JPH0259846B2 - - Google Patents

Info

Publication number
JPH0259846B2
JPH0259846B2 JP4398685A JP4398685A JPH0259846B2 JP H0259846 B2 JPH0259846 B2 JP H0259846B2 JP 4398685 A JP4398685 A JP 4398685A JP 4398685 A JP4398685 A JP 4398685A JP H0259846 B2 JPH0259846 B2 JP H0259846B2
Authority
JP
Japan
Prior art keywords
rolling
steel
strain rate
ridging
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4398685A
Other languages
Japanese (ja)
Other versions
JPS61204335A (en
Inventor
Susumu Sato
Saiji Matsuoka
Takashi Obara
Kozo Sumyama
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4398685A priority Critical patent/JPS61204335A/en
Priority to EP86301469A priority patent/EP0194118B1/en
Priority to AT86301469T priority patent/ATE54949T1/en
Priority to DE8686301469T priority patent/DE3672853D1/en
Priority to US06/835,053 priority patent/US4676844A/en
Priority to AU54386/86A priority patent/AU564448B2/en
Priority to CA000503242A priority patent/CA1249958A/en
Priority to CN86102258A priority patent/CN1014501B/en
Priority to BR8600963A priority patent/BR8600963A/en
Priority to KR1019860001579A priority patent/KR910001606B1/en
Publication of JPS61204335A publication Critical patent/JPS61204335A/en
Publication of JPH0259846B2 publication Critical patent/JPH0259846B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 面内異方性が小さく、耐リジング性と加工性に
優れる薄鋼板の製造に関しこの明細書で述べると
ころは、圧延条件の規制により冷間圧延工程を含
まない省工程が可能となることの実験的知見に基
づく開発研究の発展的成果に関連している。 建材、自動車車体材、缶材ないしは各種表面処
理原板などの用途に使用される板厚およそ2mm以
下の薄鋼板では、その機械的特性として良好な曲
げ加工性、張り出し成形性、および絞り加工性を
得るために、高い延性と高いランクフオード値
(r値)が要求される。また、たとえ特定方向の
加工性が良好でも、実際の加工は平面的なもので
あるため、面内異方性が大きいと加工後にしわが
生じたりする。この点異方性が小さいと成形後の
耳切り量が少なくブランク面積を低減できるた
め、鋼板歩留は大幅に向上する。かかる機械的異
方性はΔEl(伸びの異方性パラメータ)およびΔr
(r値の異方性パラメータ)で評価でき、ΔEl≦
5%、Δr≦0.5が異方性に優れる鋼板として要求
される。さらにこれら材料は最終加工製品の最外
側に使用されることが主なので、加工後の表面状
況がとくに重要になつてきている。 これら加工用薄鋼板の一般的な製造手順は以下
のとおりである。 まず鋼素材としてはおもに、低炭素鋼を用い、
連続鋳造法もしくは造塊−分塊圧延法により約
200mm板厚の鋼片となしそれを熱間圧延工程によ
り板厚がおよそ3mmの熱延鋼帯とし、ひき続き酸
洗後冷間圧延にて所定板厚の鋼帯とし、その後箱
焼鈍法又は連続焼鈍法により再結晶処理を行つて
最終製品とする。 この慣行は、工程が長いことに最大の欠点があ
り、製品にするまでに要するエネルギー、要員、
時間がぼう大であるのみならずこれら長い工程中
に、製品の品質とくに表面特性上種々の問題を生
じさせる不利も加わる。 上記のように、加工用薄鋼板の製造手順には、
冷間圧延工程(圧延温度300℃未満)を含むこと
が必須であつた。 この冷間圧延工程は単に所望の減厚を意図する
だけに止まらず、冷間加工によつて導入される塑
性ひずみを利用することにより最終焼鈍工程にお
いて、深絞り性に有利な(111)方位の結晶粒の
成長を促進させるのに役立つ。 ところが、冷間での加工は熱間での加工に比べ
て鋼帯の変形抵抗が著しく高いために圧延に要す
るエネルギーも莫大なほか、圧延ロールの摩耗が
ひどく、加えてスリツプなどの圧延トラブルも生
じ易い。 これに対し、300℃以上800℃以下の比較的高温
域(いわゆる温間域)にて、圧延できしかも特に
良好な加工性が得られれば、上記問題点は一掃で
き、製造上のメリツトは大きいといえよう。 ところが温間圧延による製造には大きな問題が
ある。それはリジングである。リジングとは製品
の加工時に生じる表面の凹凸の欠陥であつて、加
工製品の最外側に使用されることが主であるこの
種の鋼板には致命的な欠陥である。 リジングは金属学的には加工−再結晶過程を経
ても容易には分割されない結晶方位粒群(例えば
{100}方位粒群)が圧延方向に伸ばされたまま残
留することに起因するものであり、一般に温間圧
延のようにフエライト(α)域の比較的高温で加
工された状況で生じやすくとくに温間域での圧下
率が高い場合(すなわち薄鋼板の製造のような場
合)には顕著である。 また最近はこれら加工用鋼板が、加工製品の複
雑化、高級化に伴い、厳しい加工を受けることが
多くなり、優れた耐リジング性が要求される。 ところで近年鉄鋼材料の製造工程は著しく変化
し、加工用薄鋼板の場合も例外ではない。 すなわち溶鋼を造塊−分塊圧延にて250mm板厚
程度の鋼片とした後加熱炉にて加熱均熱処理し、
粗熱延工程により約30mm板厚のシートバーとし、
さらに仕上熱延工程により所定板厚の熱延鋼帯と
していた在来の慣例に対し、近年まず連続鋳造プ
ロセスの導入によつて分塊圧延工程が省略可能と
なり、また材質向上と省エネルギーを目的として
鋼片の加熱温度は従来の1200℃近傍から1100℃近
傍もしくはそれ以下への低下傾向にある。 一方溶鋼から直ちに板厚50mm以下の鋼帯を溶製
することにより熱間圧延の加熱処理と粗圧延工程
を省略できる新しいプロセスも実用化しつつあ
る。 しかしながら、これら新製造工程はいずれも溶
鋼から凝固してできる組織(鋳造組織)を破壊す
るという点では不利である。とくに凝固時に形成
された{100}<uvw>を主方位とする強い鋳造集
合組織を破壊することはきわめて困難である。 その結果として最終薄鋼板にはリジングが起こ
りやすくなり、とくに温間圧延法はそれを助長す
る。 (従来の技術) 温間圧延による深絞り用鋼板の製造方法はいく
つか開示され、たとえば特公昭47−30809号、特
開昭49−86214号、特開昭59−93835号、特開昭59
−133325号、特開昭59−136425号、特開昭59−
185729号、そして特開昭59−226149号各公報など
がその例である。いずれも温間域の圧延後ただち
に再結晶処理することを特徴とし、冷間圧延工程
が省略可能な革新的技術である。 しかしながら、これら公知技術は前述の耐リジ
ング性を向上させることについては何らの考慮も
払われてなく、この点一般的に薄鋼板の耐リジン
グ性に関しては温間圧延の方が冷間圧延を加える
場合よりも不利である。 (発明が解決しようとする問題点) 冷間圧延工程を含まない省工程によつて、面内
異方性が小さく耐リジング性と加工性に優れる薄
鋼板の製造方法を与えることがこの発明の目的で
ある。 (問題点を解決するための手段) この発明は、低炭素鋼を所定板厚に圧延する工
程において、少なくとも1パスを、800〜300℃の
温度範囲で、ひずみ速度300(s-1)以上でかつひ
ずみ速度とまさつ係数(μ)とがε〓/μ≧1000の
関係を満たす条件で仕上げ、ひき続き再結晶焼鈍
