JPS59104573A - Thin film magnetic sensor - Google Patents

Thin film magnetic sensor

Info

Publication number
JPS59104573A
JPS59104573A JP21443382A JP21443382A JPS59104573A JP S59104573 A JPS59104573 A JP S59104573A JP 21443382 A JP21443382 A JP 21443382A JP 21443382 A JP21443382 A JP 21443382A JP S59104573 A JPS59104573 A JP S59104573A
Authority
JP
Japan
Prior art keywords
thin film
coercive force
magnetic
cobalt
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21443382A
Other languages
Japanese (ja)
Other versions
JPH0449664B2 (en
Inventor
Masuzo Hattori
服部 益三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21443382A priority Critical patent/JPS59104573A/en
Publication of JPS59104573A publication Critical patent/JPS59104573A/en
Publication of JPH0449664B2 publication Critical patent/JPH0449664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Abstract

PURPOSE:To obtain steep, large induced pulse voltage that does not depend upon frequency for small external alternating magnetic field by forming two layers of cobalt-tantalum amorphous magnetic thin film of different coercive force. CONSTITUTION:A cobalt-tantalum amorphous magnetic thin film 6 having small coercive force is formed on a base plate 5 and a magnetic thin film 7 having large coercive force is successively formed by changing pressure of gaseous argon at the time of sputtering. Then, two thin films 6, 7 are etched with the mixed aq. solution of fluoric acid, nitric acid and water using photolithography to make them a strip form 8. The base plate 5 is cut into strip form and wound by a pickup coil 9. This thin film magnetic sensor is put in an alternating magnetic field to make the direction of the magnetic field and longitudinal direction of the thin film magnetic sensor parallel to each other, and an alternating magnetic field is impressed. When this alternating magnetic field becomes a certain strength, magnetization inversion of the magnetic layer having small coercive force takes place and induced pulse is generated in the coil 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は外部磁場の変化、特に微小磁場の変化を検出で
きる薄般磁気センサにruするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a thin general magnetic sensor capable of detecting changes in external magnetic fields, particularly changes in minute magnetic fields.

従来例の構成とその問題点 従来、外部磁場の変化量或いは1化の検出をする磁気セ
ンサには半導体材料、hk性柑料等を用いた多くのセン
サが開発され、実用化されているら例えば半導体材料を
用いたものではホール素子、電界効果型トランジスタ素
子等がある。これらはIn Sb 、 GaAs等のt
O−V族化合物、Si、Ge等が主に使用されている。
Conventional configurations and problems There have been many magnetic sensors that use semiconductor materials, hk-based fruit, etc. that have been developed and put into practical use as magnetic sensors that detect the amount of change or unity of an external magnetic field. For example, devices using semiconductor materials include Hall elements, field effect transistor elements, and the like. These are InSb, GaAs, etc.
O-V group compounds, Si, Ge, etc. are mainly used.

磁性材料を用いたものではメモリリ、パーマロイ、セン
ダスト、Ni−ZnやMHZllフェライト等が使用さ
れている。又特開昭51−187641号公報には、線
状の磁性体に機械的熱的処理を加え磁性線の表面近くの
層(第2の磁気的部分)の保磁力を変え、内部(第1の
磁気的部分)の保磁力より大きくし、これに巻線してな
る磁気デバイスが記載されている。これは、第2の磁気
的部分の保磁力が第1の磁気的部分の保持力より大きく
なっており、構造的にはFe−〇o−■組成からなる磁
性線の内部が保磁力の小さい部分、外部の表面に近い部
分が保磁力の大きい部分からなる細線よりなっている。
Examples of magnetic materials used include memory, permalloy, sendust, Ni-Zn, and MHZll ferrite. Furthermore, in JP-A-51-187641, a magnetic wire is mechanically and thermally treated to change the coercive force of the layer near the surface of the magnetic wire (second magnetic part), and A magnetic device is described in which the coercive force is made larger than that of the magnetic part of the magnetic part) and the magnetic device is wound around the coercive force. This is because the coercive force of the second magnetic part is larger than the coercive force of the first magnetic part, and structurally, the inside of the magnetic wire consisting of the Fe-〇o-■ composition has a smaller coercive force. It is made up of thin wires where the part near the external surface has a large coercive force.

