JPH0449665B2 - - Google Patents

Info

Publication number
JPH0449665B2
JPH0449665B2 JP57214434A JP21443482A JPH0449665B2 JP H0449665 B2 JPH0449665 B2 JP H0449665B2 JP 57214434 A JP57214434 A JP 57214434A JP 21443482 A JP21443482 A JP 21443482A JP H0449665 B2 JPH0449665 B2 JP H0449665B2
Authority
JP
Japan
Prior art keywords
thin film
cobalt
magnetic
coercive force
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57214434A
Other languages
Japanese (ja)
Other versions
JPS59104574A (en
Inventor
Masuzo Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21443482A priority Critical patent/JPS59104574A/en
Publication of JPS59104574A publication Critical patent/JPS59104574A/en
Publication of JPH0449665B2 publication Critical patent/JPH0449665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は外部磁場の変化、特に微小磁場の変化
を検出できる薄膜磁気センサに関するものであ
る。 従来例の構成とその問題点 従来、外部磁場の変化量或いは変化の検出をす
る磁気センサには半導体材料、磁性材料等を用い
た多くのセンサが開発され、実用化されている。
例えば半導体材料を用いたものではホール素子、
電界効果型トランジスタ素子等がある。これらは
InSb,GaAs等の−族化合物、Si,Ge等が主
に使用されている。磁性材料を用いたものではメ
モリ素子、磁気抵抗素子、リング型磁気ヘツド等
があり、パーマロイ、センダスト、Ni−ZnやMn
−Znフエライト等が使用されている。又米国特
許3820090号明細書には、線状の磁性体に機械的、
熱的処理を加え磁性線の表面近くの層(第2の磁
気的部分)の保磁力を変え、内部(第1の磁気的
部分)の保磁力より大きくし、これに巻線してな
る磁気デバイスが記載されている。これは、第2
の磁気的部分の保磁力が第1の磁気的部分の保持
力より大きくなつており、構造的にはFe−Co−
組成からなる磁性線の内部が保磁力の小さい部
分、外部の表面に近い部分が保持力の大きい部分
からなる細線よりなつている。この磁気デバイス
は例えば外部磁場の方向と大きさを細線の長手方
向において変えたとき、保磁力の大きい部分は保
磁力の小さい部分と磁気的に相互作用が働いてい
るから、両者の磁化方向が同一方向で外部磁場と
逆方向をとつている場合、保磁力の小さい部分の
磁化反転は保磁力Hc1より大きく、保磁力の大き
い部分の保磁力Hc2より小さい外部磁場で起る。
又外部磁場と、保磁力の大きい部分の磁化方向が
同じで、保磁力の小さい部分の磁化方向のみがそ
れらと逆方向をとつている場合は、外部磁場が次
第に大きくなつて保磁力の小さい部分の保磁力と
同程度となると、保磁力の小さい部分の磁化反転
(外部磁場と同じ方向に反転する)は保磁力の大
きい部分が助けることになり、Hc1程度の磁場で
より急峻に生じる。この保磁力の小さい部分の外
部磁場の影響による磁化反転により電磁誘導現象
が生じ、細線に巻いてあるピツクアツプ用コイル
に電流が発生し、コイル両端に前者の場合は小さ
いパルス電圧が、後者の場合は大きいパルス電圧
が得られる。このパルス電圧の大きさ、急峻さは
単一磁性体の磁化反転を用いたものよりはるかに
優れている。又単一磁性からなるものは、ピツク
アツプコイルに発生するパルス幅が外部磁場の交
番周波数に依存し、変化が遅ければ幅は広く、速
くなければ狭くなる。これに対し、米国特許
3820090号明細書に記載の素子の場合は、大バル
クハウゼン・ジヤンプにより誘発されるもので、
外部磁場の交番周波数に依存することなく一定の
幅の急峻なパルス電圧が得られる。このように米
国特許3820090号明細書に記載の素子は優れた特
性を持つが、その製造法は複雑なものであり、歩
留り良く製造することが困難である。又直径250
ミクロンの細線を用いているが、より小さいデバ
イスを作成するには非常に困難である。更に急峻
に誘発パルスを発生させるための外部磁場の大き
さは約15エルステツドと大きく、より微弱な外部
磁場或いは微小な磁場、例えば1エルステツド或
いはそれ以下の外部磁場で誘発パルスを得る必要
のある磁気ヘツド等にはこの米国特許3820090号
明細書に記載のものは用いられない。 発明の目的 本発明は上記従来の諸問題、難点を大幅に解決
できる薄膜構造を持つ磁気センサを提供すること
を目的とする。 発明の構成 上記目的を達成するため、本発明の薄膜磁気セ
ンサは、保持力の異なつた主成分がコバルトのコ
バルト−ジルコニウム・アモルフアス磁性薄膜を
2層、非磁性基板上に重ねて形成し、これにピツ
クアツプコイルを設けたものである。 実施例の説明 以下、本発明の実施例について、図面に基づい
て説明する。先ずコバルト(Co)−ジルコニウム
(Zr)合金のターゲツトを用い、スパツタ法によ
り非磁性基板上に異なつた保磁力のコバルト
(Co)−ジルコニウム(Zr)・アモルフアス磁性薄
膜を2層重ねて形成する。2層の磁性薄膜の保磁
力を異にするにはスパツタリング条件、例えばス
パツタ時のアルゴン(Ar)ガス圧を変えること
により可能である。コバルト(Co)にジルコニ
ウム(Zr)量を約5at%添加すると、その磁性薄
膜の保磁力は急激に小さくなる。これはアモルフ
アス化が進むことによることは知られている。
10at%付近で略完全なアモルフアスとなり、更に
ジルコニウム(Zr)を増加すると微結晶がアモ
ルフアス中に混つてくる。しかし、保磁力はコバ
ルト(Co)単体の場合よりはるかに小さい。飽
和磁化はジルコニウム(Zr)の添加量が増すと
次第に小さくなり、例えば30at%添加すると約
1Kガウスとなる。飽和磁化が小さくなると磁化
反転によつてピツクアツプコイルに発生する誘発
パルス電圧値が大きくならない。よつてジルコニ
ウム(Zr)の添加量は5at%〜20at%が適当であ
る。第1図にコバルト(Co)−ジルコニウム