することを特徴とする面内異方性が小さく耐リジ
ング性に優れる加工用薄鋼板の製造方法である。 この発明の基礎となつた研究結果からまず説明
する。
(Industrial Application Field) This specification describes the production of thin steel sheets with low in-plane anisotropy and excellent ridging resistance and workability, which is a process-saving process that does not include a cold rolling process due to the regulation of rolling conditions. It is related to the evolving results of development research based on experimental knowledge of what is possible. Thin steel plates with a thickness of approximately 2 mm or less used for applications such as building materials, automobile body materials, can stock, and various surface-treated base plates have good mechanical properties such as bending workability, stretch formability, and drawing workability. In order to obtain this, high ductility and a high Rankford value (r value) are required. Furthermore, even if the workability in a particular direction is good, since the actual processing is planar, if the in-plane anisotropy is large, wrinkles may occur after processing. In this respect, when the anisotropy is small, the amount of edge cutting after forming is small and the blank area can be reduced, so the steel plate yield is significantly improved. Such mechanical anisotropy is ΔEl (anisotropy parameter of elongation) and Δr
(anisotropy parameter of r value), ΔEl≦
5% and Δr≦0.5 is required for a steel plate with excellent anisotropy. Furthermore, since these materials are mainly used on the outermost side of the final processed product, the surface condition after processing has become particularly important. The general manufacturing procedure for these thin steel sheets for processing is as follows. First of all, we mainly use low carbon steel as the steel material.
Continuous casting method or ingot-blooming rolling method
A steel billet with a thickness of 200 mm is made into a hot-rolled steel strip with a thickness of approximately 3 mm through a hot rolling process, followed by pickling and cold rolling to a steel strip with a predetermined thickness, followed by box annealing or The final product is recrystallized using a continuous annealing method. The biggest disadvantage of this practice is that it is a long process, requiring a lot of energy and manpower to produce the product.
Not only is the process time-consuming, but the long process also has the added disadvantage of causing various problems in terms of product quality, especially surface properties. As mentioned above, the manufacturing procedure for thin steel sheets for processing includes:
It was essential to include a cold rolling process (rolling temperature below 300°C). This cold rolling process not only aims to reduce the desired thickness, but also utilizes the plastic strain introduced by cold working to produce the (111) orientation, which is advantageous for deep drawability, in the final annealing process. helps promote the growth of crystal grains. However, in cold working, the deformation resistance of the steel strip is significantly higher than in hot working, so the energy required for rolling is enormous, the rolling rolls are severely worn out, and rolling problems such as slips occur. Easy to occur. On the other hand, if rolling can be done in a relatively high temperature range of 300°C to 800°C (so-called warm range) and particularly good workability can be obtained, the above problems can be eliminated and there are great manufacturing benefits. You could say that. However, there are major problems with manufacturing by warm rolling. That is ridging. Ridging is a defect in surface irregularities that occurs during processing of products, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products. In terms of metallurgy, ridging is caused by crystallographically oriented grain groups (e.g. {100} oriented