この磁気デバイスは例えばノド部磁場の方向と大きさを
細線の長手方向において変えたとき、保磁力の大きい部
分は保磁力の小さい部分と磁気的に相互作用が働いてい
るから、両者の磁化方向が同一方向で外部磁場と逆方向
をとっている場合、保磁力の小さい部分の磁化反転は保
磁力HC,より大きく、保磁力の大きい部分の保磁力H
c2より小さい外部磁場で起こる。又外部磁場と、保磁
力の大きい部分の磁化方向が同じで、保磁力の小さい部
分の磁化方向のみがそれらと逆方向をとっている場合は
、外部磁場が次第に大きくなって保磁力の小さい部分の
保磁力と同程度となると、保磁力の小さい部分のGど化
反転(夕(部磁場と同じ方向に反転する)は保(;:マ
力の大きい部分が助けることになり、11c + J′
A!度の磁場でより急峻に生じる。
In this magnetic device, for example, when the direction and magnitude of the magnetic field at the throat are changed in the longitudinal direction of the thin wire, the part with a large coercive force interacts magnetically with the part with a small coercive force, so the magnetization direction of both are in the same direction and opposite to the external magnetic field, the magnetization reversal in the part with a small coercive force is the coercive force HC, which is larger, and the coercive force H in the part with a large coercive force.
This occurs with an external magnetic field smaller than c2. Also, if the external magnetic field and the magnetization direction of the part with high coercive force are the same, and only the magnetization direction of the part with low coercive force is opposite to them, the external magnetic field will gradually increase and the magnetization direction of the part with low coercive force will be the same. When the coercive force of the part with a small coercive force becomes similar to that of the magnetic field, the part with a large coercive force will help the G deformation reversal (reversal in the same direction as the magnetic field), and the part with a large coercive force will help, 11c + J ′
A! It occurs more sharply in the magnetic field of 30°C.

この保磁力の小さい部分の外部−場の膨管による磁化反
転により電磁誘導現象が生じ、細線に巻いであるピック
アップ用コイルに電bitが発生し、コイル両端に前者
の場合は小さいパルス電圧が、後者のg3合は大きいパ
ルス電圧が得られる。このパルス電圧の大ネさ、急峻さ
は単一磁性体の磁化反転を用いたものよりはるかに優れ
ている。又単一磁性からなるものは、ピックアップコイ
ルに発生するパルス幅が外部磁場の交番J:”d波数に
(J、(存し、変化が詠ければ幅は広く、速くなれば狭
くなる。
An electromagnetic induction phenomenon occurs due to magnetization reversal due to the expansion tube of the external field in the part with low coercive force, and an electric bit is generated in the pickup coil wound on a thin wire, and in the former case, a small pulse voltage is generated at both ends of the coil. In the latter case g3, a large pulse voltage can be obtained. The magnitude and steepness of this pulse voltage are far superior to those using magnetization reversal of a single magnetic material. In addition, in the case of a single magnet, the pulse width generated in the pickup coil is equal to the alternating wave number J of the external magnetic field.

これに対し、特開昭51−187641 FJ公報に記
載の素子の場合は、大バルクハウゼン・ジャンプにより
誘発されるもので、外部磁場の交番周波数に(R存する
ことなく一定の幅の急峻なパルス電圧が得られる。この
ように特開昭51 187641号公報に記載の素子は
優れた特性を持つが、その製造法は慢雑なものであり、
歩留り良(!!造することがl1である。又l′■径2
50ミクロンの細線を用いているが、より小さいデバイ
スを作成するには非’ii;に困難である。更に急峻な
誘発パルスを発生させるための外部磁場の大きさは約1
5エルステツドと大きく、より小さな外部磁場、例えば
1エルステッド或いはそれ以下の外部磁場で3発パルス
を得る必要のある磁気ヘッド等にはこの特p旧185 
] −137641号公報に記載のものは用いられない
On the other hand, in the case of the device described in JP-A-51-187641 FJ, it is induced by a large Barkhausen jump, and a steep pulse of a constant width is generated at the alternating frequency of an external magnetic field (R). As described above, the device described in JP-A-51-187641 has excellent characteristics, but its manufacturing method is complicated;
The yield is good (!! It is l1 to manufacture. Also l'■diameter 2
Although 50 micron fine wire is used, it is extremely difficult to create smaller devices. The magnitude of the external magnetic field to generate an even steeper induced pulse is approximately 1
This special 185 is suitable for magnetic heads that are as large as 5 Oersteds and need to obtain three pulses with a smaller external magnetic field, for example 1 Oersteds or less.
] The material described in JP-A-137641 is not used.

