JPH0257129B2 - - Google Patents

Info

Publication number
JPH0257129B2
JPH0257129B2 JP60043973A JP4397385A JPH0257129B2 JP H0257129 B2 JPH0257129 B2 JP H0257129B2 JP 60043973 A JP60043973 A JP 60043973A JP 4397385 A JP4397385 A JP 4397385A JP H0257129 B2 JPH0257129 B2 JP H0257129B2
Authority
JP
Japan
Prior art keywords
rolling
steel
strain rate
rolled
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043973A
Other languages
Japanese (ja)
Other versions
JPS61204322A (en
Inventor
Susumu Sato
Saiji Matsuoka
Takashi Obara
Kozo Sumyama
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4397385A priority Critical patent/JPS61204322A/en
Priority to AT86301470T priority patent/ATE54950T1/en
Priority to EP86301470A priority patent/EP0196788B1/en
Priority to US06/835,052 priority patent/US4861390A/en
Priority to DE8686301470T priority patent/DE3672864D1/en
Priority to CA000503250A priority patent/CA1271396A/en
Priority to AU54387/86A priority patent/AU566498B2/en
Priority to CN 86102191 priority patent/CN1013350B/en
Priority to KR1019860001578A priority patent/KR910000007B1/en
Priority to BR8600962A priority patent/BR8600962A/en
Publication of JPS61204322A publication Critical patent/JPS61204322A/en
Publication of JPH0257129B2 publication Critical patent/JPH0257129B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 面内異方性が小さく耐リジング性と加工性に優
れた薄鋼板の製造に関してこの明細書で述べる技
術内容は、圧延条件の規制により冷間圧延および
再結晶焼純工程を省略し得る新プロセスについて
の開発成果を開示するところにある。 建材、自動車車体材、缶材ないしは各種表面処
理原板などの用途に使用される板厚がおよそ2mm
以下の加工用薄鋼板には以下のような特性が要求
される。 (1) 機械的特性 良好な曲げ加工性、張り出し加工性および絞
り加工性を得るために、主として高い延性と高
いランクフオード値(r値)が必要である。 またたとえ特定方向の加工性が良好でも、実
際の加工は平面的なものであるため、面内異方
性が大きいと加工後にしわが生じたりする。こ
の点異方性が小さいと成形後の耳切りの量が少
なくブランク面積を低減できるため、鋼板歩留
りは大幅に向上する。かかる機械的性質の異方
性はΔEl(伸びの異方性パラメータ)およびΔr
(r値の異方性パラメータ)で評価でき、ΔEl
≦5%、Δr≦0.5が異方性に優れる鋼板として
要求される。 (2) 表面特性 これら材料は主として最終製品の最外側に使
用されるため、素材としての形状および表面美
麗さはもちろんのこと、各種表面処理性も重要
である。 これら薄鋼板の一般的な製造手段は、次のとお
りである。 まず鋼素材としては主に低炭素鋼を用い、造塊
−分塊圧延にて板厚200mm程度の鋼片とした後、
加熱炉にて加熱−均熱処理し、ついで粗熱延工程
により板厚約30mmのシートバーとしてから、仕上
温度がAr3変態点以上の範囲における仕上熱延工
程にて所定板厚の熱延鋼帯とし、しかるのちそれ
を酸洗後、冷間圧延により所定板厚(2.0mm以下)
の冷延鋼帯とし、さらに再結晶焼純を施して最終
製品とする。 かかる慣行の最大の欠点は最終製品に至るまで
の工程がきわめて長いことにある。その結果、製
品にするまでに要するエネルギー、要員および時
間が莫大になるだけでなく、これら長い工程中
に、製品の品質とくに表面特性上種々の問題を生
じさせる不利も加わる。例えば冷間圧延工程にお
ける表面欠陥の発生、あるいは再結晶焼純工程に
おける不純物元素の表面濃化および表面酸化に起
因する表面美麗さの劣化、さらには表面処理性の
劣化などが不可避的トラブルである。 ところで加工用薄鋼板の製造法としては、熱間
圧延工程にて最終製品とするものも考えられてい
る。この方法によれば、冷間圧延および再結晶焼
鈍工程が省略でき、そのメリツトは大きい。 しかしながら、熱間圧延のままで得られる薄鋼
板の機械的特性は、冷延−焼鈍工程を経たものに
比べるとはるかに劣る。とくに自動車の車体など
に使用されるプレス加工材には優れた深絞り性が
要求されるのに対し、熱延鋼板のr値は1.0前後
と低く、そのためその加工用途はきわめて限られ
たものになる。これは従来の熱延方法において
は、その仕上温度がAr3変態的以上であるため、
γ→α変態時に集合組織がランダム化するためで
ある。加えて2.0mm以下の板厚の薄鋼板を熱延工
程のみで製造することはきわめて困難である。し
かも寸法精度の問題の他に、薄くなることによる
鋼板温度の低下は、低炭素鋼のAr3変態点以下の
圧延を余儀なくし、材質(延性、絞り性)の著し
い劣化をもたらす。またたとえAr3変態点以下の
圧延によつて材質が確保できたとしても、フエラ
イト域で圧延された鋼板にはリジングが発生しや
すくなるという新たな問題が生じる。 ここにリジングとは製品の加工時に生じる表面
の凹凸の欠陥であつて、加工製品の最外側に使用
されることが主であるこの種の鋼板にとつては致
命的な欠陥である。 リジングは、金属学的には加工−再結晶過程を
経ても容易には分割されない結晶方位群(例えば
{100}方位粒群)が圧延方向に伸ばされたまま、
残留することに起因するものであり、一般にフエ
ライト(α)域の比較的高温で加工された状況で
生じやすく、とくにフエライト域での圧下率が高
い場合すなわち薄鋼板の製造のような場合にはそ
の傾向が強い。 最近では、これら加工用薄鋼板は、加工製品の
複雑化、高級化に伴い厳しい加工を受けることが
多くなつたこともあり、優れた耐リジング性が要
求されるようになつてきた。 ところで近年鉄鋼材料の製造工程は著しく変化
しており、加工用薄鋼板の場合も例外ではない。 すなわち、近年まず連続鋳造プロセスの導入に
よつて分塊圧延工程が省略可能となり、また材質
向上と省エネルギーを目的として鋼片の加熱温度
は従来の1200℃近傍から1100℃近傍もしくはそれ
以下に低下される傾向にある。さらに溶鋼から直
ちに板厚50mm以下の鋼帯を溶製することにより、
熱延の加熱処理と粗圧延工程を省略できるプロセ
スも実用化されつつある。 しかしながらこれらの新製造工程は、いずれも
溶鋼が凝固する際にできる組織(鋳造組織)を破
壊するという点では不利である。とくに凝固時に
形成された{100}<uvw>を主方位とする強い鋳
造集合組織を破壊することはきわめて困難であ
る。 その結果として、最終薄鋼板には、前述したリ
ジングが起こりやすかつたのである。 (従来の技術) Ar3変態点以下の比較的低温域で所定板厚の薄
鋼板とし、その後は冷間圧延および再結晶焼鈍工
程を施さない加工用薄鋼板の製造方法もいくつか
提示されている。例えば特開昭48−4329号公報に
は、低炭素リムド鋼をAr3変態点以下の温度で90
%の圧延にて4mm板厚の鋼帯とすることによる降
伏点26.1Kg/mm2、引張強さ37.3Kg/mm2、伸び49.7
%、=1.29の特性を有する製造例が示されてい
る。また特開昭52−44718号公報には同じく低炭
素リムド鋼を熱延仕上温度800〜860℃(Ar3変態
点以下)で2.0mm板厚とし、巻取温度600〜730℃
とすることによる、降伏点20Kg/mm2以下の低降伏
点鋼板の製造法が示されている。しかしながら絞
り性の指標であるコニカルカツプ値は得られる製
品で60.60〜62.18mm程度であり、この点従来例の
60.58〜60.61に比べると絞り性は同等かそれ以下
である。さらに特開昭53−22850号公報には同じ
く低炭素リムド鋼を熱延仕上温度710〜750℃で
1.8〜2.3mm板厚とし、巻取温度530〜600℃とする
ことによる低炭素熱延鋼板の製造法が示されい
る。しかしながらこの方法によつて得られる製品
のコニカルカツプ値も上掲の特開昭52−44718号
公報の場合と同様に従来例よりも高く、絞り性は
劣つている。またさらに特開昭54−109022号公報
には、低炭素アルミキルド鋼を熱延仕上温度760
〜820℃で1.6mm板厚とし、巻取温度650〜690℃と
することによる降伏点14.9〜18.8Kg/mm2、引張強
さ27.7〜29.8Kg/mm2、伸び39.0〜44.8%の特性を
有する低強度軟鋼板の製造例が開示されている。
その他特開昭59−226149号公報にはC/0.002、
Si/0.02、Mn0.23、P/0.009、S/0.008、Al/
0.025、N/0.0021、Ti/0.10の低炭素Alキルド
鋼を500〜900℃で潤滑油を施しつつ76%の圧延に
て1.6mm板厚の鋼帯とすることにより、=1.21
の特性を有する薄鋼板の製造例が示されている。 しかしながら上記した公知技術にはいずれも、
前述した耐リジング性を向上させることについて
は何らの考慮も払われていない。 (発明が解決しようとする問題点) 冷間圧延のみならず再結晶焼鈍をも含まない新
プロセスによつて、面内異方性が小さく耐リジン
グ性と加工性に優れる薄鋼板の製造方法を与える
ことが、この発明の目的である。 (問題点を解決するための手段) この発明は、低炭素鋼を所定板厚に圧延する工
程において、少なくとも1パスを、 Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上、ひずみ速度:300(s-1)以上で
かつ、ひずみ速度(ε〓)とまさつ係数(μ)とが
次式、 ε〓/μ≧1000 の関係を満足する条件下に圧延することを特徴と
する面内異方性が小さく耐リジング性に優れる加
工用アズロールド薄鋼板の製造方法である。 この発明の基礎となつた研究結果からまず説明
する。 供試材は表1に示す2種類の低炭アルミキルド
鋼の熱延鋼板であり、これらの供試材A、Bを
700℃に加熱、均熱後、1パスで20%、40%およ
び60%の各圧下率でそれぞれ圧延した。