grains) that are not easily divided even after the processing-recrystallization process and remain stretched in the rolling direction. , generally tends to occur when processing is carried out at relatively high temperatures in the ferrite (α) region, such as during warm rolling, and is particularly noticeable when the reduction rate in the warm region is high (i.e., in the production of thin steel sheets). It is. Recently, as processed products have become more complex and sophisticated, these processed steel plates are often subjected to severe processing, and excellent ridging resistance is required. Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception. In other words, molten steel is made into slabs with a thickness of about 250 mm by ingot making and blooming rolling, and then heated and soaked in a heating furnace.
It is made into a sheet bar with a thickness of approximately 30 mm through a rough hot rolling process,
Furthermore, in contrast to the conventional practice of producing hot-rolled steel strips of a predetermined thickness through a finishing hot-rolling process, in recent years the introduction of the continuous casting process has made it possible to omit the blooming process, and efforts have also been made to improve material quality and save energy. The heating temperature of steel slabs is decreasing from the conventional 1200°C to around 1100°C or lower. On the other hand, a new process is being put into practical use that can eliminate the heat treatment and rough rolling steps of hot rolling by immediately producing steel strips with a thickness of 50 mm or less from molten steel. However, these new manufacturing processes are disadvantageous in that they destroy the structure formed by solidifying molten steel (cast structure). In particular, it is extremely difficult to destroy the strong casting texture, which is formed during solidification and has a main orientation of {100}<uvw>. As a result, ridging tends to occur in the final thin steel sheet, and the warm rolling process particularly promotes ridging. (Prior art) Several methods for manufacturing deep drawing steel sheets by warm rolling have been disclosed, for example, Japanese Patent Publication No. 47-30809, Japanese Patent Application Laid-Open No. 86214-1982, Japanese Patent Application Laid-open No. 93835-1989,
−133325, JP-A-59-136425, JP-A-59-
Examples include No. 185729 and Japanese Unexamined Patent Publication No. 59-226149. Both methods are characterized by recrystallization treatment immediately after rolling in the warm region, and are innovative technologies that can omit the cold rolling step. However, these known techniques do not give any consideration to improving the above-mentioned ridging resistance, and in general, regarding the ridging resistance of thin steel sheets, warm rolling is better than cold rolling. It is less favorable than the case. (Problems to be Solved by the Invention) It is an object of the present invention to provide a method for manufacturing a thin steel sheet with small in-plane anisotropy and excellent ridging resistance and workability through a process saving process that does not include a cold rolling process. It is a purpose. (Means for Solving the Problems) This invention provides at least one pass at a temperature range of 800 to 300°C at a strain rate of 300 (s -1 ) or more in the process of rolling low carbon steel to a predetermined thickness. It is finished under conditions where the strain rate and Masatsu coefficient (μ) satisfy the relationship ε〓/μ≧1000, and then recrystallized and annealed.It has small in-plane anisotropy and excellent ridging resistance. This is a method for manufacturing thin steel sheets for processing. First, the research results that formed the basis of this invention will be explained.