発明の目的 本発明は上記従来の諸問題、難点を大幅にH決できる薄
膜構造を持つ磁気センサを提供することを目的とする、
OBJECTS OF THE INVENTION The object of the present invention is to provide a magnetic sensor having a thin film structure that can significantly overcome the above-mentioned conventional problems and difficulties.
.

発明の構成 上記目的を達成するため、本発明の薄膜磁気センサは、
保磁力の異なった主成分がコバルトのコバルト−タンタ
ル・アモルファス磁性薄膜を2層基板−りに重ねて形成
し、これにピックアップコイルを設けたものである。
Structure of the Invention In order to achieve the above object, the thin film magnetic sensor of the present invention has the following features:
Cobalt-tantalum amorphous magnetic thin films whose main component is cobalt with different coercive forces are formed by stacking them on a two-layer substrate, and a pickup coil is provided on this.

実施例の説明 以下、本発明の実厳例についC,I:”A面に基づいて
説明する。先ずコバルl−(Co)−タンタル(Ta)
合金のターゲットを用い、スパッタ法により基板上に異
なった保磁力のコバルト(C(1)−タンタル(’I’
a)磁性薄膜を2 JrFj重ねて形成する。2層の保
磁力を異にするにはスパッタリング条件、例えばスパッ
タ時のアルゴン(Ar)ガス圧を変えることにより可能
である。コバルト((0)−タンタル−CTa)からな
る磁性NMのアモルファス化はタンタル(′I’a )
の添加量が13a【%以上で起こる。添加量25atう
 でもまだアモルファスであるが、25 ii 1%て
は当t5膜の飽和磁化が約iooガウス程度と非常に小
さくなり本発明には適当でない。適当な範囲は18at
%〜22a t%である。第1図にタンタル(1’a 
)の添加量による保磁力並びに飽和磁化の変(Lの様子
を示す。
DESCRIPTION OF EMBODIMENTS Hereinafter, practical examples of the present invention will be explained based on the C and I:"A sides. First, cobal l-(Co)-tantalum (Ta)
Using an alloy target, cobalt (C(1)-tantalum ('I') with different coercivity was deposited on the substrate by sputtering.
a) 2 JrFj magnetic thin films are stacked one on top of the other. The coercive forces of the two layers can be made different by changing the sputtering conditions, for example, the argon (Ar) gas pressure during sputtering. Magnetic NM made of cobalt ((0)-tantalum-CTa) is made amorphous by tantalum ('I'a).
This occurs when the amount of addition is 13a% or more. Even if the addition amount is 25at, it is still amorphous, but if the addition amount is 1%, the saturation magnetization of the T5 film is very small, about 10 Gauss, and is not suitable for the present invention. The appropriate range is 18at
% to 22at%. Figure 1 shows tantalum (1'a
) Changes in coercive force and saturation magnetization depending on the amount of addition (L) are shown.

