JPS59107023A - Manufacture of hyperfine-grained hot-rolled steel plate - Google Patents

Manufacture of hyperfine-grained hot-rolled steel plate

Info

Publication number
JPS59107023A
JPS59107023A JP21468782A JP21468782A JPS59107023A JP S59107023 A JPS59107023 A JP S59107023A JP 21468782 A JP21468782 A JP 21468782A JP 21468782 A JP21468782 A JP 21468782A JP S59107023 A JPS59107023 A JP S59107023A
Authority
JP
Japan
Prior art keywords
less
ferrite
hot
steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21468782A
Other languages
Japanese (ja)
Other versions
JPS625212B2 (en
Inventor
Takehide Senuma
武秀 瀬沼
Giichi Matsumura
義一 松村
Hiroshi Yada
浩 矢田
Hiroe Nakajima
中島 浩衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21468782A priority Critical patent/JPS59107023A/en
Publication of JPS59107023A publication Critical patent/JPS59107023A/en
Publication of JPS625212B2 publication Critical patent/JPS625212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain a hot rolled steel plate balanced between strength and ductility and having a hyperfine ferrite crystal structure by subjecting a steel contg. a prescribed percentage each of C, Si, Mn and other alloy elements to final hot rolling once or twice at a specified total draft in a specified temp. range within a fixed time. CONSTITUTION:A steel contg. <=0.3% C, <=1.5% Si, <=2.0% Mn and <=3% other alloy elements is prepd. The steel is hot rolled. In the final hot rolling stage, the steel is rolled once or twice or more at >=65% total draft in the temp. range of 600 deg.C- the Ar3 point within 2sec. In this method the ferrite structure is sufficiently processed, so it is recrystallized during or immediately after the hot rolling. The resulting structure is a hyperfine-grained structure, the shape of the grains is not remarkably elongated, and the hot rolled steel plate shows superior properties as an almost isotropic high tension steel plate balanced between strength and ductility.

Description

【発明の詳細な説明】 本発明は熱延ままで極微細なフェライト結晶組織を有す
る強度−延性バランスの優れた細粒組織鋼板の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine-grained steel sheet having an extremely fine ferrite crystal structure as hot-rolled and having an excellent strength-ductility balance.

ここで言う細粒組織は微細フェライト相よシ成9、所望
の機械的性質によって?′i7エライト相以外に他の微
細な組織、例えばツヤ−ライト、ベーナイト、マルテン
サイト、残留オーステナイト等のうち一つまたは二つ以
上を有しても良いし、炭・窒化物などの析出物を有して
も良い。
The fine grain structure referred to here is composed of a fine ferrite phase9, depending on the desired mechanical properties? 'i7 In addition to the elite phase, it may contain one or more other fine structures, such as thuyarite, bainite, martensite, retained austenite, etc., or it may contain precipitates such as carbon and nitrides. You may have one.

本発明で細粒フェライトと呼ぶ組織は、粒の形の著しい
伸長を伴わず、はぼ等方的であり、また原則としていわ
ゆる大傾角粒界で囲まれた結晶粒からなる組織を意味し
、亜結晶粒界として見なしていない。
The structure referred to as fine-grain ferrite in the present invention is almost isotropic without significant elongation of the grain shape, and as a general rule, it means a structure consisting of crystal grains surrounded by so-called high-angle grain boundaries. It is not considered as a subgrain boundary.

従来、鋼材の強化方法としては固溶体強化、硬い組織(
マルテンサイト、ベーナイト等)による強化、析出硬化
、転位による強化(加工硬化等)。
Conventionally, methods for strengthening steel materials include solid solution strengthening and hard microstructure (
martensite, bainite, etc.), precipitation hardening, and dislocation strengthening (work hardening, etc.).

結晶粒の微細化などが知られている。これらの強化方法
の内で強度と共に靭性を高くシ、薄板の強度−延性バラ
ンスを良好にする方法としては結晶粒を微細化するのが
唯一のものである。しかも成分による強化法ではないの
で成分コストヲ低く抑えられるので、もし従来にない細
粒が得られれば高材質で低コストな高強度鋼板を製造で
きる。
Refining of crystal grains is known. Among these strengthening methods, refining the crystal grains is the only method to increase the strength and toughness and to improve the strength-ductility balance of the thin plate. Moreover, since it is not a strengthening method using ingredients, the ingredient cost can be kept low, so if unprecedented fine grains can be obtained, high-strength steel sheets of high quality and low cost can be manufactured.