【表】 供試材は表1に示す2種類の低炭素アルミキル
ド鋼の熱延鋼板である。供試材は(A)、(B)とも600
℃に加熱−均熱し1パス、30%圧下率で圧延し
た。 このときのひずみ速度(ε〓)と焼鈍後(均熱温
度800℃)のr値およびリジング指数との関係を
第1図に示す。 r値および耐リジング性はひずみ速度に強く依
存し、600℃の圧延温度にて300s-1以上の高ひず
み速度とすることにより、r値および耐リジング
性は著しく向上した。 第2図は表1に示した供試鋼(B)を用い、焼鈍し
た試料の延び及びr値の異方性とε〓/μの関係を
示したものである。まさつ係数は潤滑条件を変え
ることにより0.6〜0.06の範囲で変化させた。潤
滑油は鉱油を用いた。ε〓/μ≧1000の条件で面内
異方性は著しく減少した。 発明者らはこの基礎的データに基づき研究を重
ねた結果、以下のように製造条件を規制すること
により面内異方性が小さく加工性と耐リジング性
に優れる薄鋼板が製造できることを確認した。 (1) 鋼組成 高ひずみ速度温間圧延の効果は本質的には鋼
組成に依存しない。ただし、一定レベル以上の
加工性を確保するためには侵入型固溶元素の
C、Nはそれぞれ0.10%、0.01%以下であるこ
とが好ましい。また鋼中OをAlの添加により
低減することは材質とくに延性の向上に有利で
ある。 さらにより優れた加工性を得るためにC、N
を安定な炭窒化物として析出固定可能な特殊元
素、例えばTi、Nb、Zr、B等の添加も有効で
ある。 また高強度を得るためにP、Si、Mn等を強
度に応じて添加することもできる。 (2) 圧延素材の製造法 従来方式、すなわち造塊−分塊圧延もしくは
連続鋳造法により得られた鋼片が当然に適用で
きる。 鋼片の加熱温度は800〜1250℃が適当であり、
省エネルギーの観点から1100℃未満が好適であ
る。連続鋳造から鋼片を、再加熱することなく
圧延を開始するいわゆるCC−DR(連続鋳造−
直接圧延)法ももちろん適用可能である。 一方、溶鋼から直接50mm程度以下の圧延素材
を鋳造する方法(シートバーキヤスター法およ
びストリツプキヤスター法)も省エネルギー、
省工程の観点から経済的効果が大きいので圧延
素材の製造方法としてとくに有利である。 (3) 温間圧延 この工程がもつとも重要であり、低炭素鋼を
所定板厚に圧延する工程において、少なくとも
1パスを800〜300℃の温度範囲で、ひずみ速度
300(s-1)以上でかつひずみ速度とまさつ係数
(μ)とがε〓/μ≧1000を満たす条件で仕上げる
ことが必須である。 圧延温度については、800℃をこえる高温域
の圧延ではひずみ速度の制御によつて加工性と
耐リジング性を得るのが困難な一方300℃未満
では変形抵抗の著しい増大をもたらすため冷間
圧延法で特有な上述したと同様の諸問題を伴う
ので800〜300℃、なかでも700〜400℃がとくに
好適である。 ひずみ速度については300(s-1)以上としな
いと目標材質が確保できない。 このひずみ速度の範囲はとくに500〜2500
(s-1)が好適である。 また、ε〓/μ≧1000の条件を満たさないと、
面内異方性が大きくなる。 圧延パス数、圧下率の配分は上記条件が満た
されれば任意でよい。 圧延機の配列、構造、ロール径や、張力、潤
滑油の種類などは本質的な影響力を持たない。 なおひずみ速度(ε〓)の計算は次式に従う。 ここで n:ロールの回転数(rpm) r:圧下率(%)/100 R:ロール半径(mm) H0:圧延前の板厚 (4) 焼鈍 圧延を経た鋼帯は再結晶焼鈍する必要があ
る。焼鈍方法は箱型焼鈍法、連続型焼鈍法のい
ずれでもよいが、均質性、生産性の観点から後
者が有利である。 加熱温度は再結晶温度から950℃の範囲が適
する。 炭素含有量が0.01wt%以上の鋼板について
は、均熱後、過時効処理を施すことが材質の向
上に有利である。 この焼鈍処理は圧延後の巻取りコイルの状態
で保持することでも可能である。ここに鋼帯表
面のスケールは圧延温度が従来の熱間圧延より
はるかに低温域であるので薄くかつ除去されや
すい。したがつて、脱スケールは従来の酸によ
る除去のほかに、機械的にもしくは焼鈍雰囲気
の制御などでも可能である。 焼鈍後の鋼帯には形状矯正、表面粗度等の調
整のために10%以下の調質圧延を加えることが
できる。 上記のようにして得られる鋼板は、加工用表
面処理鋼板の原板として適用できる。表面処理
としては亜鉛めつき(合金系含む)、錫めつき、
ほうろうなどがある。 (作 用) この発明に従う高ひずみ速度温間圧延の挙動に
ついて、耐リジング性、加工性および面内異方性
の向上をもたらす機構は必ずしも明確でないが、
圧延材の集合組織および加工歪の変化と密接な関
係をもつと考えられる。 なかでも耐リジング性さらには値が格段に向
上する理由については、以下の如く考えられる。
圧延−焼鈍後の再結晶集合組織の形成は、圧延時
に導入される加工ひずみ量に大きく依存すること
とが知られている。すなわち、{222}方位粒の加
工ひずみ量が多いと、{222}方位を主方位とする
再結晶集合組織が形成される。従来行なわれてき
た圧延速度では、圧延時に導入される加工ひずみ
は{200}方位粒が多く、そのため再結晶集合組
織には{200}方位が集積し、かくして低い値
しか得られないのが現状であつた。しかしながら
高ひずみ速度圧延とすることにより、{222}方位
粒に導入される加工ひずみ量が増大し、そのため
{222}方位を主方位とする再結晶集合組織が形成
され、r値が格段に向上することを見い出した。
さらに、{222}方位粒への加工ひずみにより、
{222}方位粒が優先的に再結晶が進行するため、
リジング発生の主原因である{200}方位粒を侵
食し、耐リジング性も向上する。 (実施例) 表2に示す化学組成の鋼片を転炉−連続鋳造法
および転炉−シートバーキヤスター法により製造
した。転炉−連続鋳造法では1100〜950℃に加熱
均熱後粗圧延により20〜30mm板厚のシートバーと
した。
[Table] The test materials were two types of hot-rolled low carbon aluminum killed steel sheets shown in Table 1. The test materials are both (A) and (B) 600
It was heated and soaked at ℃ and rolled in one pass at a rolling reduction of 30%. Figure 1 shows the relationship between the strain rate (ε〓) at this time and the r value and ridding index after annealing (soaking temperature 800°C). The r value and ridging resistance strongly depend on the strain rate, and by increasing the strain rate to 300 s -1 or higher at a rolling temperature of 600°C, the r value and ridging resistance were significantly improved. FIG. 2 shows the relationship between elongation and r-value anisotropy and ε〓/μ of annealed samples using the test steel (B) shown in Table 1. The Masatsu coefficient was varied in the range of 0.6 to 0.06 by changing the lubrication conditions. Mineral oil was used as the lubricating oil. The in-plane anisotropy was significantly reduced under the condition of ε〓/μ≧1000. As a result of repeated research based on this basic data, the inventors confirmed that by regulating the manufacturing conditions as shown below, it is possible to manufacture thin steel sheets with small in-plane anisotropy and excellent workability and ridging resistance. . (1) Steel composition The effects of high strain rate warm rolling essentially do not depend on the steel composition. However, in order to ensure workability above a certain level, the interstitial solid solution elements C and N are preferably at most 0.10% and 0.01%, respectively. Further, reducing O in steel by adding Al is advantageous for improving material quality, especially ductility. In order to obtain even better workability, C, N
It is also effective to add special elements that can be precipitated and fixed as stable carbonitrides, such as Ti, Nb, Zr, and B. Further, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength. (2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can naturally be applied. The appropriate heating temperature for the steel billet is 800 to 1250℃.
From the viewpoint of energy saving, the temperature is preferably less than 1100°C. So-called CC-DR (continuous casting) starts rolling of steel billet from continuous casting without reheating.