@1図中の(1)は保磁力の変化を示したグラフ、(2
)は飽和磁化の変化を示したグラフである。コバル) 
(Co)−タンタル(’l’a)・アモルファス謬1土
〜1漠の保持力は、タンタル(”I’alffiの異な
るターゲットを用いても変えうるが、V形成ごとにター
ゲットを変えなければならない。或いはターゲットを変
えなければならない。或いは複数個のターゲットを′帛
¥¥する装置を用いなければならない等の作業性や装置
に難点を生じる。この点スパッタ時のアルゴン(Ar)
カス圧等のスパッタ条件を変えて保磁力を異にした磁性
膜を作成する方がはるかに容易で適当である。第2図は
スパッタ時のアルゴン(Ar)ガス圧によるコバルト(
Co)−タンタルCI”a)・アモルファス磁性%hの
保Lj力並びに飽和磁化の変化の様子を示した。図中(
3)lよ保磁力の変化を示すグラフ、(4)は飽和磁化
の変fヒを示ずグラフで3うす。
@1 In the figure, (1) is a graph showing the change in coercive force, (2
) is a graph showing changes in saturation magnetization. Kobal)
(Co)-Tantalum ('l'a) - The retention force of amorphous 1 ~ 1 mo can be changed by using different targets of tantalum ('I'alffi), but the target must be changed for each V formation. Otherwise, it is necessary to change the target.Or, it is necessary to use a device that handles multiple targets, which causes difficulties in workability and equipment.In this point, argon (Ar) during sputtering
It is much easier and more appropriate to create magnetic films with different coercive forces by changing sputtering conditions such as gas pressure. Figure 2 shows how cobalt (
The changes in coercive force and saturation magnetization of Co)-tantalum CI"a) amorphous magnetism%h are shown. In the figure (
3) A graph showing the change in coercive force as l, and (4) shows the change in saturation magnetization f.

このように、保磁力の小さいコバルト(Co )−クン
タル(’I’a )・アモルファス磁性薄膜と保磁力の
大きい同磁性iW Ikmをスパッタ時の条件を変える
のみで続けて基板上に重ねC形成できる。
In this way, a cobalt (Co)-cuntal ('I'a) amorphous magnetic thin film with a small coercive force and the same magnetic iW Ikm with a large coercive force are successively stacked on a substrate to form C by simply changing the sputtering conditions. can.

本発明の印磁力の異なる2層のコバルト(Co)−タン
タル(’I’a戸アモルファス磁性薄膜を基板上に形成
するlllfj番は当磁性R膜に磁歪特性があるため、
始めに保磁力の小さいコバルト(Co)−タンタル(−
1’a)・アモルファス磁性薄膜を形成した後、その膜
の上に重ねて保磁力の大きい同1f荘性薄膜を形成する
のが良い1.この順番で形成すると、保イ“必力の小さ
い磁性薄膜の保磁力の2詔を巾ねたことによる変化が小
さく、安定である。叩ら第3図に示す如く、基板(5)
の上に保磁力の小さいコバルト(Co)−タンタル(1
’a )・アモルファスfJJ Ii鵡!jQ (G)
を形成し、続けてスパッタ時のアルゴン(A1)ガス圧
を変えて保磁力の大きいコバルト((’o)−タンタル
(1’;θ・アモルファス磁性薄膜(7〕を形成する。
In the present invention, two layers of cobalt (Co)-tantalum (I'a) with different magnetic forces are formed on a substrate because the magnetic R film has magnetostrictive properties.
First, cobalt (Co)-tantalum (-
1'a) - After forming an amorphous magnetic thin film, it is best to form a 1f magnetic thin film with a large coercive force on top of the amorphous magnetic thin film. When formed in this order, the coercive force of the magnetic thin film, which has a small required force, is stable, with little change due to the two-dimensional coercive force.
Cobalt (Co)-tantalum (1
'a)・Amorphous fJJ Ii! jQ (G)
Then, by changing the argon (A1) gas pressure during sputtering, a cobalt (('o)-tantalum (1'; θ) amorphous magnetic thin film (7) with a large coercive force is formed).

次に第4図に示す如く、基板(5れLに重ねて形成した
2層のN FJ14 (0) (7)をフォトリソ技術
を用い′Cフッ酸と硝酸と水の混合液でエツチングして
’U lll1状(8)にする。
Next, as shown in Figure 4, the substrate (two layers of N FJ14 (0) (7) formed in layers) was etched with a mixture of hydrofluoric acid, nitric acid, and water using photolithography. 'U lll1 (8).