(Zr)・アモルフアス磁性薄膜の保磁力、飽和磁
化とジルコニウム(Zr)添加量との関係を示す。
第1図中1は保磁力の変化を示すグラフ、2は飽
和磁化の変化を示すグラフである。コバルト
(Co)−ジルコニウム(Zr)・アモルフアス磁性薄
膜の保磁力はジルコニウム(Zr)量の異なるタ
ーゲツトを用いても変えうるが、膜を形成するご
とにターゲツトを変えなければならない。或いは
複数個のターゲツトを常設する装置を用いなけれ
ばならない等の作業性や装置に難点がある。この
点スパツタ時の条件を変えるだけで保磁力の異な
る磁性薄膜を作成する方がより容易である。第2
図はスパツタ時のアルゴン(Ar)ガス圧による
コバルト(Co)−ジルコニウム(Zr)・アモルフ
アス磁性薄膜の保磁力並びに飽和磁化の変化を示
すグラフである。第2図中3は保磁力の変化を示
すグラフ、4は飽和磁化を示すグラフである。ス
パツタ法で非磁性基板上に形成したコバルト
(Co)−ジルコニウム(Zr)・アモルフアス磁性薄
膜は膜面内で磁気異方性特性を示す。即ち、ある
特定の方向に容易軸を持つ磁性薄膜となる。本発
明の薄膜磁気センサは外部交番磁場の方向に磁性
薄膜の磁化反転を生じさせるため、この方法に容
易軸を揃えればより急峻な磁化反転が起こり誘発
パルス電圧も大きくなる。第3図にコバルト
(Co)−ジルコニウム(Zr)・アモルフアス磁性薄
膜の容易軸方向と困難軸方向のM−H曲線を示し
た。5は容易軸方向のM−H曲線、6は困難軸方
向のM−H曲線である。 本発明の保磁力の異なる2層のコバルト(Co)
−ジルコニウム(Zr)・アモルフアス磁性薄膜を
非磁性基板上に形成する順番はこの磁性薄膜には
小さくではあるが磁歪特性があるため、誘発パル
スを発生させる磁化反転をする保磁力の小さいコ
バルト(Co)−ジルコニウム(Zr)・アモルフア
ス磁性薄膜を先に非磁性基板上に形成した後、そ
の上に重ねて保磁力の大きいコバルト(Co)−ジ
ルコニウム(Zr)・アモルフアス磁性薄膜を形成
するのが良い。この順番に形成すると、下に形成
する磁性薄膜の保持力のばらつきが小さくなり、
安定である。即ち第4図に示す如く、非磁性基板
7の上に先ず保磁力の小さいコバルト(Co)−ジ
ルコニウム(Zr)・アモルフアス磁性薄膜8を形
成し、続けてスパツタ時のアルゴン(Ar)ガス
圧を変えて保磁力の大きいコバルト(Co)−ジル
コニウム(Zr)・アモルフアス磁性薄膜9を形成
する。次に第5図に示す如く、非磁性基板7上に
重ねて形成した2層のコバルト(Co)−ジルコニ
ウム(Zr)・アモルフアス磁性薄膜8,9をフオ
トリソ技術を用いてフツ酸と硝酸と水の混合液で
エツチングして短冊状10にする。このとき、短
冊の長手方向が磁性薄膜の容易軸方向に一致する
ようにする。これを第6図に示す如く、非磁性基
板7を短冊に切断し、ピツクアツプコイル11を
短冊の長手方向を軸として巻いて薄膜磁気センサ
とする。このようにしてできた薄膜磁気センサを
一様な外部交番磁場内に入れ、磁界の方向と磁気
センサの長手方向が一致するようにおき、交番磁
場を印加する。この交番磁場がある強さになると
保磁力の小さい磁性薄膜の磁化反転が起こり巻い
てあるコイル11に誘発パルスが発生する。この
外部磁場の方向と誘発パルスの発生現象は米国特
許3820090号明細書のものと同じである。この誘
発パルス電圧はスパツタ法で形成した2層膜の保
磁力の相対値により高さが異なる。又誘発する外
部交番磁場の強さにもこの保磁力の相対値は関係
する。本発明の実施例によれば、保磁力の小さい
コバルト(Co)−ジルコニウム(Zr)・アモルフ
アス磁性薄膜の保磁力に対し、保磁力の大きい方
の同磁性薄膜の保磁力が2〜8倍の値のとき誘発
パルスが得られた。保磁力の小さい磁性薄膜の保
磁力が0.6エルステツドより大きくなると、薄膜
磁気センサとしたとき誘発パルスの得られる外部
交番磁場の強さは1エルステツドを越えてしま
い、1エルステツドより小さい交番磁場の中で使
用する場合には同センサは働かない。又0.05エル
ステツドより小さいコバルト(Co)−ジルコニウ
ム(Zr)・アモルフアス磁性薄膜は本発明の実施
例では得られなかつた。より小さい保磁力につい
ても、これに適した保磁力の大きい磁性薄膜を組
み合せて2層膜とすれば誘発パルスの得られる薄
膜磁気センサとなる。保磁力の大きいコバルト
(Co)−ジルコニウム(Zr)・アモルフアス磁性薄
膜の保磁力が保磁力の小さい磁性薄膜の保磁力の
8倍を越えると誘発パルス電圧が得られにくくな
る。誘発パルス電圧の発生は印加された外部交番
磁場の変化により薄膜磁気センサの保磁力の小さ
い磁性薄膜の磁化反転が保磁力の大きい磁性薄膜
の適当な大きさの保磁力に拘束されているもとで
起こるときに始めて得られるもので、拘束が強す
ぎると、即ち保磁力の大きい磁性薄膜の保磁力が
大きすぎると、2層が磁気的にあたかも単一層に
なつた如きふるまいをするためと思われる。逆に
2倍より小さくなりすぎると、2層の相互作用が
弱すぎて単一磁性薄膜として磁化反転するため目
的の急峻な誘発パルス電圧が得られなくなる。 次に本発明の具体実施例について説明する。ジ
ルコニウム(Zr)を8at%添加したコバルト
(Co)が主成分のコバルト(Co)−ジルコニウム
(Zr)合金の直径6インチのターゲツトを用い
た。到達真空度を2×10-7Torrとした後、スパ
ツタ時のアルゴン(Ar)ガス圧を変えてコバル
ト(Co)−ジルコニウム(Zr)合金をスパツタ
し、保磁力の小さいコバルト(Co)−ジルコニウ
ム(Zr)・アモルフアス磁性薄膜をガラス基板上
に5000〓析出した。このときのスパツタ電力は
400ワツトであつた。次に、スパツタ時のアルゴ
ン(Ar)ガス圧を1層目のコバルト(Co)−ジル
コニウム(Zr)・アモルフアス磁性薄膜より大き
い保磁力が得られる条件にして、1層目に重ねて
2層目のコバルト(Co)−ジルコニウム(Zr)・
アモルフアス磁性薄膜を析出した。このときのス
パツタ圧も400ワツトとした。尚2層目の膜厚は
3500〓であつた。2層に重ねて形成した保磁力の
異なるコバルト(Co)−ジルコニウム(Zr)・ア
モルフアス磁性薄膜を幅500μm、長さ5mmの短
冊状(第5図参照)にフオトリソ技術でマスクし
た後フツ酸:硝酸:水=5:1:94(容量%)の
エツチング液でエツチングした。このとき、短冊
の長手方向がコバルト(Co)−ジルコニウム
(Zr)・アモルフアス磁性薄膜の磁気容易軸と一
致するようにした。次にガラス基板を短冊状2層
膜と同じ形状に切断した。これに直径60μmの銅
線を50ターン巻いて薄膜磁気センサとした(第6
図参照)。このセンサに一様な外部交番磁場を印
加し、コイルに発生する誘発パルス電圧を調べ
た。次表のNo.1〜No.16に本発明の実施例の磁性薄
膜の保磁力、誘発パルスを発生させるに必要な外
