JPH0252227B2 - - Google Patents

Info

Publication number
JPH0252227B2
JPH0252227B2 JP55173810A JP17381080A JPH0252227B2 JP H0252227 B2 JPH0252227 B2 JP H0252227B2 JP 55173810 A JP55173810 A JP 55173810A JP 17381080 A JP17381080 A JP 17381080A JP H0252227 B2 JPH0252227 B2 JP H0252227B2
Authority
JP
Japan
Prior art keywords
film
magnetic
thin film
coercive force
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55173810A
Other languages
Japanese (ja)
Other versions
JPS5797471A (en
Inventor
Masuzo Hatsutori
Mitsuhiro Ootani
Tomu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17381080A priority Critical patent/JPS5797471A/en
Publication of JPS5797471A publication Critical patent/JPS5797471A/en
Publication of JPH0252227B2 publication Critical patent/JPH0252227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • G01R33/05Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle in thin-film element

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、真空蒸着技術を用い、ガラスなど基
板上に、異なる保磁力を持つ磁性薄膜を重ねて析
出し、これにピツクアツプ用コイルを巻くかある
いはフオトリソ技術でピツクアツプコイルをパタ
ーン形成して設けるかしてなる薄膜磁気センサに
関するものである。すなわち、基板上に保磁力の
小さい磁性薄膜と保磁力の大きい磁性薄膜を真空
蒸着技術でつづけて、重ねた状態に析出し、外部
から加えた磁場の変化により、小さい保磁力を持
つ磁性薄膜の磁化反転により生じる電磁誘導現象
により、磁性薄膜の近くに設けたピツクアツプ用
コイルにパルス電圧を発生させる薄膜磁気センサ
において、その2層の磁性薄膜の材料としてFe
−Co−Ni系を用い、しかも小さい保磁力を持つ
磁性薄膜(以後これをソフト膜と呼ぶ)と大きい
保磁力を持つ磁性薄膜(以後これをハード膜と呼
ぶ)の材料の組成比を異にしてなることを特徴と
するものである。 従来、外部磁場の変化量を検出する磁気センサ
には、半導体材料、磁性材料などを用いて多くの
ものが開発され、実用化されている。たとえば半
導体材料を用いたものでは、ホール素子、FET
素子がある。これらはInSb、GaAsの−V族化
合物、Ge,Siの族が主に使用されている。ま
た磁性材料においては、パーマロイなどのソフト
材料を用いたメモリ素子、MR素子、ヘツドなど
多くのものがある。 また、特開昭53−137641号のように、磁性線を
機械的、熱的処理を加え、磁性線の表面層の磁気
特性を変え、内部の磁気特性より、保磁力を大き
くしてなる磁気センサも提供されている。 これはFe−Co−Vを材料とし、その組成が
Co:45〜55,Fe:30〜50、V:4〜14なる中の
1組成からなる細線を機械的に引張つたり、ねじ
つたりし、さらには熱処理することを適当に繰返
えして、細線の表面層の保磁力を、細線そのまま
の保磁力として保たれている内部より大きくし、
これにピツクアツプコイルを巻いてなる構造のも
のである。これは外部磁場の変化に対し保磁力の
大きい部分で磁気的に拘束されている内部の小さ
い保磁力の磁化方向をこの保磁力を越えた磁場を
外部から与えて反転させ、これにより急しゆん
で、しかも大きいパルス電圧をピツクアツプコイ
ルに発生させることができる。従つてこのパルス
電圧の急しゆんさ、大きさは、単一磁性体よりな
る磁気センサよりはるかにすぐれている。また単
一磁性体からなる磁気センサは外部磁場の変化の
速度に対しピツクアツプコイルに発生するパルス
の幅に依存し、遅ければ広く、速ければ狭くな
る。これに対し特開昭53−137641号の磁気センサ
は、外部磁場に対し磁化反転が一斉におこなわれ
るため、外部磁場の変化速度が速くても遅くて
も、パルス幅はほとんど変化しない。 しかし、特開昭53−137641号の磁気センサは、
前述したように外部より引張り力、ねじり力を与
え、細線の表面部に機械的ダメージを与え、これ
を熱処理するといつたことを繰返す製法により作
成されることから工程が複雑で安定性に困難があ
る。また、この磁気センサは細線よりなるもの
で、たとえばより微細なものにするとかあるいは
ICと結合して使用するといつた場合には、その
要求まで微小化することが非常に困難である。 本発明はこれら問題をすべてとりのぞく方法と
して、薄膜化技術を利用した薄膜構成の薄膜磁気
センサを提供するものである。 すなわち、抵抗加熱法、フラツシユ法による真
空蒸着、電子線蒸着、スパツタリング蒸着により
異なる保磁力を持つ磁性薄膜を重ねて基板上に形
成し、ピツクアツプコイルを設けてなるものであ
る。磁性膜には小さい保磁力を持つものと、大き
い保磁力を持つものと2層を使用すればよく、従
来のような機械的、熱的な処理を複雑に繰返す必
要は全くない。また、薄膜構成であるからフオト
リソ技術を用いれば、非常に微小なものまで形成
できる。 本発明はこの薄膜構成を、Ni−Fe−Co系磁性
材料で形成することを目的としたものである。 本発明による薄膜磁気センサにおいて、ピツク
アツプコイルにパルス電圧を発生させる磁化反転
は保磁力の小さい磁性薄膜で生ずるので、このソ
フト膜の磁化反転がより効率よくおこなわれるこ
とが必要である。それには、(1)透磁率が大きく、
(2)磁化率が大きく、(3)一方向に磁化方向がそろつ
ている。すなわち一軸異方性の大きいことなどで
ある。 (1)、(2)はパーマロイ材(Ni−Fe)を用いるこ
とにより満足できる。(3)は薄膜化した場合、ソフ
ト膜においてはNi,Feの比がNi/Fe85/15〜
40/60で、とくに60/40近傍で最大になる。Ni
−FeにCoを0〜40wt%添加することにより一軸
異方性はさらによくなる。 他方、ソフト膜より保磁力の大きいハード膜と
しては、ソフト膜に対し基本的には保磁力が大き
いものであれば使用できるが、膜形成中に成分の
ソフト膜からハード膜への拡散、またその逆現象
あるいは膜間のなじみなどを考慮すれば同一系の
材料が好ましい。そこで前記ソフト膜に適したハ
ード膜として、Ni−Fe−Co材料を用いるとき
Ni/Fe=10/90〜30/70、Ni/Fe:Co=50:50
〜100:0(wt%)の範囲の組成とする。とくに
Ni/Fe=20/80、Ni/Fe:Co=70:30(wt%)
近くの組成が適している。 Ni−Fe−Coの磁性材料を用いソフト膜、ハー
ド膜をつづけて基板上へ真空蒸着技術を用いて形
成し、この2層よりなる膜をフオトリソ技術でた
んざく状に形成し、基板を切断したのち、たんざ
くにピツクアツプコイルを巻いたり、あるいはフ
オトリソ技術でコイルをパターニングして設け、
薄膜磁気センサとする。 大きさ、方向を変える外部磁場中にこのセンサ
を入れた時ピツクアツプコイルにパルス電圧が発
生する。この発生の原理は次の様に考えられる。