Of course, the direct rolling method is also applicable. On the other hand, methods of directly casting rolled material of approximately 50 mm or less from molten steel (sheet bar caster method and strip caster method) also save energy.
It is particularly advantageous as a method for manufacturing rolled materials because it has a large economic effect from the viewpoint of process saving. (3) Warm rolling This process is very important, and in the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of 800 to 300°C, and the strain rate is
It is essential that the strain rate is 300 (s -1 ) or more and that the strain rate and Masatsu coefficient (μ) satisfy ε〓/μ≧1000. Regarding the rolling temperature, it is difficult to obtain good formability and ridging resistance by controlling the strain rate when rolling in a high temperature range of over 800℃, while when it is lower than 300℃, the deformation resistance increases significantly, so cold rolling method is used. 800 to 300°C, particularly 700 to 400°C, is particularly suitable since the above-mentioned problems associated with this are particularly preferred. The target material quality cannot be secured unless the strain rate is 300 (s -1 ) or higher. This strain rate range is particularly between 500 and 2500.
(s -1 ) is preferred. Also, unless the condition of ε〓/μ≧1000 is satisfied,
In-plane anisotropy increases. The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied. The arrangement, structure, roll diameter, tension, type of lubricant, etc. of the rolling mill have no essential influence. Note that the strain rate (ε〓) is calculated according to the following formula. Here, n: Roll rotation speed (rpm) r: Reduction ratio (%)/100 R: Roll radius (mm) H 0 : Plate thickness before rolling (4) Annealing Steel strips that have undergone rolling must be recrystallized and annealed. There is. The annealing method may be either a box annealing method or a continuous annealing method, but the latter is advantageous from the viewpoint of homogeneity and productivity. The suitable heating temperature ranges from the recrystallization temperature to 950°C. For steel plates with a carbon content of 0.01 wt% or more, it is advantageous to perform an overaging treatment after soaking to improve the material quality. This annealing treatment can also be carried out by holding the wound coil after rolling. The scale on the surface of the steel strip is thin and easily removed because the rolling temperature is much lower than that in conventional hot rolling. Therefore, descaling can be done mechanically or by controlling the annealing atmosphere, in addition to the conventional removal with acid. The steel strip after annealing can be subjected to temper rolling of 10% or less to correct the shape and adjust the surface roughness. The steel sheet obtained as described above can be used as an original sheet for a surface-treated steel sheet for processing. Surface treatments include galvanizing (including alloys), tin plating,
There is enamel etc. (Function) Regarding the behavior of high strain rate warm rolling according to the present invention, the mechanism that brings about improvements in ridging resistance, workability, and in-plane anisotropy is not necessarily clear;
It is thought that there is a close relationship with changes in the texture and processing strain of the rolled material. Among these, the reason why the ridging resistance and value are significantly improved is considered to be as follows.
It is known that the formation of a recrystallized texture after rolling-annealing largely depends on the amount of processing strain introduced during rolling. That is, when the amount of processing strain on {222} oriented grains is large, a recrystallized texture with the {222} orientation as the main orientation is formed. At the conventional rolling speed, the working strain introduced during rolling involves many grains with {200} orientation, and therefore {200} orientation accumulates in the recrystallized texture, thus only a low value can be obtained. It was hot. However, by high strain rate rolling, the amount of processing strain introduced into the {222} oriented grains increases, and as a result, a recrystallized texture with the {222} orientation as the main orientation is formed, and the r value is significantly improved. I found out what to do.
Furthermore, due to processing strain on {222} oriented grains,
Since {222} oriented grains preferentially recrystallize,
It erodes {200} oriented grains, which are the main cause of ridging, and improves ridging resistance. (Example) Steel slabs having the chemical composition shown in Table 2 were manufactured by a converter-continuous casting method and a converter-sheet bar caster method. In the converter-continuous casting method, sheet bars with a thickness of 20 to 30 mm were obtained by heating and soaking at 1100 to 950°C and then rough rolling.