これを第5図に示す如く、基板(5)を炉冊状に切断し
、ピックアップコイル(9)を短冊の長手方向を軸とし
て巻いて薄膜磁気センサとする。このようにしてできた
薄膜磁気センサを一1梁な外部交番磁場内に入れ、磁界
の方向と薄膜磁気センサの長手方向が平行になるように
おき、交N ia場を印加する。
As shown in FIG. 5, the substrate (5) is cut into strips, and a pickup coil (9) is wound around the longitudinal direction of the strips to form a thin film magnetic sensor. The thin-film magnetic sensor thus produced is placed in an external alternating magnetic field having a single beam so that the direction of the magnetic field is parallel to the longitudinal direction of the thin-film magnetic sensor, and an alternating Nia field is applied.

この交番磁場がある強さになると保磁力の小さい磁性層
の磁化反転が起こり巻いであるコイル(9)に誘発パル
スが発生する。このタト部磁場の方向と誘発パルスの発
生現象は持IJfJ昭51−187641号のものと同
じである。この語発パルスTLii圧はスパッタ法で形
成した2 Jm膜の保磁力の(l対値により高さが異な
る。本発明の実施例によれば、保磁力の小さいコバルト
(Cn)−タンタル(Ta )・アモルファス磁性膜の
保磁力に対し、保磁力の大きい方の同磁性薄膜の保磁力
が2〜8倍の値のとき誘発パルスが得られた。保磁力の
小さい磁性薄膜の作1「3−ζ力が0.6エルステツド
より大きくなると、薄膜1分気センサとしたとき誘発パ
ルスのrLlられる外部交番磁場の強さは1エルステツ
ドを越えてしまい、1エルステツドより小さい磁場で使
用するような場合には同センサは使用できなくなる。又
0.08エルステツドより小さい保磁力を持つコバルト
(Co)−タ:ノタル(Ta)・アモルファス磁性in
は本発明の実施例では得られなかった。保磁力の大きい
コバルト(Co)−タンタル(T、)・アモルファス磁
f’E 薄膜の保磁力が保磁力の小さい住j1性薄膜の
保磁力の8倍を越えると誘発パルス電圧は得られにくく
なる。
When this alternating magnetic field reaches a certain strength, the magnetization of the magnetic layer with a small coercive force is reversed, and an induced pulse is generated in the coil (9). The direction of this magnetic field and the phenomenon of generation of induced pulses are the same as those in IJfJ No. 187641/1983. The height of this speech pulse TLii pressure differs depending on the coercive force (l) of the 2 Jm film formed by sputtering. According to the embodiment of the present invention, cobalt (Cn)-tantalum (Ta )・An induced pulse was obtained when the coercive force of the same magnetic thin film with a larger coercive force was 2 to 8 times the coercive force of the amorphous magnetic film. - When the ζ force is larger than 0.6 oersteds, the strength of the external alternating magnetic field generated by the induced pulse exceeds 1 oersteds when used as a thin film 1-minute sensor, and when used with a magnetic field smaller than 1 oersteds. The same sensor cannot be used when the cobalt (Co)-Ta amorphous magnetic in which has a coercive force smaller than 0.08 oersted is used.
was not obtained in the examples of the present invention. Cobalt (Co)-tantalum (T, ) amorphous magnetic f'E with a large coercive force If the coercive force of the thin film exceeds 8 times the coercive force of a residential thin film with a small coercive force, it becomes difficult to obtain an induced pulse voltage. .

誘発パルス電圧の発生は印加された外部交番磁場の変化
により薄膜磁気センサの保磁力の小さい磁性薄膜の磁化
反転が保磁力の大きい磁性薄膜の適当な大きさの保磁力
に拘束されているもとで起こるときに始めて得られるも
ので、拘束が強すぎると、即ち保磁力の大きい磁性薄膜
め保磁力が大きすぎると、2層が磁気的にあたかも単一
/Jになった如きふるまいをするためと思われる。逆に
2倍より小さくなると、2Bの相互作用が弱すぎて単一
磁性薄膜として磁化反転するため目的の誘発パルスWi
圧が得られなくなる。
The generation of the induced pulse voltage occurs because the magnetization reversal of the magnetic thin film with a small coercive force of the thin-film magnetic sensor is constrained to an appropriate coercive force of the magnetic thin film with a large coercive force due to changes in the applied external alternating magnetic field. If the constraint is too strong, that is, if the coercive force is too large, the two layers will magnetically behave as if they were a single J. I think that the. On the other hand, if it becomes smaller than twice, the interaction of 2B is too weak and the magnetization is reversed as a single magnetic thin film, so that the desired induced pulse Wi
Pressure cannot be obtained.