In the present invention, magnetic thin films having different coercive forces are stacked and deposited on a substrate such as glass using vacuum evaporation technology, and a pick-up coil is wound around this, or a pick-up coil is patterned and provided using photolithography technology. The present invention relates to a thin film magnetic sensor formed by: That is, a magnetic thin film with a small coercive force and a magnetic thin film with a large coercive force are successively deposited on a substrate using vacuum evaporation technology, and then deposited in an overlapping state, and by changing the magnetic field applied from the outside, the magnetic thin film with a small coercive force is In a thin-film magnetic sensor that generates a pulse voltage in a pickup coil placed near a magnetic thin film through an electromagnetic induction phenomenon caused by magnetization reversal, Fe is used as the material for the two magnetic thin film layers.
-Co-Ni system is used, and the composition ratio of the magnetic thin film with a small coercive force (hereinafter referred to as a soft film) and the magnetic thin film with a large coercive force (hereinafter referred to as a hard film) is different. It is characterized by the fact that Conventionally, many magnetic sensors that detect changes in external magnetic fields using semiconductor materials, magnetic materials, etc. have been developed and put into practical use. For example, devices using semiconductor materials include Hall elements, FETs, etc.
There is an element. These are InSb, -V group compounds of GaAs, Ge, and Si groups are mainly used. In addition, there are many magnetic materials such as memory elements, MR elements, and heads that use soft materials such as permalloy. In addition, as in JP-A No. 53-137641, magnetic wires are mechanically and thermally treated to change the magnetic properties of the surface layer of the magnetic wires, and the coercive force is made larger than the internal magnetic properties. Sensors are also provided. This material is made of Fe-Co-V, and its composition is
A thin wire consisting of one of the following compositions: Co: 45-55, Fe: 30-50, V: 4-14 is mechanically stretched, twisted, and heat treated repeatedly as appropriate. Then, the coercive force of the surface layer of the thin wire is made larger than the coercive force inside the thin wire, which is maintained as it is.
It has a structure in which a pick-up coil is wound around this. In response to changes in the external magnetic field, the magnetization direction of the internal small coercive force, which is magnetically restrained by the part with a large coercive force, is reversed by applying a magnetic field that exceeds this coercive force from the outside, and this causes a sudden change in the magnetic field. Moreover, a large pulse voltage can be generated in the pickup coil. Therefore, the sharpness and magnitude of this pulse voltage are far superior to those of a magnetic sensor made of a single magnetic material. Furthermore, a magnetic sensor made of a single magnetic material depends on the width of the pulse generated in the pickup coil with respect to the speed of change of the external magnetic field; the slower the change, the wider the pulse, and the faster the change, the narrower the pulse. On the other hand, in the magnetic sensor disclosed in JP-A-53-137641, magnetization reversal is performed all at once in response to an external magnetic field, so the pulse width hardly changes regardless of whether the external magnetic field changes quickly or slowly. However, the magnetic sensor of JP-A-53-137641 is
