JPH0322211A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0322211A
JPH0322211A JP15589789A JP15589789A JPH0322211A JP H0322211 A JPH0322211 A JP H0322211A JP 15589789 A JP15589789 A JP 15589789A JP 15589789 A JP15589789 A JP 15589789A JP H0322211 A JPH0322211 A JP H0322211A
Authority
JP
Japan
Prior art keywords
recording medium
fine particles
magnetic
recording
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15589789A
Other languages
Japanese (ja)
Other versions
JPH0628093B2 (en
Inventor
Isao Nakatani
功 中谷
Tsutomu Takahashi
務 高橋
▲ひじ▼方 政行
Masayuki Hijikata
Takao Furubayashi
孝夫 古林
Kiyoshi Ozawa
清 小澤
Hiroaki Hanaoka
花岡 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP15589789A priority Critical patent/JPH0628093B2/en
Publication of JPH0322211A publication Critical patent/JPH0322211A/en
Publication of JPH0628093B2 publication Critical patent/JPH0628093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To allow recording at an ultra-high density of 10<9> bit/cm<2> order at which rewriting is possible by symmetrically arranging monodomain fine particles which consist of a ferromagnetic material and have a specified shape on a nonmagnetic substrate. CONSTITUTION:The monodomain fine particles 2 are arranged at prescribed intervals by symmetrically aligning the particles on the nonmagnetic material 1. The ferromagnetic material 4, for example, Fe alloy, Co alloy, Ni alloy, etc., are used for the monodomain fine particles 2. When the recording medium is formed a resist film 3 is applied on the nonmagnetic substrate 1 and is plotted to prescribed patterns, etc., by an electron beam, etc., and thereafter, the film is developed to remove the resist of the prescribed parts. The thin film 4 of the ferromagnetic material is formed by sputtering, etc., and the remaining resist 3 is removed by a plasma ashing treatment, by which the recording medium is completed. As a result, the ultra-high density recording of 10<9> order is possible in this way and the medium which is low in noise and has a small degaussing effect is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気記録媒体に関するものである.さらに
詳しくは、この発明は、書き換え可能な高記録密度の新
しい磁気記録媒体に関するものである. (従来の技術とその課題) 従来より様々な形式と構造の記録媒体が知られており、
すでにかなりの高記録密度と書き換え可能性を有する記
録媒体が実用化され、また開発中でもある, たとえばすでに実用化されているものとしては、記録密
度が約105〜106bit/一で書き換え可能な塗布
型の磁気ディスクや磁気テープがある.またさらに記録
密度を向上させたものとしては、1 07bit/一の
光ディスクがある.今後実用化されるものと予測される
光磁気ディスクは、この光ディスクの場合の書き換えの
不可能な欠点を克服し、1 07bit/一のオーダー
の記録密度を有し、しかも書き換え可能なものとして期
待されている.開発中のものには垂直磁気記録もある.
この場合にも1 0 7bit/cdオーダーの記録密
度を有し、しかも書き換え可能なものが開発の目標とさ
れている. しかしながら、これまでに知られている、また開発中の
ものも含めて公知の記録媒体は、いずれもその記録密度
が107bit/一程度にとどまり、これ以上の超高記
録密度を有し、しかも書き換えが可能である新しい記録
媒体の実用化については、その方式や構造の着想すら乏
しいのが実情である.この発明は、以上の通りの事情に
鑑みてなされたものであり、これまでの記録媒体の限界
と欠点を克服し、飛躍的に記録密度を高めることができ
、しかも書き換え可能な新しい記録媒体を提供すること
を目的としている.さらにこの発明は、雑音が少く、ま
た、減磁作用が小さくて、記録読出時の信号強度の大き
い新しい超高記録密度の書き換え可能な記録媒体を提供
することを目的としている。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a magnetic recording medium. More specifically, the present invention relates to a new rewritable high-density magnetic recording medium. (Conventional technology and its problems) Recording media of various formats and structures have been known for a long time.
Recording media with considerably high recording densities and rewritability have already been put into practical use, and are under development. For example, one example of a recording medium that has already been put into practical use is a coated type that is rewritable with a recording density of approximately 105 to 106 bits/1. There are magnetic disks and magnetic tapes. Furthermore, there is an optical disc with a recording density of 107 bits per unit. Magneto-optical disks, which are expected to be put into practical use in the future, are expected to overcome the disadvantage of optical disks in that they cannot be rewritten, have a recording density on the order of 107 bits/1, and are also rewritable. It has been done. Perpendicular magnetic recording is also under development.
In this case as well, the goal of development is to have a recording density on the order of 107 bits/cd and to be rewritable. However, all known recording media, including those known to date and those under development, have a recording density of only about 107 bits/1, and have ultra-high recording densities even higher than this, and are rewritable. The reality is that there are few ideas for the method or structure of a new recording medium that can be put into practical use. This invention was made in view of the above-mentioned circumstances, and aims to overcome the limitations and drawbacks of conventional recording media, dramatically increase recording density, and create a new rewritable recording medium. The purpose is to provide. A further object of the present invention is to provide a new ultra-high recording density rewritable recording medium with low noise, low demagnetization effect, and high signal strength during recording and reading.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、徴粒子
1個に1ビットを記録する方式を提供し、かつその方式
を実現するものとして、強磁性物質からなる形状が一定
の単磁区微粒子を非磁性基板上に対称配列してなること
を特徴とする磁気記録媒体を提供する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method of recording one bit in one characteristic particle, and as a means of realizing the method, it is possible to use ferromagnetic materials. The present invention provides a magnetic recording medium characterized in that single-domain fine particles having a constant shape are arranged symmetrically on a non-magnetic substrate.