次に本発明の具体実施例について説明する。タンタル(
ra)を15at%添加したコバルト(Co)が主成分
のコバルト(Co )−タンタル(Ta )合金の直径
6インチのターゲットを用いた。到達真空度を2×1O
−7Torr  とした後、スパッタ時のアルゴン(A
r)ガス圧を変えてコバルト(Co)−タンタル(′I
’a)をスパッタし、保磁力の小さいアモルファス磁性
?’J hをガラス基板上に5 (100人 析出した
。このときのスパッタ11力は400ワツトとした。次
にスパッタ時のアルゴン(Ar)ガス圧を1層目の磁性
WHuより大きい保磁力がt!Iられる条件にして、1
層目に重ねて2層目のアモルファス磁性薄膜を形成した
Next, specific embodiments of the present invention will be described. tantalum(
A 6-inch diameter target made of a cobalt (Co)-tantalum (Ta) alloy whose main component is cobalt (Co) to which 15 at% of ra) was added was used. The ultimate vacuum level is 2×1O
After setting the temperature to −7 Torr, argon (A
r) Cobalt (Co)-tantalum ('I) by changing the gas pressure
Sputtering 'a) to create amorphous magnetism with low coercive force? 'Jh was deposited on a glass substrate by 100 people.The sputtering power at this time was 400W.Next, the argon (Ar) gas pressure during sputtering was adjusted so that the coercive force was greater than that of the first layer of magnetic WHu. 1 under the condition of being t!I
A second amorphous magnetic thin film was formed on top of the second layer.

このときのスパッタ電力は400ワツトであった。The sputtering power at this time was 400 Watts.

又2層目は8500Aの膜厚であった。2層に重ねて形
成した保磁力の異なるコバルト(Co )−タンタル(
Ta)・アモルファス磁性薄膜を幅500μm1長さ5
朋の短冊状(第4図参照)にフッ酸:硝酸:水−5:1
:94(容J21%)のエツチング溶液でエツチングし
た。次に基板を短冊状2層膜と同じ形状に切断した。こ
れに直径60μmの鋼線を50タ一ン巻いて薄膜磁気セ
ンサ(第6図参照)とした。このセンサに一様な外部交
番磁場を印加し、コイルに発生する誘発パルス電圧−を
調べた。次表に本発明の実施例磁性薄膜の保磁力、誘発
パルスを発生させるに必要な外部交番磁場並びにそのと
きの誘発パルス電圧を示した。尚得られた誘発パルス電
圧値は外部交番磁場の周波数に依存せず一定であった。
The thickness of the second layer was 8500A. Cobalt (Co)-tantalum (with different coercive forces) formed in two layers
Ta)・Amorphous magnetic thin film with a width of 500 μm and a length of 5
Add hydrofluoric acid: nitric acid: water - 5:1 to the strip (see Figure 4).
:94 (volume J21%) etching solution. Next, the substrate was cut into the same shape as the rectangular two-layer film. A steel wire having a diameter of 60 μm was wound around this in 50 turns to form a thin film magnetic sensor (see FIG. 6). A uniform external alternating magnetic field was applied to this sensor, and the induced pulse voltage generated in the coil was investigated. The following table shows the coercive force of the magnetic thin film of the present invention, the external alternating magnetic field necessary to generate the induced pulse, and the induced pulse voltage at that time. The induced pulse voltage value obtained was constant regardless of the frequency of the external alternating magnetic field.