【表】 これらシートバーを連続的に6列からなる仕上
圧延機を用いて0.8〜1.2mm板厚の薄鋼帯とし、こ
のとき最後列の圧延機を用いて高ひずみ速度圧延
を行つた。圧延条件および連続焼鈍(均熱温度
750〜810℃)後の材料特性を表3に示す。鋼(A)に
ついては、連続焼鈍条件として、均熱後400℃で
2分間の過時効処理を施した。
[Table] These sheet bars were continuously formed into thin steel strips with a thickness of 0.8 to 1.2 mm using a finishing mill consisting of 6 rows, and at this time, high strain rate rolling was performed using the rolling mill in the last row. Rolling conditions and continuous annealing (soaking temperature
Table 3 shows the material properties after 750-810°C. Regarding steel (A), as continuous annealing conditions, after soaking, over-aging treatment was performed at 400°C for 2 minutes.

【表】 注:*:比較例
引張特性はJIS5号試験片として求めた。 リジング性は圧延方向から切り出したJIS5号試
験片を用い15%の引張予ひずみを付加し、表面凹
凸を目視法にて1(良)〜5(劣)の評価をした。
この評価は、在来の低炭素、冷延鋼板の製造方に
よるとき、リジングが事実上現れなかつたので評
価基準が確立していない。従つて、本発明では従
来ステンレス鋼についての目視法による指数評価
基準をそのまま準用した。 評価1、2は実用上問題のないリジング性を示
す。 (発明の効果) この発明によれば高ひずみ速度温間圧延にて高
い延性とr値を示し、かつ面内異方性が小さく優
れた耐リジング性をもつ薄鋼板が得られ、 従来の冷延工程を省略できるばかりでなく、圧
延素材についてもシートバーキヤスター法、スト
リツプキヤスター法などの活用に適合するなど、
加工用薄鋼板の製造工程の簡略化が実現できる。
[Table] Note: *: Comparative example The tensile properties were determined as a JIS No. 5 test piece. The ridging property was evaluated using a JIS No. 5 test piece cut out from the rolling direction and subjected to 15% tensile prestrain, and the surface unevenness was visually evaluated from 1 (good) to 5 (poor).
No evaluation criteria have been established for this evaluation because when conventional low-carbon, cold-rolled steel sheets were manufactured, ridging virtually did not appear. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are applied as they are. Ratings 1 and 2 indicate ridging properties that pose no problem in practical use. (Effects of the Invention) According to the present invention, a thin steel sheet can be obtained which exhibits high ductility and r value through high strain rate warm rolling, and has small in-plane anisotropy and excellent ridging resistance, which is superior to conventional cold rolling. Not only can the rolling process be omitted, but the rolled material is also compatible with the sheet bar caster method, strip caster method, etc.
The manufacturing process of thin steel sheets for processing can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はr値、リジング性に及ぼす圧延ひずみ
速度の影響を示すグラフである。第2図は、面内
異方性に及ぼす圧延ひずみ速度とまさつ係数との
関係を示すグラフである。
FIG. 1 is a graph showing the influence of rolling strain rate on r value and ridging property. FIG. 2 is a graph showing the relationship between rolling strain rate and Masazu coefficient on in-plane anisotropy.