As mentioned above, the process is complicated and stability is difficult because the process is complicated and the process is repeated by applying tensile force and twisting force from the outside, mechanically damaging the surface of the thin wire, and then heat-treating it. be. In addition, this magnetic sensor is made of thin wire, for example, it can be made even finer or
When used in combination with an IC, it is extremely difficult to miniaturize the device to meet the requirements. The present invention provides a thin film magnetic sensor having a thin film structure using thin film technology as a method to eliminate all of these problems. That is, magnetic thin films having different coercive forces are stacked and formed on a substrate by vacuum evaporation using a resistance heating method, flashing method, electron beam evaporation, or sputtering evaporation, and a pickup coil is provided. It is sufficient to use two layers of magnetic films, one with a small coercive force and one with a large coercive force, and there is no need to repeat complicated mechanical and thermal treatments as in the past. Furthermore, since it has a thin film structure, it is possible to form even extremely small pieces using photolithography technology. The object of the present invention is to form this thin film structure using a Ni-Fe-Co magnetic material. In the thin film magnetic sensor according to the present invention, since the magnetization reversal that generates the pulse voltage in the pickup coil occurs in a magnetic thin film with a small coercive force, it is necessary that the magnetization reversal of this soft film be performed more efficiently. It has (1) high magnetic permeability;
(2) The magnetic susceptibility is large, and (3) the magnetization direction is aligned in one direction. That is, it has large uniaxial anisotropy. (1) and (2) can be satisfied by using permalloy material (Ni-Fe). (3) When thinning the film, the ratio of Ni and Fe in the soft film is Ni/Fe85/15 ~
It reaches its maximum at 40/60, especially near 60/40. Ni
- Uniaxial anisotropy is further improved by adding 0 to 40 wt% of Co to Fe. On the other hand, a hard film with a coercive force larger than that of a soft film can basically be used as long as it has a larger coercive force than a soft film, but during film formation, diffusion of components from the soft film to the hard film, Considering the reverse phenomenon or the compatibility between films, it is preferable to use materials of the same type. Therefore, when using Ni-Fe-Co material as a hard film suitable for the soft film,
Ni/Fe=10/90~30/70, Ni/Fe:Co=50:50
The composition should be in the range of ~100:0 (wt%). especially
Ni/Fe=20/80, Ni/Fe:Co=70:30 (wt%)
Close compositions are suitable. Using Ni-Fe-Co magnetic material, a soft film and a hard film are successively formed on the substrate using vacuum evaporation technology.The film consisting of these two layers is formed into a tanzag shape using photolithography technology, and the substrate is cut. After that, pick-up coils are wound around the strips, or the coils are patterned using photolithography technology.
It is a thin film magnetic sensor. When this sensor is placed in an external magnetic field that changes in magnitude and direction, a pulse voltage is generated in the pick-up coil. The principle of this occurrence can be considered as follows.