(Industrial Application Field) The technical content described in this specification regarding the production of thin steel sheets with small in-plane anisotropy and excellent ridging resistance and workability is limited to cold rolling and recrystallization annealing by regulating rolling conditions. The purpose is to disclose the development results of new processes that can omit steps. Approximately 2mm thick plate used for building materials, automobile body materials, can stock, and various surface-treated original plates.
The following properties are required for the following thin steel sheets for processing. (1) Mechanical properties High ductility and high Rankford value (r value) are mainly required to obtain good bending workability, stretchability and drawing workability. Furthermore, even if the workability in a particular direction is good, since the actual processing is planar, if the in-plane anisotropy is large, wrinkles may occur after processing. In this respect, when the anisotropy is small, the amount of edge cutting after forming is small and the blank area can be reduced, so the steel plate yield is significantly improved. The anisotropy of such mechanical properties is ΔEl (anisotropy parameter of elongation) and Δr
(anisotropy parameter of r value), ΔEl
≦5% and Δr≦0.5 are required for a steel plate with excellent anisotropy. (2) Surface properties Since these materials are mainly used for the outermost part of the final product, not only the shape and surface beauty of the material but also various surface treatments are important. The general manufacturing method for these thin steel sheets is as follows. First, we mainly use low-carbon steel as the steel material, and after forming it into a steel billet with a thickness of about 200 mm by ingot-forming and blooming rolling,
The steel is heated and soaked in a heating furnace, then subjected to a rough hot rolling process to form a sheet bar with a thickness of approximately 30 mm, and then subjected to a finishing hot rolling process at a finishing temperature in the range of Ar 3 transformation point or higher to produce a hot rolled steel of a predetermined thickness. It is made into a strip, then pickled and cold-rolled to a specified thickness (2.0 mm or less).
The final product is made into a cold-rolled steel strip and further subjected to recrystallization and annealing. The biggest drawback of this practice is the extremely long process required to reach the final product. As a result, not only is the amount of energy, manpower and time required to produce the product, but also the disadvantages that arise during these long steps are various problems in the quality of the product, especially its surface properties. For example, unavoidable problems include the occurrence of surface defects in the cold rolling process, deterioration of surface beauty due to surface concentration and surface oxidation of impurity elements in the recrystallization sintering process, and further deterioration of surface treatment properties. . By the way, as a method of manufacturing thin steel sheets for processing, a method of producing the final product through a hot rolling process is also considered. According to this method, cold rolling and recrystallization annealing steps can be omitted, which has great merits. However, the mechanical properties of a hot-rolled thin steel sheet are far inferior to those obtained through a cold rolling-annealing process. In particular, press-formed materials used for automobile bodies require excellent deep drawability, but hot-rolled steel sheets have a low r value of around 1.0, so their processing applications are extremely limited. Become. This is because in the conventional hot rolling method, the finishing temperature is higher than Ar 3 transformation.
This is because the texture becomes random during the γ→α transformation. In addition, it is extremely difficult to manufacture thin steel sheets with a thickness of 2.0 mm or less using only a hot rolling process. Moreover, in addition to the problem of dimensional accuracy, the drop in steel sheet temperature due to thinning forces low carbon steel to be rolled below the Ar 3 transformation point, resulting in significant deterioration of material properties (ductility, drawability). Furthermore, even if the quality of the material can be secured by rolling at a temperature below the Ar 3 transformation point, a new problem arises in that ridging is more likely to occur in steel sheets rolled in the ferrite region. Rigging is a defect in surface irregularities that occurs during the processing of a product, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products. Ridging metallurgically means that crystal orientation groups (e.g. {100} oriented grain groups) that are not easily divided even after the processing-recrystallization process remain stretched in the rolling direction.