従来技術では実生産において最も細いフェライト粒径と
して3〜4μmが得られているが、これ以下の粒径を得
る事は非常に困難であった。
In the conventional technology, the smallest ferrite grain size of 3 to 4 μm has been obtained in actual production, but it has been extremely difficult to obtain a grain size smaller than this.

ところで変態後のフェライト粒径の微細化のために従来
考えられてきた方法は以下の通シである。
By the way, the following methods have been conventionally considered for reducing the size of ferrite grains after transformation.

(1)変態前のオーステナイト粒径の微細化。(1) Refinement of austenite grain size before transformation.

オーステナイト/フェライト変態時にダ態核は主にオー
ステナイト結晶粒界上に生成する。従ってオーステナイ
ト粒径を微細化して粒界面積を大きくする事は変態核の
密度を上昇させ変態後のフェライト粒径を小さくする。
During austenite/ferrite transformation, da-phase nuclei are mainly generated on austenite grain boundaries. Therefore, making the austenite grain size finer and increasing the grain boundary area increases the density of transformation nuclei and reduces the ferrite grain size after transformation.

オーステナイト粒径を小さくするには再結晶温度域にお
いて加ニー再結晶を繰シ返す事が一般に行なわれる。こ
の時静的再結晶が起るならば粒径は圧下率に反比例し、
動的再結晶が起るならば粒径は歪速度が大なる程また温
度が低い程小さくなる。
In order to reduce the austenite grain size, it is generally performed to repeatedly perform annealing recrystallization in the recrystallization temperature range. If static recrystallization occurs at this time, the grain size will be inversely proportional to the rolling reduction.
If dynamic recrystallization occurs, the grain size becomes smaller as the strain rate increases and the temperature decreases.

(2) ’& I前のオーステナイトに歪を残存させる
(2) '&I allow strain to remain in the austenite before I.

オーステナイトの未再結晶温度域で加工すると加工量の
一部は解放されずに蓄積し、変形帯と呼ばれる歪の高い
部分が結晶粒内にでき、フェライト変態の核生成場所と
なる。加工量が十分に大きく変形帯密度が犬ならば変態
後のフェライト粒径は小さくなる。制御圧延と言われる
技術がこの方法であり、従来技術では最も小さいフェラ
イト粒が得られるもので工業的に3〜4μの結晶を得る
事が可能である。
When austenite is processed in the non-recrystallized temperature range, a portion of the processed material is not released and accumulates, forming areas of high strain called deformation zones within the grains, which serve as nucleation sites for ferrite transformation. If the processing amount is sufficiently large and the deformation band density is small, the ferrite grain size after transformation will be small. This method is a technique called controlled rolling, and the smallest ferrite grains can be obtained in the conventional technique, and it is possible to obtain crystals of 3 to 4 μm industrially.

(3)変態時の冷却速度を大きくする。(3) Increase the cooling rate during transformation.

オーステナイト/7エライト変態時に冷却速度を大きく
すると過冷却度が大きくなるために変態核の生成数が多
くなり、さらに早く低温になる為に粒成長も抑制されフ
ェライト粒径は小さくなる。
When the cooling rate is increased during austenite/7-erite transformation, the degree of supercooling increases, resulting in a greater number of transformation nuclei being generated, and since the temperature is lowered more quickly, grain growth is also suppressed and the ferrite grain size becomes smaller.