【表】 ソフト膜、ハード膜の磁化方向と逆向きに外部
磁場を印加し、その大きさをしばいに大きくして
いく。その大きさがソフト膜の保磁力と等しくな
つても、ソフト膜の保磁力がハード膜の保磁力に
より拘束されているのでソフト膜の磁化反転は生
じない(b)。さらに外部磁場が大きくなりハード膜
の拘束を越える磁場になると、磁化は一斉に反転
する(c)。この反転による電磁誘導現象によつて、
ピツクアツプコイルにパルス電圧が発生する。ハ
ード膜の保磁力より外部磁場が大きくなると、ハ
ード膜の磁化方向も反転する(d)。この時の磁化反
転は、ハード膜の保磁力より大きい保磁力で拘束
しているものがないため、単一磁性薄膜の磁化反
転となり、急しゆんさはソフト膜の場合よりはる
かに悪く外部磁場の変化の速度に依存する。 以下に実施例を用いて本発明の詳細を説明す
る。 実施例 熱膨脹係数が100×10-7/℃なるガラス基板上
に、電子線蒸着によりいろいろな組成のソフト
膜、ハード膜を重ねて析出した。 基板の表面はキズなどの欠陥をなくするため、
研磨したのち熱処理し、平滑にした。またソフト
膜、ハード膜を析出する前に、基板の表面に吸着
しているガスをとり除くため、Arガスでイオン
ボンバードをおこなつた。真空度を2×
10-7Torrまでにしたのち、ソフト膜を先に基板
上へ析出し、つづけてハード膜をその上に重ねて
析出した。膜の厚みは、ソフト膜:4000Å、ハー
ド膜:3500Åに合せた。 この様にして出来た2層膜をフオトリソ技術で
0.5×5(mm)サイズのたんざく状に形成したの
ち、SiO2膜を1000Åの厚みにスパツタリングで
析出し、基板をたんざく状の磁性膜にそつて切断
した。これにピツクアツプコイルとして60μφの
コイルを10ターン/mmの巻密度に巻き、薄膜磁気
センサとした。この薄膜磁気センサを振幅50ガウ
スの1kHzの正弦波の磁場の中に入れた時のソフ
ト膜が磁化反転することによりピツクアツプコイ
ルに発生するパルス電圧を調べた。その結果を第
1表に示す。
[Table] An external magnetic field is applied in the direction opposite to the magnetization direction of the soft film and hard film, and its magnitude is gradually increased. Even if the magnitude becomes equal to the coercive force of the soft film, magnetization reversal of the soft film does not occur because the coercive force of the soft film is constrained by the coercive force of the hard film (b). Furthermore, when the external magnetic field becomes larger and exceeds the constraints of the hard film, the magnetization reverses all at once (c). Due to the electromagnetic induction phenomenon caused by this reversal,
A pulse voltage is generated in the pickup coil. When the external magnetic field becomes larger than the coercive force of the hard film, the magnetization direction of the hard film also reverses (d). The magnetization reversal at this time is a magnetization reversal of a single magnetic thin film because there is nothing restraining it with a coercive force greater than the coercive force of the hard film. depends on the rate of change. The details of the present invention will be explained below using Examples. Examples Soft films and hard films of various compositions were stacked and deposited by electron beam evaporation on a glass substrate with a thermal expansion coefficient of 100 x 10 -7 /°C. To eliminate defects such as scratches on the surface of the board,
After polishing, it was heat treated to make it smooth. In addition, before depositing the soft and hard films, ion bombardment was performed with Ar gas to remove gas adsorbed on the surface of the substrate. Vacuum degree 2x
After the temperature was reduced to 10 -7 Torr, a soft film was first deposited on the substrate, and then a hard film was deposited on top of it. The thickness of the film was adjusted to 4000 Å for the soft film and 3500 Å for the hard film. The two-layer film created in this way is processed using photolithography technology.
After forming a strip of 0.5×5 (mm) in size, a SiO 2 film was sputtered to a thickness of 1000 Å, and the substrate was cut along the strip of magnetic film. A 60 μΦ coil was wound around this as a pickup coil at a winding density of 10 turns/mm to create a thin film magnetic sensor. When this thin film magnetic sensor was placed in a 1kHz sinusoidal magnetic field with an amplitude of 50 Gauss, the pulse voltage generated in the pick-up coil due to magnetization reversal of the soft film was investigated. The results are shown in Table 1.