発明の効果 以上のように本発明は保磁力の異なる2 toのコバル
ト’Co )−タンタル(1a)・アモルファス磁性薄
膜を基板上に爪ねて形成し、これにピックアップコイル
を巻いCなるもので、1エルステツド以下という小さい
外、:1;欠番1べ;:唱に対し、急峻で大きなしかも
そのfiil’iか外部交番磁場の周波数に依存しない
誘発パルス7C圧が1;Iられる。仁のように微小磁場
に対し応、3することし:、例えば72.1気記i、I
(媒体上にml録されたf+、”v小(11すをもJI
J生できるもので自効なセンサでJ’) ル。又iib
 b、・j J+M成−Cr’F)ることがら、フォト
リソ技術を用いCよりii:F<小なセンサ或いはCj
積化したセンサ屏ができるという利点がある。
Effects of the Invention As described above, the present invention involves forming an amorphous magnetic thin film of 2 to of cobalt (Co)-tantalum (1a) having different coercive forces on a substrate, and winding a pickup coil around the amorphous magnetic thin film. , is small, less than 1 oersted, and in response to the vibration, an induced pulse 7C pressure that is steep and large and does not depend on the frequency of the external alternating magnetic field is generated. In response to a minute magnetic field, like Jin, we can do 3 things: For example, 72.1 Kikii, I
(f+, “v” recorded in ml on the medium (11 Sumo JI
A sensor that can be used and is self-effective. Also iib
b, ・j
This has the advantage of producing an integrated sensor screen.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はタンタル(’l
’a )の添加量による保1【電力並びに飽和磁化の液
化を示すグラフ、第2因はスパッタ時のアルゴン(Ar
)ガス圧による保磁力並びに飽和磁化のに化を示すグラ
フ、第8図〜f415図は本発明薄膜磁気センサの製J
ll 1lji’l序を示す説明図である。 (5)・・・基板、(6)(7し・磁性N膜、(9)・
コイル第1図 Ta 5&IJrJ量rate> 第2図 スji、ツダ峙のFILア)〃゛′′ スBX10’ Torr ) 第3図 ワ 第4図
The drawings show embodiments of the invention, and FIG.
Graph showing the liquefaction of power and saturation magnetization depending on the amount of addition of 'a).The second factor is argon (Ar) during sputtering.
) Graphs showing changes in coercive force and saturation magnetization due to gas pressure.
FIG. 1 is an explanatory diagram showing an order. (5)...Substrate, (6) (7-magnetic N film, (9)...
Coil Fig. 1 Ta 5 & IJrJ amount rate > Fig. 2

Claims (1)

【特許請求の範囲】 1、保磁力の易なった主成分がコバルトのコバルト−タ
ンタル・アモルファス磁性薄膜を2層基板J二に重ねて
形成し、これにピックアップコイルを設けた薄膜磁気セ
ンサ。 2、 コバルト−タンタル・アモルファス磁性薄膜のタ
ンタル添加里は18at%〜22at*であるモj許請
求の範囲第1項記載の薄膜磁気センサ。 3、 コバルト−タンタル・アモルファス磁性fI膜を
スパッタ法で形成してなる特許請求の範囲第1項記載の
薄膜磁気センサ。 4、基板上に先に保磁力の小さいコバルト−タンタル・
アモルファス磁性助+1iを形成し、〜その上から保磁
力の大きいコバルト−タンタル・アモルファス磁性薄膜
を重ねて形成してなる特許請求の範囲第1項記載の薄膜
磁気セン→ノ゛。 ス磁性薄膜の保磁力の大小の比は1:2〜1:8である
特許請求の範囲第1項記載の薄膜磁気センサ。 6、[lJの小さいコバルト−タンタル・アモルファス
磁性all>jの保磁力の値は0.6 oe以1′、0
.086e以上である特許請求の範囲第1項記載の薄膜
磁気センサ。
[Scope of Claims] 1. A thin film magnetic sensor in which a cobalt-tantalum amorphous magnetic thin film whose main component is cobalt and has an easy coercive force is formed by stacking it on a two-layer substrate J2, and a pickup coil is provided on this. 2. The thin film magnetic sensor according to claim 1, wherein the cobalt-tantalum amorphous magnetic thin film has a tantalum content of 18 at% to 22 at*. 3. The thin film magnetic sensor according to claim 1, which is formed by forming a cobalt-tantalum amorphous magnetic fI film by sputtering. 4. Cobalt-tantalum with low coercive force is first placed on the substrate.
The thin film magnetic sensor according to claim 1, wherein an amorphous magnetic sublayer is formed, and a cobalt-tantalum amorphous magnetic thin film having a large coercive force is overlaid thereon. 2. The thin film magnetic sensor according to claim 1, wherein the magnetic thin film has a magnitude ratio of coercive force of 1:2 to 1:8. 6. Cobalt-tantalum amorphous magnetism with small lJ The coercive force value of all>j is 0.6 oe or more 1', 0
.. 086e or more, the thin film magnetic sensor according to claim 1.
JP21443382A 1982-12-07 1982-12-07 Thin film magnetic sensor Granted JPS59104573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21443382A JPS59104573A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21443382A JPS59104573A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Publications (2)