上記(1)〜(3)の方法は良く知られている細粒化法
であるが、これらによって得られるフェライト粒径には
限度がある。すなわち従来法(1)のオーステナイトを
細粒化する方法では静的再結晶の場合でも動的再結晶の
場合でも実生産上沓られるオーステナイト粒径は5μ程
度が限界であ勺その状態から急速冷却を行なってもオー
ステナイト粒/フェライト粒変換比はオーステナイト粒
径が小さくなる程1に近付くので得られるフェライト粒
径は変態前のオーステナイト粒径に近いものしが得られ
ない。
Although the methods (1) to (3) above are well-known grain refining methods, there is a limit to the ferrite grain size obtained by these methods. In other words, in the conventional method (1) of refining austenite, the maximum austenite grain size that can be achieved in commercial production is about 5μ, whether it is static recrystallization or dynamic recrystallization. Even if this is done, the austenite grain/ferrite grain conversion ratio approaches 1 as the austenite grain size becomes smaller, so the resulting ferrite grain size cannot be close to the austenite grain size before transformation.

従来法(2)の未再結晶オーステナイトに変形帯を導入
するいわゆる制御圧延法では未再結晶域の圧下率を十分
大きく与えさえすればがなりの細粒フェライトが得られ
るが、実生産上では3μ程度が限界である。しかもこの
方法には未再結晶温度域を拡げるためにNb等の合金元
素を添加しなければならず合金元素添加によるコスト高
が必然的に生ずる。
In conventional method (2), the so-called controlled rolling method that introduces deformation zones into unrecrystallized austenite, fine-grained ferrite can be obtained as long as the rolling reduction in the unrecrystallized region is sufficiently large, but in actual production, The limit is about 3μ. Moreover, in this method, alloying elements such as Nb must be added in order to widen the non-recrystallization temperature range, and the addition of alloying elements inevitably results in higher costs.

従来法(3)においては、冷却速度は大きい程好ましい
が、大き過ぎるとかえってフェライト変態が抑制されて
マルテンサイト等の焼入組織が生成してしまうので自ず
から限度がある。
In the conventional method (3), the higher the cooling rate, the better, but if it is too high, ferrite transformation will be suppressed and a quenched structure such as martensite will be generated, so there is a limit naturally.

以上の様に従来の細粒化法には限界があシ、実生産にお
いて3μ以下のフェライト粒を得るのは非常に困難で製
造コストは高いものになる。
As mentioned above, the conventional grain refining method has its limits, and in actual production it is very difficult to obtain ferrite grains of 3 μm or less, and the manufacturing cost is high.

本発明者らは熱延鋼板の成分系、圧延・冷却プロセスに
ついて研究した結果、前述したような従来の細粒化法と
全く異なった原理を発見し、従来法では到底得る事ので
きない細粒組織からなる新しい高強度熱延鋼板の製造法
を開発したのである。
As a result of researching the composition system and rolling/cooling process of hot-rolled steel sheets, the present inventors discovered a principle completely different from the conventional grain refining method described above. They developed a new method for manufacturing high-strength hot-rolled steel sheets consisting of a microstructure.

すなわち本発明の要旨とするところは下記のとおりであ
る。
That is, the gist of the present invention is as follows.

(1)  c 0.3%以下、Sil、5%以下、Mn
2.0%以下、その他の合金元素含有i3%以下である
鋼を熱間圧延するに際し、該熱間圧延の終段において、
600℃〜A r sの温度域で2秒以内に1回または
2回以上の合計圧下率が65チ以上になるような加工を
加えることを特徴とする極細粒熱延鋼板の製造方法。
(1) c 0.3% or less, Sil, 5% or less, Mn
When hot rolling steel having an i content of 2.0% or less and other alloying element content of 3% or less, in the final stage of the hot rolling,
A method for producing an ultra-fine grain hot-rolled steel sheet, characterized in that processing is performed once or twice or more within 2 seconds in a temperature range of 600° C. to Ars so that the total rolling reduction becomes 65 inches or more.