添附した図面に沿ってこの発明の磁気記録媒体について
詳しく説明すると、この磁気記録媒体は、概略的には第
1図に示したような楕遣を有している。
The magnetic recording medium of the present invention will be described in detail with reference to the accompanying drawings. This magnetic recording medium has an ellipse as shown schematically in FIG.

すなわち、この第1図がち明らかなように、非磁性基板
(1)の上に、単磁区微粒子(2)を所定の間隔を介し
て対称的に整合をとって配列している.この単磁区微粒
子(2)は各々記録媒体の要素となり、図中の矢印で示
したように記録系を楕成していく. この単磁区微粒子(2〉は、強磁性物質からなり、その
種類には様々なものが採用できる。たとえば、金属また
は合金としては、Fe,FeCo,Fe−Nl,Fe−
Cu,Fe−Pt、Fe−MnなどのFe合金、CO、
Co−Ni、Co−CuなどのCO合金、Ni,Ni−
Cu、Mn−NiなどのNi合金が示される。
That is, as is clear from FIG. 1, single-domain fine particles (2) are arranged symmetrically and aligned at predetermined intervals on a non-magnetic substrate (1). Each of these single-domain fine particles (2) becomes an element of a recording medium, forming an elliptical recording system as shown by the arrows in the figure. The single magnetic domain fine particles (2) are made of a ferromagnetic substance, and various types can be adopted.For example, metals or alloys include Fe, FeCo, Fe-Nl, Fe-
Fe alloys such as Cu, Fe-Pt, Fe-Mn, CO,
CO alloys such as Co-Ni and Co-Cu, Ni, Ni-
Ni alloys such as Cu and Mn-Ni are shown.

金属間化合物としてF e 3A j 、ホイスラー合
金などを使用することもできる。また、酸化物でもよく
、マンガンフエライト、ニッケルフエライト、バリウム
フェライト、コバルトフエライトなどのフエライト類や
、マグネタイト(Fe304)、マグヘマイト(γ−F
 e 2 0 3)などを例示することができる。
F e 3A j , Heusler alloy, etc. can also be used as the intermetallic compound. In addition, oxides may be used, such as ferrites such as manganese ferrite, nickel ferrite, barium ferrite, and cobalt ferrite, magnetite (Fe304), and maghemite (γ-F
e 2 0 3), etc.