部交番磁場並びに誘発パルス電圧を示した。尚得
られた誘発パルス電圧値は外部交番磁場の周波数
に依存せず一定であつた。又短冊の長手方向と磁
性薄膜の困難軸方向を一致させて作成した。薄膜
磁気センサでは外部交番磁場を変えても誘発パル
スが得られなかつた。これは2層間の磁気的な相
互作用が誘発パルスを発生させうる条件にならな
いためと思われる。表中のNo.17,18に本発明外の
ものを示す。 発明の効果 以上のように本発明は保持力の異なる2層のコ
バルト(Co)−ジルコニウム(Zr)・アモルフア
ス磁性薄膜を非磁性基板上に重ねて形成し、これ
にピツクアツプコイルを巻いてなるもので、1エ
ルステツド以下という小さい外部
INDUSTRIAL APPLICATION FIELD The present invention relates to a thin film magnetic sensor capable of detecting changes in an external magnetic field, particularly changes in a minute magnetic field. Conventional Structure and Problems Conventionally, many sensors using semiconductor materials, magnetic materials, etc. have been developed and put into practical use as magnetic sensors for detecting the amount of change or change in an external magnetic field.
For example, in devices using semiconductor materials, Hall elements,
There are field effect transistor elements and the like. these are
- group compounds such as InSb and GaAs, Si, Ge, etc. are mainly used. Items using magnetic materials include memory elements, magnetoresistive elements, ring-type magnetic heads, etc., including permalloy, sendust, Ni-Zn, and Mn.
-Zn ferrite etc. are used. In addition, U.S. Patent No. 3,820,090 describes that a linear magnetic material is mechanically and
Heat treatment is applied to change the coercive force of the layer near the surface of the magnetic wire (second magnetic part), making it larger than the coercive force of the inside (first magnetic part), and the magnetic wire is wound around this. The device is listed. This is the second
The coercive force of the first magnetic part is larger than the coercive force of the first magnetic part, and the structure is Fe-Co-
The inside of the magnetic wire consists of a part with a small coercive force, and the part near the outer surface is a thin wire with a part with a large coercive force. For example, in this magnetic device, when the direction and magnitude of the external magnetic field are changed in the longitudinal direction of a thin wire, the part with a large coercive force interacts magnetically with the part with a small coercive force, so the direction of magnetization of both changes. When the magnetic field is in the same direction but opposite to the external magnetic field, magnetization reversal in the portion with low coercive force occurs with an external magnetic field that is greater than the coercive force Hc 1 and smaller than the coercive force Hc 2 in the portion with high coercive force.
Also, if the external magnetic field and the magnetization direction of the part with high coercive force are the same, and only the magnetization direction of the part with low coercive force is opposite to them, the external magnetic field will gradually increase and the magnetization direction of the part with low coercive force will be the same. When the coercive force is about the same as that of Hc, the magnetization reversal of the part with a small coercive force (reversal in the same direction as the external magnetic field) is assisted by the part with a large coercive force, and it occurs more sharply in a magnetic field of about Hc 1 . An electromagnetic induction phenomenon occurs due to magnetization reversal due to the influence of an external magnetic field in the part with low coercive force, and a current is generated in the pick-up coil wound around a thin wire. A large pulse voltage can be obtained. The magnitude and steepness of this pulse voltage are far superior to those using magnetization reversal of a single magnetic material. Furthermore, in the case of a single magnet, the pulse width generated in the pickup coil depends on the alternating frequency of the external magnetic field; if the change is slow, the width is wide, and if it is not fast, the pulse width is narrow. In contrast, the U.S. patent
In the case of the device described in the specification of No. 3820090, it is induced by the large Barkhausen jump,
A steep pulse voltage with a constant width can be obtained without depending on the alternating frequency of the external magnetic field. Although the device described in US Pat. No. 3,820,090 has excellent characteristics as described above, the manufacturing method thereof is complicated and it is difficult to manufacture it with a high yield. Also diameter 250
Although micron-thin wires are used, it is extremely difficult to create smaller devices. The magnitude of the external magnetic field required to generate a more steep induced pulse is approximately 15 Oersteds, and the magnetic field requires a weaker external magnetic field or a minute magnetic field, such as an external magnetic field of 1 Oersteds or less, to generate an induced pulse. The heads described in US Pat. No. 3,820,090 are not used. OBJECTS OF THE INVENTION It is an object of the present invention to provide a magnetic sensor having a thin film structure that can significantly solve the above-mentioned conventional problems and difficulties. Structure of the Invention In order to achieve the above object, the thin film magnetic sensor of the present invention is produced by stacking two cobalt-zirconium amorphous magnetic thin films having cobalt as the main component and having different coercive forces on a non-magnetic substrate. It is equipped with a pick-up coil. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings. First, using a cobalt (Co)-zirconium (Zr) alloy target, two layers of cobalt (Co)-zirconium (Zr) amorphous magnetic thin films with different coercive forces are formed on a nonmagnetic substrate by sputtering. The coercivity of the two magnetic thin films can be made different by changing the sputtering conditions, for example, the argon (Ar) gas pressure during sputtering. When approximately 5 at% of zirconium (Zr) is added to cobalt (Co), the coercive force of the magnetic thin film decreases rapidly. It is known that this is due to progress of amorphization.