This is caused by residual heat, and generally tends to occur when processing is performed at relatively high temperatures in the ferrite (α) region, especially when the reduction rate in the ferrite region is high, that is, when manufacturing thin steel sheets. That tendency is strong. Recently, these thin steel sheets for processing have been increasingly subjected to severe processing as processed products become more complex and sophisticated, and excellent ridging resistance has become required. Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception. In other words, in recent years, the introduction of a continuous casting process has made it possible to omit the blooming process, and the heating temperature of steel slabs has been lowered from the conventional 1200°C to around 1100°C or lower in order to improve material quality and save energy. There is a tendency to Furthermore, by immediately producing steel strips with a thickness of 50 mm or less from molten steel,
Processes that can omit the hot rolling heat treatment and rough rolling steps are also being put into practical use. However, all of these new manufacturing processes are disadvantageous in that they destroy the structure (cast structure) formed when molten steel solidifies. In particular, it is extremely difficult to destroy the strong casting texture, which is formed during solidification and has a main orientation of {100}<uvw>. As a result, the final thin steel sheet was susceptible to the aforementioned ridging. (Prior art) Several methods have been proposed for manufacturing thin steel sheets for processing, which are formed into a thin steel sheet of a predetermined thickness at a relatively low temperature below the Ar 3 transformation point and then do not undergo cold rolling or recrystallization annealing. There is. For example, in Japanese Patent Application Laid-Open No. 48-4329, low carbon rimmed steel is heated to 90°C at a temperature below the Ar3 transformation point.
% rolling to make a 4mm thick steel strip yield point 26.1Kg/mm 2 , tensile strength 37.3Kg/mm 2 , elongation 49.7
A production example with a characteristic of %, = 1.29 is shown. Furthermore, in JP-A-52-44718, low carbon rimmed steel is hot-rolled to a thickness of 2.0 mm at a finishing temperature of 800 to 860°C (below the Ar 3 transformation point), and a coiling temperature of 600 to 730°C.
A method for manufacturing a low yield point steel plate with a yield point of 20 kg/mm 2 or less is shown. However, the conical cup value, which is an index of drawability, is about 60.60 to 62.18 mm in the obtained product, which is different from the conventional example.
Compared to 60.58 to 60.61, the drawability is the same or lower. Furthermore, Japanese Patent Application Laid-open No. 53-22850 also discloses that low carbon rimmed steel is hot-rolled at a finishing temperature of 710 to 750°C.
A method for producing a low carbon hot rolled steel sheet is shown, in which the sheet thickness is 1.8 to 2.3 mm and the coiling temperature is 530 to 600°C. However, the conical cup value of the product obtained by this method is also higher than that of the conventional example, as in the case of the above-mentioned Japanese Patent Laid-Open No. 52-44718, and the drawing property is inferior. Furthermore, Japanese Patent Application Laid-open No. 54-109022 discloses that low carbon aluminum killed steel is hot-rolled at a finishing temperature of 760.
Characteristics of yield point 14.9-18.8Kg/mm 2 , tensile strength 27.7-29.8Kg/mm 2 , and elongation 39.0-44.8% were obtained by making the plate thickness 1.6mm at ~820℃ and coiling temperature 650-690℃. An example of manufacturing a low-strength mild steel plate having the following is disclosed.
In addition, JP-A No. 59-226149 has C/0.002,
Si/0.02, Mn0.23, P/0.009, S/0.008, Al/
= 1.21 by rolling 76% of low carbon Al-killed steel with 0.025, N/0.0021, Ti/0.10 at 500 to 900℃ with lubricating oil into a 1.6mm thick steel strip.
An example of manufacturing a thin steel sheet having the following characteristics is shown. However, all of the above-mentioned known technologies have
No consideration is given to improving the aforementioned ridging resistance. (Problems to be solved by the invention) A method for manufacturing thin steel sheets with small in-plane anisotropy and excellent ridging resistance and workability is provided by a new process that does not include not only cold rolling but also recrystallization annealing. It is an object of this invention to provide. (Means for Solving the Problems) This invention provides that, in the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of below the Ar 3 transformation point and above 500°C, with a rolling reduction rate of 35°C. % or more, strain rate: 300 (s -1 ) or more, and the strain rate (ε〓) and Masatsu coefficient (μ) satisfy the following formula, ε〓/μ≧1000. This is a method for manufacturing an as-rolled thin steel sheet for processing, which has small in-plane anisotropy and excellent ridging resistance. First, the research results that formed the basis of this invention will be explained. The test materials are two types of hot-rolled low carbon aluminum killed steel sheets shown in Table 1, and these test materials A and B are
After heating to 700°C and soaking, rolling was performed in one pass at rolling reductions of 20%, 40%, and 60%.