(2)  C0,3%以下、S11.5%以下、Mn 
2.0 %以下、その他の合金元素含有量3チ以下であ
る鋼を熱間圧延するに際し、該熱間圧段の終段において
、600℃〜Ar、の温度域で2秒以内に1回または2
回以上の合計圧下率が65%以上になるような加工を加
えた後、5秒以内に10 ℃/see以上の冷却速度で
600℃以下の温度に至らしめること全特徴とする極細
粒熱延鋼板の製造方法。
(2) C0.3% or less, S11.5% or less, Mn
When hot rolling steel with a content of 2.0% or less and a content of other alloying elements of 3 or less, at the final stage of the hot rolling stage, it is rolled once within 2 seconds in the temperature range of 600°C to Ar. or 2
Ultra-fine grain hot rolling that is characterized by being able to reach a temperature of 600°C or less at a cooling rate of 10°C/see or more within 5 seconds after being processed so that the total rolling reduction ratio is 65% or more. Method of manufacturing steel plates.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明による鋼組織の極細粒化は圧延等の加工によって
フェライト組織を動的あるいは単動的に再結晶させるこ
とによって得るものである。
The ultra-fine grain structure of the steel according to the present invention is obtained by dynamically or unidirectionally recrystallizing the ferrite structure through processing such as rolling.

従来の熱間圧延条件では、フェライト組織は積層欠陥エ
ネルギーが高いため回復が顕著に進み、かかる熱間圧延
工程で再結晶がしにくいことが知られている。しかし、
本発明によれば、かがるフェライト組織も十分に加工を
受けるため)熱延中又は熱延直後に再結晶する。
It is known that under conventional hot rolling conditions, recovery of the ferrite structure progresses significantly due to high stacking fault energy, and recrystallization is difficult in such a hot rolling process. but,
According to the present invention, the darkened ferrite structure is also sufficiently processed, so that it recrystallizes during or immediately after hot rolling.

このようにして得られた組織は極細粒組織で粒の形状の
著るしい伸長を伴わず、はぼ等方的な且つ強度−延性バ
ランスの良い高張力熱延鋼板として優れた性質を示す。
The structure thus obtained is an ultra-fine grain structure without significant elongation of the grain shape, and exhibits excellent properties as a high-strength hot-rolled steel sheet that is nearly isotropic and has a good strength-ductility balance.

但し、上記組織は細粒なるが故に粒成長が始まると粒成
長速度が速く、従って熱延後短時間の内に急冷しないと
成分によっては顕著な粒成長を示す材料があるので、熱
延終了後直ちに急冷する必要がある。
However, since the above-mentioned structure is fine-grained, once grain growth begins, the grain growth rate is fast.Therefore, if the grain growth is not rapidly cooled within a short period of time after hot rolling, some materials may exhibit significant grain growth depending on the components, so it is difficult to finish hot rolling. It must be rapidly cooled down immediately afterwards.

以下、本発明の限定理由について述べる。The reasons for the limitations of the present invention will be described below.

本発明の出発鋼の化学成分を限定した理由は次の通シで
ある。
The reason for limiting the chemical composition of the starting steel of the present invention is as follows.

先ず、炭素量を03%以下にした理由は、一般に炭素量
が太きくなるとフェライト量が減少し、ノや−ライト等
の量が多くなってフェライト主体の鋼を得ることが難か
しくなるからである。
First of all, the reason why the carbon content is set to 0.3% or less is because generally, as the carbon content increases, the ferrite content decreases, and the amount of ferrite, etc. increases, making it difficult to obtain ferrite-based steel. be.

31は強度を高める□ばかりでなくγ→α変態開始温度
を顕著に上げる効果があり、本発明鋼の加工条件である
A r s変態点とフェライト再結晶可能温度の温度域
を広めるため添加が望まれるが、1.5%超であると延
性の劣化が大きくなるので、1.5%以下とした。
31 not only increases the strength but also has the effect of significantly raising the γ→α transformation starting temperature, and is added to broaden the temperature range between the A r s transformation point and the temperature at which ferrite recrystallization is possible, which is the processing condition for the steel of the present invention. Although desirable, if it exceeds 1.5%, the deterioration of ductility will be significant, so it is set to 1.5% or less.

Mnの添加はSlと同様に鋼を強化するが、2.0チ超
の添加は溶製上又はコストの点で不適当である。
Addition of Mn strengthens the steel in the same way as Sl, but addition of more than 2.0 mm is inappropriate in terms of melting or cost.