【表】 以上本発明の詳細を実施例を含めて説明した如
く、基板上に析出する2層の磁性薄膜の材料とし
て、Ni−Fe−Coの合金を用い、しかもソフト膜
とハード膜に特許請求の範囲記載のような組成を
もたせることにより外部磁場の変化に対し、ハー
ド膜により拘束されているソフト膜の磁化反転に
よつて発生するパルス電圧を得ることができる。
なおこのパルス幅は外部磁場の変化の速度(たと
えば正弦波形の磁場の周波数)を変えても、小さ
くほとんど変らなかつた。しかもそのパルス電圧
値は非常に大きなものであつた。 なお、比較実験として、範囲外の組成を有する
薄膜磁気センサを用いて行なつたところ、ピツク
アツプ用コイルに発生する急しゆんな信号レベル
が数十μV程度になり、特性としては不十分であ
つた。この結果、信号として増幅せずに取り扱え
るレベルを1mV以下とすると、前記第1表に示
した組成の範囲が薄膜磁気センサとして有効であ
る。 この様に、与えられたパルス電圧が単一な保磁
力を持つ磁気センサより、大きく、急しゆんで、
しかも外部磁場の変化速度にほとんど依存しない
様な薄膜磁気センサは、回転体の回転数、制御、
あるいは位置検出、さらにはスイツチなどに使用
でき、その応用には非常に有用である。またフオ
トリソ技術を用いれば非常に微細なセンサがで
き、ICと結合ができるものである。
[Table] As described above in detail of the present invention including examples, a Ni-Fe-Co alloy is used as the material for the two-layer magnetic thin film deposited on the substrate, and the soft film and hard film are patented. By providing the composition as described in the claims, it is possible to obtain a pulse voltage generated by magnetization reversal of the soft film restrained by the hard film in response to changes in the external magnetic field.
Note that this pulse width was small and hardly changed even if the rate of change of the external magnetic field (for example, the frequency of the sinusoidal magnetic field) was changed. Moreover, the pulse voltage value was extremely large. In addition, when a comparative experiment was conducted using a thin film magnetic sensor with a composition outside the range, the sudden signal level generated in the pickup coil was about several tens of microvolts, and the characteristics were insufficient. Ta. As a result, if the level that can be handled as a signal without amplification is 1 mV or less, the composition range shown in Table 1 above is effective as a thin film magnetic sensor. In this way, the applied pulse voltage is larger and sharper than that of a magnetic sensor with a single coercive force.
Moreover, thin film magnetic sensors that are almost independent of the rate of change of the external magnetic field can control the rotational speed of the rotating body,
Alternatively, it can be used for position detection or even switches, and is very useful for such applications. Additionally, photolithography technology can be used to create extremely fine sensors that can be combined with ICs.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上にNiとFeの割合が85:15〜40:60wt
%、Coの割合が全量の0〜40wt%なる組成比の
Fe−Ni−Coからなる保磁力の小さい磁性薄膜を
形成したのち、NiとFeの割合が10:90〜30:
70wt%、Coの割合が全量の0〜50wt%なる組成
比のFe−Ni−Coからなる保磁力の大きい磁性薄
膜をその上に形成し、これにピツクアツプ用コイ
ルを設けたことを特徴とする薄膜磁気センサ。
1 The ratio of Ni and Fe on the substrate is 85:15 to 40:60wt
%, the composition ratio where the proportion of Co is 0 to 40 wt% of the total amount
After forming a magnetic thin film with low coercivity consisting of Fe-Ni-Co, the ratio of Ni to Fe is 10:90 to 30:
A magnetic thin film with a large coercive force made of Fe-Ni-Co with a composition ratio of 70 wt% and a Co content of 0 to 50 wt% of the total amount is formed thereon, and a pick-up coil is provided on this. Thin film magnetic sensor.
JP17381080A 1980-12-11 1980-12-11 Thin-film magnetic sensor Granted JPS5797471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17381080A JPS5797471A (en) 1980-12-11 1980-12-11 Thin-film magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17381080A JPS5797471A (en) 1980-12-11 1980-12-11 Thin-film magnetic sensor