【表】 このときのひずみ速度(ε〓)と圧延後の鋼板の
r値およびリジング指数との関係を第1図に示
す。 値およびリジング指数はひずみ速度と圧下率
とに強く依存し、圧下率35%以上でかつ300s-1
上の高いひずみ速度にすることにより、値およ
び耐リジング性は著しく向上した。 なおひずみ速度(ε〓)の計算は以下の式に従つ
た。 ここでn:圧延ロールの回転数(rpm) r:圧下率(%)/100 R:圧延ロールの半径(mm) H0:圧延前の板厚(mm) また表1に示した供試鋼Bを用い、圧延後の試
料の伸びおよびr値の異方性と、ε〓/μとの関係
について調べた結果を第2図に示す。 なおまさつ係数は潤滑条件を変えることにより
0.6〜0.06の範囲で変化させた。また異方性は Δr=(rL+rC−2rD)/2、 ΔEl=(ElL+ElC−2ElD)/2として求めた。 同図より明らかなように、ΔrおよびΔElとも、
ひずみ速度(ε〓)とまさつ係数(μ)との比ε〓/μ
が1000以上になると急激に低下し、面内異方性は
著しく軽減した。 発明者らは、これらの基礎的データに基づき研
究を重ねた結果、以下のように製造条件を規制す
ることにより面内異方性が小さく耐リジング性と
加工性に優れる薄鋼板が製造できることを確認し
た。 (1) 鋼組成 高ひずみ速度圧延の効果は本質的には鋼組成
に依存しない。ただし、一定レベル以上の加工
性を確保するためには、侵入型固溶元素である
C、Nはそれぞれ0.10%以下、0.01%以下であ
ることが好ましい。また鋼中OをAlの添加に
より低減することは、材質とくに延性の向上に
有利である。さらにより優れた加工性を得るた
めに、C、Nを安定な炭窒化物として析出固定
可能な特殊元素たとえばTi、Nb、ZrおよびB
等の添加も有効である。 また高強度を得るためにP、SiおよびMn等
を強度に応じて添加することもできる。 (2) 圧延素材の製造法 従来方式、すなわち造塊−分塊圧延もしくは
連続鋳造法により得られた鋼片は当然に適用で
きる。 鋼片の加熱温度は800〜1250℃が適当であり、
省エネルギーの観点から1100℃未満が好適であ
る。連続鋳造から鋼片を再加熱することなく圧
延を開始するいわゆるCC−DR(連続鋳造−直
接圧延)法も勿論適用可能である。 一方溶鋼から直ちに50mm以下の圧延素材を鋳
造する方法(シートバーキヤスター法およびト
リツプキヤスター法)も省エネルギー、省工程
の観点から経済的メリツトが大きいので、圧延
素材の製造法としてはとりわけ有利である。 (3) 圧延工程 この工程が最も重要であり、低炭素鋼を所定
の板厚に圧延するに当り、仕上圧延において、
少なくとも1パスを、Ar3変態点以下、500℃
以上の温度範囲で、圧下率35%以上、ひずみ速
度300(s-1)以上でかつ、ひずみ速度(ε〓)とま
さつ係数(μ)とが次式 ε〓/μ≧1000 の関係を満足する条件下に圧延することが必須
である。 仕上圧延温度がAr3変態点を超える高温域で
は、たとえ圧下率35%以上、ひずみ速度300s-1
以上でかつ、上掲式の関係を満足する条件下に
圧延を施したとしても、面内異方性が大きく、
加工性、耐リジング性とも劣るものしか得られ
ず、一方500℃未満では、変形抵抗の著しい増
大をもたらし、冷間圧延法で特有な問題が生じ
るため、仕上圧延温度はAr3変態点〜500℃の
範囲に限定した。 またひずみ速度については、300s-1に満たな
いと目標とする材質が確保できないので、
300s-1以上とりわけ500〜2500s-1が好適であ
る。 なお従来の1パス当たりの圧延条件は、通
常、圧下率:35%未満、ひずみ速度:300(s-1
未満であり、少なくともこの発明のように圧下
率:35%以上、ひずみ速度:300(s-1)以上の
両者を満足する条件下で圧延が実施されたため
しはない。 さらに面内異方性を小さくするためには、前
掲第2図に示した結果からも明らかなように、
ひずみ速度(ε〓)とまさつ係数(μ)につき、
上掲式の関係を満足させることが肝要である。 圧延パス数、圧下率の配分は、上記の条件が
満たされれば任意でよい。 圧延機の配列、構造、ロール径や、張力など
は本質的な影響力を持たない。 なお再結晶焼鈍処理については、原則として
不要であるが、材質上の要請から、圧延後のラ
ンアウトテーブル上および巻とり工程で保熱、
均熱処理を施すこと、また必要に応じて圧延後
に多少の加熱処理を施すことを禁ずるものでは
ない。 (4) 酸洗、調質圧延 上述の手順で得られた鋼帯は、従来よりも低
温域での圧延であるため酸化層は薄く、酸洗性
は極めて良好であるので、酸洗せずに使用でき
る用途も広い。また脱スケールは、従来の酸に
よる除去の他に機械的除去も可能である。さら
に形状矯正、表面粗度調整などを目的として、
10%以下の調質圧延を加えることができる。 (5) 表面処理 かくして得られる鋼帯は、亜鉛めつき(合金
系を含む)、錫めつきおよびほうろう性など表
面処理性に優れるので、各種表面処理原板とし
て適用できる。 (作用) この発明に従い、高圧下率、高ひずみ速度で圧
延を行うことによつて、値および耐リジング性
さらには値およびEl値の面内異方性が格段に向
上する理由については、次のとおりと考えられ
る。 圧延後の再結晶集合組織の形成は、圧延時に導
入される加工ひずみ量に強く依存することが知ら
れている。すなわち{222}方位粒に蓄積される
加工ひずみ量が多いと、{222}方位を主方位とす
る再結晶集合組織が形成され、その結果値が向
上する。 この点、従来のような圧下率が35%未満、ひず
み速度が300s-1未満(いずれも1パス当たり)の
低圧下率・低ひずみ速度圧延では、加工ひずみは
{200}方位粒に導入され易く、そのため再結晶後
には{200}方位が集積し、その結果低い値し
か得られなかつた。 しかしながらこの発明に従う高圧下率・高ひず
み速度圧延では、{222}方位粒に蓄積される加工
ひずみ量が増大し、その結果{222}方位を主方
位とする再結晶集合組織が形成されるので、値
が格段に向上する。またこのように{222}方位
粒の再結晶が優先的に進行することから、リジン
グ発生の主原因である{200}方位粒の生成は極
めて少なく、従つて耐リジング性も向上する。 さらにとくにひずみ速度(ε〓)とまさつ係数
(μ)とにつき、次式 ε〓/μ≧1000 の関係を満足させることによつて、鋼板表面に形
成され易い{110}方位の形成が軽減され、その
結果値およびEl値の面内異方性が大幅に改善さ
れるのである。 (実施例) 表2に示す組成鋼をそれぞれ、表3に示す方法
で板厚20〜40mmのシートバーにした後、6列から
成る圧延機を用いて板厚0.8〜1.2mmの薄鋼板とし
た。このとき最後列のスタンドにおいて高ひずみ
速度圧延を行つた。 かくして得られた薄鋼板につき、酸洗、調質圧
延(圧下率0.5〜1%)後の材料特性を表3に示
す。なお引張特性はJIS5号試験片として求めた。
またリジング性は、圧延方向から切り出したJIS5
号試験片を用い、15%の引張予ひずみを付加した
ものについて、表面の凹凸を目視法にて1(良)
〜5(劣)の評価をした。この評価は、在来の低
炭素冷延鋼板の製造方法によるとき、リジングが
事実上現れなかつたので評価基準が確立していな
い。従つて、本発明では従来ステンレス鋼につい
ての目視法による指数評価基準をそのまま準用し
た。評価1、2は実用上問題のないリジング性を
示す。
[Table] Figure 1 shows the relationship between the strain rate (ε〓) and the r value and ridding index of the steel plate after rolling. The value and ridging index strongly depend on the strain rate and rolling reduction, and the value and ridging resistance were significantly improved by increasing the rolling reduction to 35% or higher and a high strain rate of 300 s -1 or higher. The strain rate (ε〓) was calculated according to the following formula. Where, n: Rotation speed of rolling roll (rpm) r: Reduction ratio (%)/100 R: Radius of rolling roll (mm) H 0 : Thickness of plate before rolling (mm) Also, the test steel shown in Table 1 FIG. 2 shows the results of investigating the relationship between the elongation of the sample after rolling, the anisotropy of the r value, and ε〓/μ using B. The Masatsu coefficient can be determined by changing the lubrication conditions.