At around 10 at%, it becomes almost completely amorphous, and when zirconium (Zr) is further increased, microcrystals become mixed in the amorphous. However, the coercive force is much smaller than that of cobalt (Co) alone. Saturation magnetization gradually decreases as the amount of zirconium (Zr) added increases; for example, when adding 30 at%, it becomes approximately
It becomes 1K Gauss. When the saturation magnetization becomes small, the induced pulse voltage value generated in the pickup coil due to magnetization reversal does not become large. Therefore, the appropriate amount of zirconium (Zr) to be added is 5 at% to 20 at%. Figure 1 shows the relationship between the coercive force and saturation magnetization of a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film and the amount of zirconium (Zr) added.
In FIG. 1, 1 is a graph showing changes in coercive force, and 2 is a graph showing changes in saturation magnetization. The coercive force of a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film can be changed by using targets with different amounts of zirconium (Zr), but the targets must be changed each time the film is formed. Alternatively, there are problems with workability and equipment, such as the need to use equipment that permanently installs a plurality of targets. In this respect, it is easier to create magnetic thin films with different coercive forces by simply changing the sputtering conditions. Second
The figure is a graph showing changes in coercive force and saturation magnetization of a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film due to argon (Ar) gas pressure during sputtering. In FIG. 2, 3 is a graph showing changes in coercive force, and 4 is a graph showing saturation magnetization. A cobalt (Co)-zirconium (Zr) amorphous magnetic thin film formed on a nonmagnetic substrate by the sputtering method exhibits magnetic anisotropy in the film plane. In other words, it becomes a magnetic thin film with an easy axis in a particular direction. Since the thin film magnetic sensor of the present invention causes magnetization reversal of the magnetic thin film in the direction of an external alternating magnetic field, if the easy axis is aligned in this method, a steeper magnetization reversal will occur and the induced pulse voltage will also increase. FIG. 3 shows the M-H curves of the cobalt (Co)-zirconium (Zr) amorphous magnetic thin film in the easy axis direction and the hard axis direction. 5 is an MH curve in the easy axis direction, and 6 is an MH curve in the hard axis direction. Two layers of cobalt (Co) with different coercive forces according to the present invention
-The order in which a zirconium (Zr) amorphous magnetic thin film is formed on a non-magnetic substrate is that cobalt (Co), which has a small coercive force that causes the magnetization reversal that generates the induced pulse, ) - It is best to first form a zirconium (Zr)/amorphous magnetic thin film on a non-magnetic substrate, and then form a cobalt (Co) - zirconium (Zr)/amorphous magnetic thin film with a large coercive force on top of it. . When formed in this order, the variation in coercive force of the magnetic thin film formed below is reduced,
It is stable. That is, as shown in FIG. 4, a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film 8 having a small coercive force is first formed on a non-magnetic substrate 7, and then argon (Ar) gas pressure is applied during sputtering. Instead, a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film 9 having a large coercive force is formed. Next, as shown in FIG. 5, two layers of cobalt (Co)-zirconium (Zr) amorphous magnetic thin films 8 and 9 formed overlappingly on the non-magnetic substrate 7 are coated with hydrofluoric acid, nitric acid and water using photolithography technology. Etch it with a mixed solution to make it into strips 10. At this time, the longitudinal direction of the strip is made to coincide with the easy axis direction of the magnetic thin film. As shown in FIG. 6, the nonmagnetic substrate 7 is cut into strips, and the pick-up coil 11 is wound around the longitudinal direction of the strip to form a thin film magnetic sensor. The thin film magnetic sensor thus produced is placed in a uniform external alternating magnetic field, and the alternating magnetic field is applied with the direction of the magnetic field and the longitudinal direction of the magnetic sensor aligned. When this alternating magnetic field reaches a certain strength, the magnetization of the magnetic thin film with a small coercive force is reversed, and an induced pulse is generated in the wound coil 11. The direction of this external magnetic field and the phenomenon of generation of induced pulses are the same as those in US Pat. No. 3,820,090. The height of this induced pulse voltage varies depending on the relative value of the coercive force of the two-layer film formed by the sputtering method. The relative value of this coercive force is also related to the strength of the induced external alternating