scoo angle θ2, so that the amount of incident light similarly increases.

[効果] このようにして、入射側透光部における反射光量が抑制
されることから、液体中への入射光量が増加されるので
、異物にレーザ光線が照射されたときの散乱光が強くな
り、セン号感度が良好となり、かつ微細な異物での散乱
光の発生が増強され測定能力が向上されるという効果が
得られる。
[Effect] In this way, the amount of reflected light at the light-transmitting part on the incident side is suppressed, so the amount of light incident on the liquid is increased, so the scattered light becomes stronger when a foreign object is irradiated with a laser beam. , the sensitivity is improved, and the generation of scattered light from fine foreign matter is enhanced, resulting in improved measurement ability.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は前記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、出射側の透光部5においてもレーザ光線が液
体1中から透光部5の内部に入射するときの入射角が、
液体から゛透光部5の媒質(石英またはガラス等)ヘレ
ーザ光線が入射するときのブリュースター角になるよう
に、また、レーザ光線が透光部5の内部から空気中へ入
射するときの入射角が、透光部5の媒質から空気中ヘレ
ーザ光線が入射するときのブリユースクー角になるよう
にそれぞれ設定することが望ましい。なぜならば、出射
側透光部5における反射光線は液体中へ戻って異物2に
照射して散乱光を発生させることにより、入射したレー
ザ光線7による異物測定精度を低下させるため、出射側
透光部5における反射光量も可及的に抑制する必要があ
るからである。
For example, in the light-transmitting part 5 on the emission side, the incident angle when the laser beam enters the inside of the light-transmitting part 5 from the liquid 1 is
From the liquid to the medium (quartz or glass, etc.) of the transparent part 5, the Brewster angle is set when the laser beam is incident, and when the laser beam is incident from the inside of the transparent part 5 into the air. It is desirable that the angles be set so as to correspond to the Brieuxkoo angle when the in-air laser beam enters from the medium of the light-transmitting part 5. This is because the reflected light beam from the light-transmitting part 5 on the output side returns to the liquid and irradiates the foreign object 2 to generate scattered light, which reduces the accuracy of foreign object measurement by the incident laser beam 7. This is because it is necessary to suppress the amount of reflected light at the portion 5 as much as possible.

[利用分野1 本発明は半導体装置の製造分野に限定されるものではな
く、あらゆる分野における流体中の粒子測定装置に適用
することができる。
[Field of Application 1 The present invention is not limited to the field of manufacturing semiconductor devices, but can be applied to devices for measuring particles in fluids in all fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の異物測定装置の一実施例を示す斜視図
、 第2図は第1図に示す実施例の要部の拡大断面図である
。 1・・・流体(液体)、2・・・異物、3・・流路(管
)、4・・・入射側透光部、5・・・出射側透光部、6
・・・レーザ光源、7・・・レーザ光線、8・・・レン
ズ、9・・・散乱光取出用透光部、10・・・レンズ、
11・・・受光器、13・・・カウンタ。 第  1  図 第2図
FIG. 1 is a perspective view showing an embodiment of the foreign matter measuring device of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the embodiment shown in FIG. DESCRIPTION OF SYMBOLS 1...Fluid (liquid), 2...Foreign object, 3...Flow path (pipe), 4...Transparent part on the incident side, 5...Transparent part on the output side, 6
...Laser light source, 7...Laser beam, 8...Lens, 9...Transparent part for extracting scattered light, 10...Lens,
11... Light receiver, 13... Counter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、流体が一定速度で流される流路内に光線を流路壁に
形成された透光部を通して入射せしめ、この入射光線の
流体中の異物での散乱光を検出することにより、流体中
の異物を測定する異物測定装置において、前記光線が透
光部の内部に入射するときの入射角が、透光部外部の媒
質から透光部の媒質へ前記光線が入射するときのブリュ
ースター角に設定され、前記光線が透光部の内部から流
路内に入射するときの入射角が、透光部の媒質から前記
流体の媒質へ前記光線が入射するときのブリュースター
角に設定されたことを特徴とする異物測定装置。
1. A light beam is made to enter a channel through which fluid flows at a constant speed through a transparent part formed on the channel wall, and the scattered light of this incident light beam from foreign objects in the fluid is detected. In a foreign object measuring device that measures foreign objects, the angle of incidence when the light beam enters the inside of the transparent section is the Brewster angle when the light beam enters the medium of the transparent section from the medium outside the transparent section. and the angle of incidence at which the light beam enters the flow path from inside the light-transmitting portion is set to the Brewster angle at which the light beam enters the fluid medium from the medium of the light-transmitting portion. A foreign object measuring device featuring:
JP3455483A 1983-03-04 1983-03-04 Foreign matter detecting device Pending JPS59160744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3455483A JPS59160744A (en) 1983-03-04 1983-03-04 Foreign matter detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3455483A JPS59160744A (en) 1983-03-04 1983-03-04 Foreign matter detecting device

Publications (1)

Publication Number Publication Date
JPS59160744A true JPS59160744A (en) 1984-09-11

Family

ID=12417525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3455483A Pending JPS59160744A (en) 1983-03-04 1983-03-04 Foreign matter detecting device

Country Status (1)

Country Link
JP (1) JPS59160744A (en)

Similar Documents

Publication Publication Date Title
US7355706B2 (en) Particle detection system implemented with an immersed optical system
US4783599A (en) Particle detector for flowing liquids with the ability to distinguish bubbles via photodiodes disposed 180° apart
JP4704340B2 (en) Optical flow meter for measuring gases and liquids in pipelines
US4917496A (en) Particle size measuring instrument with direct scattered light detection
US5092675A (en) Vacuum line particle detector with slab laser
WO1996042007A1 (en) Re-entrant illumination system for particle measuring device
JP5366728B2 (en) Method and apparatus for detecting the size of particles in a liquid
JP4688804B2 (en) Improved design of particle sensor system
JPS59160744A (en) Foreign matter detecting device
KR102479361B1 (en) Curtain flow design for optical chambers
JP5366726B2 (en) Method and apparatus for detecting the size of particles in a liquid
US11921031B2 (en) Compact gas sensor
JPS61288139A (en) Fine particle detecting device
JPH0226176B2 (en)
JPH10267828A (en) Device for measuring floating particle
JPH02168138A (en) Measuring apparatus for particulate
JP3966851B2 (en) Light scattering particle counter
JPS59154341A (en) Measuring device of foreign matter
JPH0656358B2 (en) Light scattering type particle measuring device
JP5366727B2 (en) Method and apparatus for detecting particle size in liquid and optical apparatus
JPS6011145A (en) Measuring device of foreign matter
JPH05240769A (en) Particle counter
JPH0255937A (en) Small particle flux monitor
TW202346835A (en) Enhanced dual-pass and multi-pass particle detection
JPH01131433A (en) Counting device for particulate in liquid