It was varied in the range of 0.6 to 0.06. Further, the anisotropy was determined as Δr=(r L +r C −2r D )/2 and ΔEl=(El L +El C −2El D )/2. As is clear from the figure, both Δr and ΔEl,
Ratio between strain rate (ε〓) and Masatsu coefficient (μ) ε〓/μ
When it exceeded 1000, it suddenly decreased, and the in-plane anisotropy was significantly reduced. As a result of repeated research based on these basic data, the inventors discovered that it is possible to produce thin steel sheets with small in-plane anisotropy and excellent ridging resistance and workability by regulating the production conditions as shown below. confirmed. (1) Steel composition The effects of high strain rate rolling essentially do not depend on the steel composition. However, in order to ensure workability above a certain level, it is preferable that the interstitial solid solution elements C and N be 0.10% or less and 0.01% or less, respectively. Further, reducing O in steel by adding Al is advantageous for improving material quality, especially ductility. Furthermore, in order to obtain even better workability, special elements such as Ti, Nb, Zr and B, which can precipitate and fix C and N as stable carbonitrides, are added.
It is also effective to add the following. Further, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength. (2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can of course be applied. The appropriate heating temperature for the steel billet is 800 to 1250℃.
From the viewpoint of energy saving, the temperature is preferably less than 1100°C. Of course, the so-called CC-DR (continuous casting-direct rolling) method, in which rolling is started without reheating the steel billet after continuous casting, is also applicable. On the other hand, the methods of immediately casting rolled material of 50 mm or less from molten steel (sheet bar caster method and trip caster method) also have great economic merits from the viewpoint of energy saving and process saving, so they are particularly advantageous as methods for manufacturing rolled material. It is. (3) Rolling process This process is the most important, and in finishing rolling, when rolling low carbon steel to a specified thickness,
At least 1 pass below Ar 3 transformation point, 500℃
In the above temperature range, when the reduction rate is 35% or more and the strain rate is 300 (s -1 ) or more, the relationship between the strain rate (ε〓) and the Masatsu coefficient (μ) is expressed by the following formula ε〓/μ≧1000. It is essential to roll under satisfactory conditions. In the high temperature range where the finish rolling temperature exceeds the Ar 3 transformation point, even if the reduction rate is 35% or more and the strain rate is 300s -1
Even if rolling is carried out under the above conditions and satisfying the above relationship, the in-plane anisotropy is large,
Only poor workability and ridging resistance can be obtained, and on the other hand, temperatures below 500 ° C result in a significant increase in deformation resistance, causing problems specific to the cold rolling process. ℃ range. Regarding the strain rate, if the strain rate is less than 300 s -1 , the target material cannot be obtained.
300 s -1 or more, especially 500 to 2500 s -1 is suitable. The conventional rolling conditions per pass are usually a reduction rate of less than 35% and a strain rate of 300 (s -1 ).
There is no evidence that rolling has been carried out under conditions that satisfy both the rolling reduction ratio of 35% or more and the strain rate of 300 (s -1 ) or more as in the present invention. In order to further reduce the in-plane anisotropy, as is clear from the results shown in Figure 2 above,
For strain rate (ε〓) and Masatsu coefficient (μ),
It is important to satisfy the above relationship. The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied. The arrangement, structure, roll diameter, tension, etc. of the rolling mill have no essential influence. In principle, recrystallization annealing treatment is not necessary, but due to material requirements, heat retention,