これらの強磁性物質からなる単磁区微粒子(2)は、隣
接するものと、その大きさおよび形状を対称的なものと
し、この大きさ、および相互の間隔を、磁気記録媒体の
作動方式に対応させて整合させ、所要の大きさと位置で
対称配列する.この単磁区微粒子(2)の形状は、保持
力を大きくするためにも、第1図に例示したように細長
くすることが好適であるが、その形状は必ずしも長方形
である必要はない.複数のものが均等性を持つように、
たとえば楕円形であってもよい.一般的には、細長い形
状として、その長さ(j)は、巾(W)の2〜10倍と
し、高さ(h)を巾(W)と略均等とすることが好まし
い.また、単磁区漱粒子(2)相互の間隔(s )(s
2)は、1 巾(W)と均等としてもよい. 表1は、この単磁区微粒子(2)の大きさ(WXjXh
)と、相互の間隔(S1 )  (S2 )の目安とし
て、巾(W)の好ましい範囲を例示したものである. もちろん、この表1の数字は限定的なものでなく、単磁
区を形成するための目安となるものである. このような単磁区微粒子(2)は、非磁性基板(1)上
に規則的に対称配列するが、この場合、その配列は、第
1図に示したような矩形の格子状のみならず、円盤状の
非磁性基板に沿った多数の同心円状あるいは円形うす巻
き状であってもよい.もちろんこれに限定されるもので
はなく、一定の対称性をもった整然とした配列態様であ
れば何であってもよい.その配列の形状は、単磁区微粒
子(2〉の成長によって、あるいは、エッチング法など
との組合わせによって適宜に行うことができる. より好適には、微小ビーム構図プロセスによってこれら
の単磁区微粒子(2)を形成・配列することができる. く表 1〉 このビーム描画プロセスを例示したものが第2図である
. (a) 非磁性基板(1)の上に、レジスト 膜(3)を塗布する.非磁性基板(1)としては、ガラ
ス、樹脂、その他任意のものであってもよい.その形状
も、円盤状のものから、他の適宜なものとすることがで
きる. レジスト膜(3)は、熟硬化性、光硬 化性、その他のタイプのものとすることができる。
These single-domain fine particles (2) made of ferromagnetic material are symmetrical in size and shape with those of the adjacent ones, and the size and mutual spacing correspond to the operating method of the magnetic recording medium. Align them and arrange them symmetrically with the required size and position. In order to increase the coercive force, the shape of the single magnetic domain fine particles (2) is preferably elongated as illustrated in FIG. 1, but the shape does not necessarily have to be rectangular. Just as multiple things have equality,
For example, it may be oval. Generally, it is preferable that the length (j) is 2 to 10 times the width (W) and the height (h) is approximately equal to the width (W) of the elongated shape. In addition, the distance between the single magnetic domain grains (2) (s) (s
2) may be equal to 1 width (W). Table 1 shows the size (WXjXh
), and the preferred range of the width (W) as a guideline for the mutual spacing (S1) (S2). Of course, the numbers in Table 1 are not limiting, but serve as a guideline for forming a single magnetic domain. Such single-domain fine particles (2) are regularly and symmetrically arranged on the non-magnetic substrate (1), but in this case, the arrangement is not only in a rectangular lattice shape as shown in FIG. It may also be in the form of many concentric circles or a thin circular spiral along a disc-shaped non-magnetic substrate. Of course, the arrangement is not limited to this, and any orderly arrangement with a certain degree of symmetry may be used. The shape of the array can be appropriately formed by growing single magnetic domain fine particles (2) or by combining with an etching method. More preferably, these single magnetic domain fine particles (2) ) can be formed and arranged. Table 1 Figure 2 shows an example of this beam writing process. (a) Coating a resist film (3) on a non-magnetic substrate (1) .The nonmagnetic substrate (1) may be made of glass, resin, or any other material.The shape thereof may be a disc or any other appropriate shape.Resist film (3) The curing agent may be of a ripe curing type, a photo curing type, or other types.