上記以外の合金元素の合計を3%以下に限定した理由は
、これ以上添加するとAr s変態点が低くなシ過ぎた
り、微細な析出物が生成したりしてフェライト組織が十
分に再結晶せず、伸長した加工組織を示し、延性の大き
な劣化を示すからである。
The reason why the total amount of alloying elements other than those listed above is limited to 3% or less is that if more than this is added, the Ars transformation point may become too low or fine precipitates may be formed, resulting in insufficient recrystallization of the ferrite structure. First, it shows an elongated processed structure and shows a large deterioration in ductility.

次に、本発明における圧延条件について説明する。Next, rolling conditions in the present invention will be explained.

本発明で規定した圧延条件、即ち、終段において600
℃〜A r 3の温度域で2秒以内に1回又は2回以上
の合計圧下率が65チ以上という圧延条件はフェライト
組織を加工中あるいは加工直後に再結晶させるのに適し
た条件である。
The rolling conditions specified in the present invention, i.e., 600% at the final stage.
The rolling conditions in which the total rolling reduction of 65 mm or more is performed once or twice within 2 seconds in the temperature range of °C to A r 3 are suitable conditions for recrystallizing the ferrite structure during or immediately after processing. .

圧下率が65−未満であるとフェライトが熱延工程で十
分再結晶を起さない。加工温度が600℃以下に下がる
とやはシ同様のことが言える。一方、加工温度がArs
変態点を超えるとフェライト粒の細粒化はオーステナイ
ト粒の細粒化にょシフニライト生成サイtf増加させる
ことに基くもので本発明の意図と異る。フェライトe動
的に再結晶させるにはオーステナイトが一部含まれてい
るAr s〜Ar1の温度範囲の2相域の圧延が特に有
利である。
If the rolling reduction is less than 65, ferrite will not sufficiently recrystallize in the hot rolling process. The same thing can be said when the processing temperature drops below 600°C. On the other hand, the processing temperature is Ars
When the transformation temperature is exceeded, the ferrite grains become finer because the austenite grains become finer and the sifunirite formation site tf increases, which is different from the intention of the present invention. For dynamic recrystallization of ferrite e, rolling in a two-phase region in the temperature range of Ars to Ar1, in which austenite is partially contained, is particularly advantageous.

前記した本発明の限定条件に従って得られた熱延鋼板は
組織が非常に微細になるが、場合によっては熱間圧延終
了後直ちに冷却しないと粒成長を起し、細粒組織が得ら
れにくくなる。そのため熱延終了後5秒以内に10ヅB
以上の冷却速度で600℃以下の温度まで冷却し、又マ
ルテンサイトとの2相組織を得たい時は250℃以下ま
で冷却する必要がある。一方薄手熱延鋼板では空冷でも
上記冷却速度が得られ十分微細な組織を得ることが可能
である。
The hot-rolled steel sheet obtained according to the limiting conditions of the present invention described above has a very fine structure, but in some cases, if it is not cooled immediately after hot rolling, grain growth will occur, making it difficult to obtain a fine-grain structure. . Therefore, within 5 seconds after hot rolling, 10㎜B
At the above cooling rate, it is necessary to cool to a temperature of 600° C. or less, and when it is desired to obtain a two-phase structure with martensite, it is necessary to cool to a temperature of 250° C. or less. On the other hand, in the case of thin hot-rolled steel sheets, the above cooling rate can be obtained even by air cooling, and it is possible to obtain a sufficiently fine structure.

次に本発明全実施例にもとづき説明する。Next, description will be made based on all embodiments of the present invention.

表1に示す化学成分の鋼を表2に示す圧延スケデュール
で圧延を行った。表3にその結果を示す。
Steel having the chemical composition shown in Table 1 was rolled on the rolling schedule shown in Table 2. Table 3 shows the results.

本実施例ではスラブ加熱温度を1250℃としたが、熱
エネルギー的にも、細粒化促進の面からも低温加熱が有
利である。
In this example, the slab heating temperature was 1250° C., but low-temperature heating is advantageous both in terms of thermal energy and in terms of promoting grain refinement.