It is not prohibited to perform soaking treatment or, if necessary, to perform some heat treatment after rolling. (4) Pickling and temper rolling The steel strip obtained by the above procedure has a thin oxidation layer because it is rolled at a lower temperature than conventional methods, and has extremely good pickling properties, so it is not pickled. It can also be used for a wide range of purposes. In addition to conventional acid removal, mechanical removal can also be used for descaling. Furthermore, for the purpose of shape correction, surface roughness adjustment, etc.
Temper rolling of 10% or less can be added. (5) Surface treatment The steel strip thus obtained has excellent surface treatment properties such as galvanizing (including alloys), tin plating, and enameling, so it can be used as a base plate for various surface treatments. (Function) The reason why the value and ridging resistance as well as the in-plane anisotropy of the value and El value are significantly improved by rolling at a high reduction rate and high strain rate according to the present invention is as follows. This is considered to be the case. It is known that the formation of recrystallized texture after rolling is strongly dependent on the amount of processing strain introduced during rolling. That is, when the amount of processing strain accumulated in the {222} oriented grains is large, a recrystallized texture with the {222} orientation as the main orientation is formed, and as a result, the value improves. In this regard, in conventional low reduction rate/low strain rate rolling where the reduction rate is less than 35% and the strain rate is less than 300s -1 (both per pass), processing strain is introduced into the {200} oriented grains. Therefore, {200} orientations were accumulated after recrystallization, and as a result, only low values were obtained. However, in the high reduction rate and high strain rate rolling according to the present invention, the amount of processing strain accumulated in the {222} oriented grains increases, and as a result, a recrystallized texture with the {222} orientation as the main orientation is formed. , the value is significantly improved. Furthermore, since the recrystallization of {222} oriented grains proceeds preferentially in this manner, the production of {200} oriented grains, which is the main cause of ridging, is extremely small, and therefore the ridging resistance is also improved. Furthermore, by satisfying the following relationship between strain rate (ε〓) and Masatsu coefficient (μ), the following equation ε〓/μ≧1000, the formation of {110} orientation, which is likely to be formed on the steel plate surface, can be reduced. As a result, the in-plane anisotropy of the El value and the El value are significantly improved. (Example) The composition steels shown in Table 2 were made into sheet bars with a thickness of 20 to 40 mm by the method shown in Table 3, and then made into thin steel plates with a thickness of 0.8 to 1.2 mm using a rolling mill consisting of 6 rows. did. At this time, high strain rate rolling was performed in the last row of stands. Table 3 shows the material properties of the thus obtained thin steel sheet after pickling and temper rolling (reduction ratio of 0.5 to 1%). The tensile properties were determined using a JIS No. 5 test piece.
In addition, the ridging property was determined by JIS5 cut from the rolling direction.
No. 1 test piece was used and 15% tensile prestrain was added, and the surface unevenness was visually inspected to be 1 (good).
Rated ~5 (poor). No evaluation criteria have been established for this evaluation because virtually no ridging appeared when conventional low-carbon cold-rolled steel sheets were produced. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are applied as they are. Ratings 1 and 2 indicate ridging properties that pose no problem in practical use.