magnetic field. According to the embodiment of the present invention, the coercive force of the cobalt (Co)-zirconium (Zr) amorphous amorphous magnetic thin film, which has a smaller coercive force, is 2 to 8 times that of the same magnetic thin film, which has a larger coercive force. Evoked pulses were obtained when the value When the coercive force of a magnetic thin film with a small coercive force is greater than 0.6 Oersteds, the strength of the external alternating magnetic field that generates the induced pulse exceeds 1 Oersted when used as a thin film magnetic sensor, and the The sensor does not work when used. Further, a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film having a diameter smaller than 0.05 oersted could not be obtained in the examples of the present invention. Even with a smaller coercive force, if a two-layer film is formed by combining a magnetic thin film with a large coercive force suitable for this, a thin film magnetic sensor that can generate induced pulses can be obtained. If the coercive force of a cobalt (Co)-zirconium (Zr) amorphous magnetic thin film with a large coercive force exceeds eight times the coercive force of a magnetic thin film with a small coercive force, it becomes difficult to obtain an induced pulse voltage. The generation of the induced pulse voltage occurs because the magnetization reversal of the magnetic thin film with a small coercive force of the thin-film magnetic sensor is constrained to an appropriate coercive force of the magnetic thin film with a large coercive force due to changes in the applied external alternating magnetic field. This is thought to be because if the constraint is too strong, that is, if the coercive force of a magnetic thin film with a large coercive force is too large, the two layers will magnetically behave as if they were a single layer. It will be done. On the other hand, if it is too small than twice, the interaction between the two layers will be too weak and the magnetization will be reversed as a single magnetic thin film, making it impossible to obtain the desired steep induced pulse voltage. Next, specific embodiments of the present invention will be described. A 6-inch diameter target made of a cobalt (Co)-zirconium (Zr) alloy whose main component was cobalt (Co) to which 8 at% zirconium (Zr) was added was used. After setting the ultimate vacuum to 2 × 10 -7 Torr, we sputtered a cobalt (Co)-zirconium (Zr) alloy by changing the argon (Ar) gas pressure during sputtering. A 5000% (Zr) amorphous magnetic thin film was deposited on a glass substrate. The spatuta power at this time is
It was 400 watts. Next, the argon (Ar) gas pressure during sputtering is set to a condition that provides a coercive force greater than that of the first layer of cobalt (Co)-zirconium (Zr) amorphous magnetic thin film, and the second layer is stacked on top of the first layer. Cobalt (Co) - Zirconium (Zr)
An amorphous magnetic thin film was deposited. The sputter pressure at this time was also 400 watts. The thickness of the second layer is
It was 3500〓. Cobalt (Co)-zirconium (Zr) amorphous magnetic thin films with different coercive forces formed in two layers were masked using photolithography technology into strips with a width of 500 μm and a length of 5 mm (see Figure 5), and then coated with hydrofluoric acid: Etching was performed using an etching solution containing nitric acid:water=5:1:94 (volume %). At this time, the longitudinal direction of the strip was made to coincide with the magnetic easy axis of the cobalt (Co)-zirconium (Zr) amorphous magnetic thin film. Next, the glass substrate was cut into the same shape as the rectangular two-layer film. A thin-film magnetic sensor was created by winding 50 turns of copper wire with a diameter of 60 μm (No. 6
(see figure). A uniform external alternating magnetic field was applied to this sensor, and the induced pulse voltage generated in the coil was investigated. Nos. 1 to 16 in the following table show the coercive force of the magnetic thin films of the examples of the present invention, the external alternating magnetic field and the induced pulse voltage necessary to generate induced pulses. The induced pulse voltage value obtained was constant regardless of the frequency of the external alternating magnetic field. In addition, the longitudinal direction of the strip was made to match the difficult axis direction of the magnetic thin film. In the thin film magnetic sensor, induced pulses could not be obtained even if the external alternating magnetic field was changed. This seems to be because the magnetic interaction between the two layers does not become a condition that can generate an induced pulse. Nos. 17 and 18 in the table show those outside the invention. Effects of the Invention As described above, the present invention consists of two layers of cobalt (Co)-zirconium (Zr) amorphous magnetic thin films having different coercive forces stacked on a non-magnetic substrate, and a pick-up coil wound around this. So, the outside is small, less than 1 oersted.