表3に示す結果から、本発明範囲内の実施番号1,2,
6,7.8および12によって得られた鋼板はいずれも
極細粒組織を示し、強度−延性バランスの優れた材質を
示す。一方、本発明範囲外で圧延−冷却して得られた鋼
板は加工組織を示すか、細粒組織にはならず延性が極端
に悪いか(実施番号3,5)あるいは十分な強度が達成
できず、本発明の意図する強度−延性バランスの優れた
高張力熱延鋼板は得られないことが判る。
From the results shown in Table 3, implementation numbers 1, 2, and
The steel plates obtained in Examples 6, 7.8, and 12 all exhibit ultrafine grain structures and exhibit materials with an excellent balance of strength and ductility. On the other hand, steel sheets obtained by rolling and cooling outside the scope of the present invention exhibit a deformed structure, do not have a fine grain structure and have extremely poor ductility (Example No. 3 and 5), or cannot achieve sufficient strength. First, it is clear that a high-strength hot-rolled steel sheet with an excellent strength-ductility balance as intended by the present invention cannot be obtained.

又この実施例が示すように材料Bの場合には550℃捲
取で70kg/門1級の強度が得られ、200℃以下の
捲取では80 kg/lnm”級の材質も確保できる〇
一方材料Aの低炭素鋼でも50 ky/朋2級の強度が
得られ、従来の製造法と本発明の製造法によって単一成
分で広範囲の強度を持っ熱延鋼板を造り分けることが可
能になった。
In addition, as this example shows, in the case of material B, a strength of 70 kg/1 nm class can be obtained when rolled at 550 degrees Celsius, and a strength of 80 kg/lnm'' class can be obtained when rolled at 200 degrees Celsius or lower. Even low carbon steel, material A, can achieve a strength of 50 ky/Tomo 2 grade, making it possible to produce hot-rolled steel sheets with a wide range of strengths using a single component using conventional manufacturing methods and the manufacturing method of the present invention. became.

Claims (2)

【特許請求の範囲】[Claims] (1)  C0,3%以下、Si1.5%以下、Mn 
2.096以下、その他の合金元素含有量3チ以下であ
る鋼を熱間圧延するに際し、該熱間圧延の終段において
、600℃〜Ar3の温度域で2秒以内に1回または2
回以上の合計圧下率が6596以上になるような加工を
加えることを特徴とする極細粒熱延鋼板の製造方法。
(1) C0.3% or less, Si1.5% or less, Mn
2.096 or less and the other alloying element content is 3 or less, in the final stage of the hot rolling, the steel is rolled once or twice within 2 seconds in the temperature range of 600°C to Ar3.
A method for producing an ultra-fine-grained hot rolled steel sheet, characterized by adding processing such that the total rolling reduction of 6,596 times or more becomes 6,596 times or more.
(2)C0,3%以下、Si1.5%以下、Mn 2.
 O%以下、その他の合金元素含有量3チ以下である鋼
を熱間圧延するに際し、該熱間圧延の終段において、6
00℃〜Ar sの温度域で2秒以内に1回または2回
以上の合計圧下率がC5チ以上になるような加工を加え
た後、5秒以内に10℃/就以上の冷却速度で600℃
以下の温度に至らしめることを特徴とする極細粒熱延鋼
板の製造方法。
(2) C0.3% or less, Si 1.5% or less, Mn 2.
0% or less, and the content of other alloying elements is 3 T or less, in the final stage of the hot rolling, 6.
After applying processing such that the total rolling reduction rate is C5 or more within 2 seconds in the temperature range of 00℃ to Ars, the cooling rate is 10℃/or more within 5 seconds. 600℃
A method for producing an ultra-fine grain hot-rolled steel sheet, characterized by bringing the temperature to the following temperature.
JP21468782A 1982-12-09 1982-12-09 Manufacture of hyperfine-grained hot-rolled steel plate Granted JPS59107023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21468782A JPS59107023A (en) 1982-12-09 1982-12-09 Manufacture of hyperfine-grained hot-rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21468782A JPS59107023A (en) 1982-12-09 1982-12-09 Manufacture of hyperfine-grained hot-rolled steel plate

Publications (2)

Publication Number Publication Date
JPS59107023A true JPS59107023A (en) 1984-06-21
JPS625212B2 JPS625212B2 (en) 1987-02-03