【表】【table】

【表】【table】

【表】 注☆:比較例、無印:適合例
この発明に従つて製造された鋼板は比較例より
も面内異方性が小さく、しかも優れた値と耐リ
ジング性とを示している。 (発明の効果) かくしてこの発明によれば、Ar3変態点〜500
℃の温度範囲における高圧下率、高ひずみ速度圧
延により、従来の冷間圧延のみならず再結晶焼鈍
をも省略したアズロールドのままで、良好な加工
性と共に面内異方性が小さく優れた耐リジング性
をもつ薄鋼板を得ることができ、しかも圧延素材
についてもシートバーキヤスター法、ストリツプ
キヤスター法などに適合するなど、加工用薄鋼板
の製造工程の大幅な簡略化が実現できる。
[Table] Note: ☆: Comparative example, no mark: Compatible example The steel plate manufactured according to the present invention has smaller in-plane anisotropy than the comparative example, and exhibits excellent values and ridging resistance. (Effect of the invention) Thus, according to this invention, Ar 3 transformation point ~ 500
By rolling at a high reduction rate and high strain rate in the temperature range of °C, as-rolled steel omitted not only conventional cold rolling but also recrystallization annealing, it has good workability, small in-plane anisotropy, and excellent durability. It is possible to obtain thin steel sheets with ridging properties, and the rolled material is compatible with the sheet bar caster method, strip caster method, etc., which greatly simplifies the manufacturing process of thin steel sheets for processing. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、値およびリジング指数に及ぼすひ
ずみ速度の影響を、圧下率をパラメータとして示
したグラフ、第2図は、r値と伸びの面内異方性
に及ぼすひずみ速度とまさつ係数との関係を、圧
下率をパラメータとして示したグラフである。
Figure 1 is a graph showing the effect of strain rate on the r value and the ridging index using the rolling reduction as a parameter. It is a graph showing the relationship between the following and using the rolling reduction ratio as a parameter.