Publications (2)

Publication Number Publication Date
JPS5797471A JPS5797471A (en) 1982-06-17
JPH0252227B2 true JPH0252227B2 (en) 1990-11-09

Family

ID=15967572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17381080A Granted JPS5797471A (en) 1980-12-11 1980-12-11 Thin-film magnetic sensor

Country Status (1)

Country Link
JP (1) JPS5797471A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element
JPS54128775A (en) * 1978-03-27 1979-10-05 Philips Nv Thin layer magnetic field sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element
JPS54128775A (en) * 1978-03-27 1979-10-05 Philips Nv Thin layer magnetic field sensor

Also Published As

Publication number Publication date
JPS5797471A (en) 1982-06-17

Similar Documents

Publication Publication Date Title
US6650513B2 (en) Magnetic devices with a ferromagnetic layer having perpendicular magnetic anisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer
JP3255872B2 (en) Spin valve type thin film element and method of manufacturing the same
JP3677137B2 (en) Magnetic device
KR100288466B1 (en) Magnetoresistive element, magnetoresistive head, memory element and amplification element using the same
US5578385A (en) Magnetoresistance effect element
US5764445A (en) Exchange biased magnetoresistive transducer
GB1600098A (en) Magnetic thin film structure
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
JPH09199325A (en) Multilayered structure, sensor and its manufacture
JP3274318B2 (en) Thin film magnetic head
US5919580A (en) Spin valve device containing a Cr-rich antiferromagnetic pinning layer
JP3247535B2 (en) Magnetoresistance effect element
JP3524486B2 (en) Magnetoresistance element and memory element using the element
JP3219329B2 (en) Magnetoresistance effect element
JPH07254116A (en) Method of heat treatment for thin film magnetic head
JPH0252227B2 (en)
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
Luborsky et al. Effect of surface features of amorphous alloys on magnetic behavior
JP3634997B2 (en) Manufacturing method of magnetic head
US4641213A (en) Magnetic head
JP2738295B2 (en) Magnetoresistive film and method of manufacturing the same
JP3532607B2 (en) Magnetoresistance effect element
JPH0449665B2 (en)
JP2000307170A (en) Magnetoresistive device and magnetoresistive memory device
JP2569897B2 (en) Magnetoresistive head