Claims (1)

【特許請求の範囲】 1 低炭素鋼を所定板厚に圧延する工程におい
て、 少なくとも1パスを800〜300℃の温度範囲で、
ひずみ速度(ε〓)300(s-1)以上で、かつまさつ係
数(μ)とひずみ速度とがε〓/μ≧1000を満たす
条件で圧延し、ひき続き再結晶焼鈍することを特
徴とする面内異方性が小さく耐リジング性に優れ
る加工用薄鋼板の製造方法。
[Claims] 1. In the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed in a temperature range of 800 to 300°C,
It is characterized by rolling at a strain rate (ε〓) of 300 (s -1 ) or higher, and under conditions where the masonry coefficient (μ) and strain rate satisfy ε〓/μ≧1000, followed by recrystallization annealing. A method for producing thin steel sheets for processing that have small in-plane anisotropy and excellent ridging resistance.
JP4398685A 1985-03-06 1985-03-06 Manufacture of steel sheet for working having small plane anisotropy and superior ridging resistance Granted JPS61204335A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP4398685A JPS61204335A (en) 1985-03-06 1985-03-06 Manufacture of steel sheet for working having small plane anisotropy and superior ridging resistance
EP86301469A EP0194118B1 (en) 1985-03-06 1986-02-28 Production of formable thin steel sheet excellent in ridging resistance
AT86301469T ATE54949T1 (en) 1985-03-06 1986-02-28 MANUFACTURING OF FORMABLE THIN STEEL PLATES WITH EXCELLENT RESISTANCE TO CRACKING.
DE8686301469T DE3672853D1 (en) 1985-03-06 1986-02-28 PRODUCTION OF DEFORMABLE THIN STEEL SHEETS WITH EXCELLENT RESISTANCE TO GROOVING.
US06/835,053 US4676844A (en) 1985-03-06 1986-02-28 Production of formable thin steel sheet excellent in ridging resistance
AU54386/86A AU564448B2 (en) 1985-03-06 1986-03-04 Producing thin steel sheet
CA000503242A CA1249958A (en) 1985-03-06 1986-03-04 Production of formable thin steel sheet excellent in ridging resistance
CN86102258A CN1014501B (en) 1985-03-06 1986-03-05 Production of formable thin sheet excellent in ridging resistance
BR8600963A BR8600963A (en) 1985-03-06 1986-03-06 PROCESS FOR THE PRODUCTION OF A MOLDABLE FINE STEEL SHEET
KR1019860001579A KR910001606B1 (en) 1985-03-06 1986-03-06 Production of formable thin steel sheet excellent in ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4398685A JPS61204335A (en) 1985-03-06 1985-03-06 Manufacture of steel sheet for working having small plane anisotropy and superior ridging resistance