Claims (1)

【特許請求の範囲】 1 低炭素鋼を所定板厚に圧延する工程におい
て、少なくとも1パスを、 Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上、ひずみ速度:300(s-1)以上で
かつひずみ速度(ε〓)とまさつ係数(μ)とが次
式 ε〓/μ≧1000 の関係を満足する条件下に圧延することを特徴と
する面内異方性が小さく耐リジング性に優れる加
工用アズロールド薄鋼板の製造方法。
[Claims] 1. In the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of below the Ar 3 transformation point and above 500°C, at a rolling reduction rate of 35% or more, and at a strain rate of 300. (s -1 ) or more and the strain rate (ε〓) and the Masatsu coefficient (μ) satisfy the following relationship of ε〓/μ≧1000. A method for producing as-rolled thin steel sheets for processing that have low stiffness and excellent ridging resistance.
JP4397385A 1985-03-06 1985-03-06 Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance Granted JPS61204322A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP4397385A JPS61204322A (en) 1985-03-06 1985-03-06 Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
AT86301470T ATE54950T1 (en) 1985-03-06 1986-02-28 PROCESS FOR THE MANUFACTURE OF ROLLED FORMABLE THIN STEEL PLATES.
EP86301470A EP0196788B1 (en) 1985-03-06 1986-02-28 Method of manufacturing formable as rolled thin steel sheets
US06/835,052 US4861390A (en) 1985-03-06 1986-02-28 Method of manufacturing formable as-rolled thin steel sheets
DE8686301470T DE3672864D1 (en) 1985-03-06 1986-02-28 METHOD FOR PRODUCING ROLLED DEFORMABLE THICK STEEL SHEETS.
CA000503250A CA1271396A (en) 1985-03-06 1986-03-04 Method of manufacturing formable as-rolled thin steel sheets
AU54387/86A AU566498B2 (en) 1985-03-06 1986-03-04 Producing thin steel sheet
CN 86102191 CN1013350B (en) 1985-03-06 1986-03-05 Method of mfg. formable as-rolled thin steel sheets
KR1019860001578A KR910000007B1 (en) 1985-03-06 1986-03-06 Method of manufacturing formable ar-rolled thin steel sheets
BR8600962A BR8600962A (en) 1985-03-06 1986-03-06 PROCESS OF MANUFACTURING THIN STEEL SHEETS, CONFORMING AS LAMINATES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4397385A JPS61204322A (en) 1985-03-06 1985-03-06 Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance

Publications (2)

Publication Number Publication Date
JPS61204322A JPS61204322A (en) 1986-09-10
JPH0257129B2 true JPH0257129B2 (en) 1990-12-04

Family

ID=12678656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4397385A Granted JPS61204322A (en) 1985-03-06 1985-03-06 Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance

Country Status (1)

Country Link
JP (1) JPS61204322A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959827A (en) * 1982-09-28 1984-04-05 Nippon Steel Corp Manufacture of hot-rolled steel plate with superior processability
JPS59107023A (en) * 1982-12-09 1984-06-21 Nippon Steel Corp Manufacture of hyperfine-grained hot-rolled steel plate
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61204320A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959827A (en) * 1982-09-28 1984-04-05 Nippon Steel Corp Manufacture of hot-rolled steel plate with superior processability
JPS59107023A (en) * 1982-12-09 1984-06-21 Nippon Steel Corp Manufacture of hyperfine-grained hot-rolled steel plate
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61204320A (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corp Production of as-rolled thin steel sheet for working having excellent ridging resistnace

Also Published As

Publication number Publication date
JPS61204322A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JPH0257128B2 (en)
JPH0257131B2 (en)
JPH0257129B2 (en)
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH0238648B2 (en)
JPH0257130B2 (en)
JPH033730B2 (en)
JPH0227416B2 (en) TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JPH0227413B2 (en) TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO
JPH0561341B2 (en)
JPH0259848B2 (en)
JPH0227414B2 (en) TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JPH0227417B2 (en)
JPH0257132B2 (en)
JPH0257133B2 (en)
JPH034608B2 (en)
JPS6213534A (en) Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
JPH0333768B2 (en)
JPH0432128B2 (en)
JPH033731B2 (en)
JPH0227415B2 (en) TAIRIJINGUSEITOMETSUKIMITSUCHAKUSEINISUGURERUKAKOYOYOJUKINZOKUMETSUKIUSUKOHANNOSEIZOHOHO
JPH0333767B2 (en)
JPH0259846B2 (en)