Publication Number Publication Date
JPS59104573A true JPS59104573A (en) 1984-06-16
JPH0449664B2 JPH0449664B2 (en) 1992-08-12

Family

ID=16655698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21443382A Granted JPS59104573A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Country Status (1)

Country Link
JP (1) JPS59104573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939459A (en) * 1987-12-21 1990-07-03 Tdk Corporation High sensitivity magnetic sensor
WO2004097441A1 (en) * 2003-04-25 2004-11-11 Hst Co., Ltd. Magnetic sensor integrated with controlling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820090A (en) * 1970-01-26 1974-06-25 Vlinsky M Bistable magnetic device
JPS55113304A (en) * 1980-02-01 1980-09-01 Res Inst Iron Steel Tohoku Univ Magnetic head using high magnetic permeability amorphous alloy
JPS5658208A (en) * 1979-10-16 1981-05-21 Matsushita Electric Ind Co Ltd Magnetic plate for magnetic substance applied element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820090A (en) * 1970-01-26 1974-06-25 Vlinsky M Bistable magnetic device
JPS5658208A (en) * 1979-10-16 1981-05-21 Matsushita Electric Ind Co Ltd Magnetic plate for magnetic substance applied element
JPS55113304A (en) * 1980-02-01 1980-09-01 Res Inst Iron Steel Tohoku Univ Magnetic head using high magnetic permeability amorphous alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939459A (en) * 1987-12-21 1990-07-03 Tdk Corporation High sensitivity magnetic sensor
WO2004097441A1 (en) * 2003-04-25 2004-11-11 Hst Co., Ltd. Magnetic sensor integrated with controlling device

Also Published As

Publication number Publication date
JPH0449664B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
US5534355A (en) Artificial multilayer and method of manufacturing the same
US5700588A (en) Magnetoresistance effect element
JP6943019B2 (en) Magnetoresistive element, magnetic head, sensor, high frequency filter and oscillator
JPS59104573A (en) Thin film magnetic sensor
US5287239A (en) Magnetic head using high saturated magnetic flux density film and manufacturing method thereof
US3932688A (en) Composite magnetic film
Prados et al. High magnetostriction in low applied magnetic fields in amorphous Tb-Fe (hard)/Fe-B (soft) multilayers
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JPH0449665B2 (en)
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP2979557B2 (en) Soft magnetic film
JPH09306736A (en) Perpendicular magnetization film, manufacture thereof, and magneto-optical recording medium
JPS5877208A (en) Multi-layer magnetic thin film and manufacture thereof
JPS6390025A (en) Magnetic recording medium
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JPH02152208A (en) Soft magnetic alloy film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
Choh et al. The effects of an applied magnetic field on the magnetic properties of RF sputtered amorphous CoZrNb thin films
KR100281985B1 (en) Thin Films of Tb Based Highly Magnetostrictive Alloys
JPH0448708A (en) Magnetic multilayer film
KR100243719B1 (en) The film of tb-fe magnetostrictive alloys and the method of same
JPH0690038A (en) Magnetoresistance effect device