【表】 交番磁場に対し急峻で大きな誘発パルス電圧が
得られる。しかもその値が外部交番磁場の周波数
に依存しないという優れたものである。このよう
に微小磁場に対し応答できることは、例えば磁気
記録媒体上に記録された微小信号をも再生できる
もので有効なセンサである。又薄膜構成であるこ
とから、フオトリソ技術を用いてより微小なセン
サ或いは集積したセンサ群ができるという利点が
ある。
[Table] A steep and large induced pulse voltage can be obtained in response to an alternating magnetic field. Moreover, the value is excellent in that it does not depend on the frequency of the external alternating magnetic field. The ability to respond to a minute magnetic field in this way makes it an effective sensor, as it can also reproduce minute signals recorded on a magnetic recording medium, for example. Furthermore, since it has a thin film structure, it has the advantage that a smaller sensor or a group of integrated sensors can be made using photolithography technology.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はジルコ
ニウム(Zr)の添加量による保磁力並びに飽和
磁化の変化を示すグラフ、第2図はスパツタ時の
アルゴン(Ar)ガス圧による保磁力並びに飽和
磁化の変化を示すグラフ、第3図は磁性薄膜の容
易軸方向と困難軸方向のM−H曲線を示すグラ
フ、第4図〜第6図は本発明薄膜磁気センサの製
造順序を示す説明図である。 7……非磁性基板、8,9……コバルト−タン
タル・アモルフアス磁性薄膜、11……コイル。
The drawings show examples of the present invention. Figure 1 is a graph showing changes in coercive force and saturation magnetization depending on the amount of zirconium (Zr) added, and Figure 2 is a graph showing changes in coercive force and saturation magnetization due to argon (Ar) gas pressure during sputtering. A graph showing changes in saturation magnetization, FIG. 3 is a graph showing M-H curves in the easy axis direction and hard axis direction of the magnetic thin film, and FIGS. 4 to 6 are explanations showing the manufacturing order of the thin film magnetic sensor of the present invention. It is a diagram. 7... Nonmagnetic substrate, 8, 9... Cobalt-tantalum amorphous magnetic thin film, 11... Coil.

Claims (1)

【特許請求の範囲】 1 保持力の異なつた主成分がコバルトのコバル
ト−ジルコニウム・アモルフアス磁性薄膜を2
層、非磁性基板上に重ねて形成し、これにピツク
アツプコイルを設けた薄膜磁気センサ。 2 コバルト−ジルコニウム・アモルフアス磁性
薄膜のジルコニウム添加量は5at%〜20at%であ
る特許請求の範囲第1項記載の薄膜磁気センサ。 3 コバルト−ジルコニウム・アモルフアス磁性
薄膜をスパツタ法で形成してなる特許請求の範囲
第1項記載の薄膜磁気センサ。 4 非磁性基板上に先に保持力の小さいコバルト
−ジルコニウム・アモルフアス磁性薄膜を形成
し、その上から保持力の大きいコバルト−ジルコ
ニウム・アモルフアス磁性薄膜を重ねて形成して
なる特許請求の範囲第1項記載の薄膜磁気セン
サ。 5 2種類のコバルト−ジルコニウム・アモルフ
アス磁性薄膜の保持力の大小の比は1:2〜1:
8である特許請求の範囲第1項記載の薄膜磁気セ
ンサ。 6 保持力の小さいコバルト−ジルコニウム・ア
モルフアス磁性薄膜の保持力の値は0.05エルステ
ツド〜0.7エルステツドである特許請求の範囲第
1項記載の薄膜磁気センサ。 7 保持力の異なる2種類のコバルト−ジルコニ
ウム・アモルフアス磁性薄膜からなる短冊の長手
方向がコバルト−ジルコニウム・アモルフアス磁
性薄膜の容易軸方向と一致する特許請求の範囲第
1項記載の薄膜磁気センサ。
[Claims] 1. A cobalt-zirconium amorphous magnetic thin film whose main component is cobalt with different coercivity.