Publications (2)

Publication Number Publication Date
JPS61204335A JPS61204335A (en) 1986-09-10
JPH0259846B2 true JPH0259846B2 (en) 1990-12-13

Family

ID=12679040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4398685A Granted JPS61204335A (en) 1985-03-06 1985-03-06 Manufacture of steel sheet for working having small plane anisotropy and superior ridging resistance

Country Status (1)

Country Link
JP (1) JPS61204335A (en)

Also Published As

Publication number Publication date
JPS61204335A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JPH0257128B2 (en)
JPH033731B2 (en)
JPH0259846B2 (en)
JPH0333768B2 (en)
JPH0257131B2 (en)
JPH0259848B2 (en)
JPS63121623A (en) Production of cold rolled steel sheet for deep drawing having excellent ridging resistance and chemical convertibility
JPH0333767B2 (en)
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JPH0259847B2 (en)
JPH0333769B2 (en)
JPH0259845B2 (en)
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JPH033730B2 (en)
JPS6213534A (en) Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
JPH0257129B2 (en)
JPH0227416B2 (en) TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JPH1068046A (en) Hot rolled steel sheet excellent in deep drawability and ridging resistance after cold rolling-annealing
JPH0561341B2 (en)
JPS6360231A (en) Production of thin steel sheet for working having excellent ridging resistance and deep drawability
JPH0257133B2 (en)
JPS6360232A (en) Manufacture of steel sheet for working having superior ridging resistance and deep drawability
JPH0257130B2 (en)
JPH01191747A (en) Manufacture of cold rolled steel sheet excellent in press formability
JPH01191749A (en) Manufacture of cold rolled steel sheet excellent in press formability