Family

ID=16659921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21468782A Granted JPS59107023A (en) 1982-12-09 1982-12-09 Manufacture of hyperfine-grained hot-rolled steel plate

Country Status (1)

Country Link
JP (1) JPS59107023A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204320A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistnace
JPS61204322A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS61204328A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistance and corrosion resistance
JPS61204323A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS6213534A (en) * 1985-03-06 1987-01-22 Kawasaki Steel Corp Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
WO2001029272A1 (en) * 1999-10-19 2001-04-26 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2015054974A (en) * 2013-09-10 2015-03-23 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in toughness and production method thereof
JP2017031454A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143717A (en) * 1978-05-01 1979-11-09 Kawasaki Steel Co Continuous heat treatment of high carbon steel for high processed cold drawing
JPS58174523A (en) * 1982-04-03 1983-10-13 Nippon Steel Corp Manufacture of very fine-grained high-strength hot-worked steel material
JPS5959827A (en) * 1982-09-28 1984-04-05 Nippon Steel Corp Manufacture of hot-rolled steel plate with superior processability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143717A (en) * 1978-05-01 1979-11-09 Kawasaki Steel Co Continuous heat treatment of high carbon steel for high processed cold drawing
JPS58174523A (en) * 1982-04-03 1983-10-13 Nippon Steel Corp Manufacture of very fine-grained high-strength hot-worked steel material
JPS5959827A (en) * 1982-09-28 1984-04-05 Nippon Steel Corp Manufacture of hot-rolled steel plate with superior processability

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204320A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistnace
JPS61204322A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS61204328A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistance and corrosion resistance
JPS61204323A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS6213534A (en) * 1985-03-06 1987-01-22 Kawasaki Steel Corp Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
JPH0257132B2 (en) * 1985-03-06 1990-12-04 Kawasaki Steel Co
JPH0257129B2 (en) * 1985-03-06 1990-12-04 Kawasaki Steel Co
JPH0257128B2 (en) * 1985-03-06 1990-12-04 Kawasaki Steel Co
JPH0257130B2 (en) * 1985-03-06 1990-12-04 Kawasaki Steel Co
WO2001029272A1 (en) * 1999-10-19 2001-04-26 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
US6719860B1 (en) 1999-10-19 2004-04-13 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
CN1332043C (en) * 1999-10-19 2007-08-15 阿斯帕克特有限公司 Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2015054974A (en) * 2013-09-10 2015-03-23 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in toughness and production method thereof
JP2017031454A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JPS625212B2 (en) 1987-02-03

Similar Documents

Publication Publication Date Title
EP0796352B1 (en) Ultra-high strength steels and method thereof
JP6924284B2 (en) Low-cost, high-formability 1180 MPa class cold-rolled annealed two-phase steel sheet and its manufacturing method
JPS6155572B2 (en)
JPS59107023A (en) Manufacture of hyperfine-grained hot-rolled steel plate
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPH04358023A (en) Production of high strength steel
JPH0414167B2 (en)
JPS5825733B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with good paintability, weldability, and workability
KR100352596B1 (en) Manufacturing method of 60KGF / mm2 structural steel
JPS60152655A (en) High-strength low-carbon steel material having superior heavy workability
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance
JPS60152654A (en) Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JPH11256229A (en) Steel excellent in brittle fracture propagation stopping characteristic and its production
JPH0776377B2 (en) Manufacturing method of high strength steel plate with excellent low temperature toughness
JP3844645B2 (en) Method for producing steel having fine ferrite structure
JPS62139816A (en) Manufacture of high tension and toughness steel plate
JPS58144422A (en) Manufacture of nonquenched and nontempered high-tensile strength steel sheet
JPH05148579A (en) High-strength high-toughness steel plate
JPH0772298B2 (en) Method for manufacturing hot rolled high strength steel sheet with excellent workability
JPS59205447A (en) Ultra-fine grain ferrite steel and preparation thereof
JPH04358021A (en) Production of thick steel plate having fine crystalline grain size
JPH04173922A (en) Production of high strength steel for reinforcing bar having high yield elongation
JPS6142767B2 (en)