A thin film magnetic sensor that is formed by stacking layers on a non-magnetic substrate and has a pick-up coil attached to it. 2. The thin film magnetic sensor according to claim 1, wherein the amount of zirconium added to the cobalt-zirconium amorphous magnetic thin film is 5 at% to 20 at%. 3. The thin film magnetic sensor according to claim 1, which is formed by forming a cobalt-zirconium amorphous magnetic thin film by a sputtering method. 4. Claim 1, in which a cobalt-zirconium amorphous magnetic thin film with a low coercive force is first formed on a non-magnetic substrate, and then a cobalt-zirconium amorphous magnetic thin film with a large coercive force is overlaid thereon. Thin film magnetic sensor described in Section 1. 5 The ratio of the coercive force of the two types of cobalt-zirconium amorphous magnetic thin films is 1:2 to 1:
8. The thin film magnetic sensor according to claim 1. 6. The thin film magnetic sensor according to claim 1, wherein the cobalt-zirconium amorphous magnetic thin film having a small coercive force has a coercive force value of 0.05 to 0.7 oersteds. 7. The thin film magnetic sensor according to claim 1, wherein the longitudinal direction of the strip made of two types of cobalt-zirconium amorphous magnetic thin films having different coercive forces coincides with the easy axis direction of the cobalt-zirconium amorphous magnetic thin film.
JP21443482A 1982-12-07 1982-12-07 Thin film magnetic sensor Granted JPS59104574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21443482A JPS59104574A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21443482A JPS59104574A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Publications (2)

Publication Number Publication Date
JPS59104574A JPS59104574A (en) 1984-06-16
JPH0449665B2 true JPH0449665B2 (en) 1992-08-12

Family

ID=16655715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21443482A Granted JPS59104574A (en) 1982-12-07 1982-12-07 Thin film magnetic sensor

Country Status (1)

Country Link
JP (1) JPS59104574A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013016C2 (en) * 1990-04-24 1996-04-18 Siemens Ag Magnetic field sensor of a switching device with parts of different coercive field strengths
DE4018148A1 (en) * 1990-06-06 1991-12-12 Siemens Ag MAGNETIC SENSITIVE SETUP WITH SEVERAL MAGNETIC SENSORS
JP4196901B2 (en) 2004-08-11 2008-12-17 ソニー株式会社 Electronic circuit equipment
CN112618067A (en) * 2021-01-07 2021-04-09 上海允泉新材料科技有限公司 Method for detecting orthodontic force of tooth socket and method for adjusting scheme according to detection result

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820090A (en) * 1970-01-26 1974-06-25 Vlinsky M Bistable magnetic device
JPS55113304A (en) * 1980-02-01 1980-09-01 Res Inst Iron Steel Tohoku Univ Magnetic head using high magnetic permeability amorphous alloy
JPS5658208A (en) * 1979-10-16 1981-05-21 Matsushita Electric Ind Co Ltd Magnetic plate for magnetic substance applied element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820090A (en) * 1970-01-26 1974-06-25 Vlinsky M Bistable magnetic device
JPS5658208A (en) * 1979-10-16 1981-05-21 Matsushita Electric Ind Co Ltd Magnetic plate for magnetic substance applied element
JPS55113304A (en) * 1980-02-01 1980-09-01 Res Inst Iron Steel Tohoku Univ Magnetic head using high magnetic permeability amorphous alloy

Also Published As

Publication number Publication date
JPS59104574A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
US6157526A (en) Magnetoresistive head and magnetic disk apparatus
US5976715A (en) Articles comprising magnetically soft thin films
US4621030A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0778858B2 (en) Thin film magnetic head
JPH0322211A (en) Magnetic recording medium
JPH0449665B2 (en)
JP2005347688A (en) Magnetic film for magnetic device
JPH0449664B2 (en)
JPH01124108A (en) Thin-film magnetic head
JPS61179509A (en) Magnetic material
US4641213A (en) Magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP2979557B2 (en) Soft magnetic film
JPH0498608A (en) Magnetic head
JPH01175707A (en) Laminated soft thin magnetic film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP3028495B2 (en) Thin film magnetic head
JPS5987616A (en) Magnetic thin film head
JPS618904A (en) Soft magnetic multilayer film
JPH04134603A (en) Perpendicular magnetic head
JPS5987615A (en) Manufacture of magnetic thin film head
JPH02262307A (en) Soft magnetic thin film
JPH0782611B2 (en) Thin film magnetic head
JPH0252227B2 (en)
JPS6022721A (en) Thin film magnetic head