このレジスト膜(3)を電子ビーム等 のビームによって所定のパターンに描画し、現象して、
所定の部位のレジストを除去する. (C)  次いで、スパッタリング、真空蒸着等の気相
成脱法によって強磁性物質の薄11!(4)を形成する
This resist film (3) is drawn in a predetermined pattern with a beam such as an electron beam, and then developed.
Remove the resist from the specified area. (C) Next, a thin layer of ferromagnetic material 11! is formed using a vapor phase deposition method such as sputtering or vacuum evaporation. (4) is formed.

反応性スパッタリングによって酸化物 膜を形成することもできる。Oxide by reactive sputtering A film can also be formed.

(b) (d)  プラズマ灰化処理等によって残っているレジ
スト部を除去すると、その上部の強磁性薄M(4)も除
去される。こうすることにより、第1図に示したような
単磁区微粒子(2)が形或される. (作 用) この発明においては、単磁区微粒子の配列によって、1
 09bit/−オーダーの超高記録密度が実現され、
また、書き換えも可能となる。また、雑音が少なく、減
磁作用の小さい記録媒体が得られる.記録続出時の信号
強度も大きくなる。
(b) (d) When the remaining resist portion is removed by plasma ashing or the like, the ferromagnetic thin layer M(4) above it is also removed. By doing this, single-domain fine particles (2) as shown in Figure 1 are formed. (Function) In this invention, by the arrangement of single magnetic domain fine particles, 1
An ultra-high recording density of 0.09 bit/- order has been achieved,
Moreover, rewriting is also possible. Furthermore, a recording medium with less noise and less demagnetization effect can be obtained. The signal strength also increases when recording continues.

〈実施例) この発明の磁気記録媒体としては、たとえば以下のもの
を例示することができる. すなわち、円盤状のガラスまたは樹脂製の非磁性基板(
1)の上に、Fe−Co合金の強磁性物質からなる単磁
区微粒子(2)を形成する。この時の単磁区微粒子(2
)の巾(W)を100r+n+ 、その長さ(』)を2
00nn 、高さ(h)を100nnとする. また間隔(S )(S2)は、各々100nn、1 100nI1とする. この配列は、レジスト膜として厚さ500r+nのPM
MA (ポリメチルメタクリレート)を用い、電子ビー
ム描画プロセスによって形成する.このようにして形成
した磁気記録媒体は、抗磁力として約4KOeの値を示
し、記録密度は約2 X 1 09bit/clに達す
る.ディジタル信号の記録媒体として、コンピュータ用
の磁気ディスク、ディジタル方式のビデオディスク等に
好適に用いることができる.
<Example> Examples of the magnetic recording medium of the present invention include the following. In other words, a disc-shaped glass or resin non-magnetic substrate (
Single-domain fine particles (2) made of a ferromagnetic material of Fe--Co alloy are formed on 1). At this time, single magnetic domain fine particles (2
) width (W) is 100r+n+, its length ('') is 2
00nn, and the height (h) is 100nn. Also, the spacing (S) (S2) is 100nn and 1100nI1, respectively. This arrangement consists of PM with a thickness of 500r+n as a resist film.
It is formed using MA (polymethyl methacrylate) by an electron beam lithography process. The magnetic recording medium thus formed exhibits a coercive force of about 4 KOe and a recording density of about 2 x 109 bits/cl. As a recording medium for digital signals, it can be suitably used for magnetic disks for computers, digital video disks, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の磁気記録媒体を例示した拡大斜視
図である.第2図は、その製造プロセスの一例を示した
工程断面図である.
FIG. 1 is an enlarged perspective view illustrating the magnetic recording medium of the present invention. Figure 2 is a cross-sectional view showing an example of the manufacturing process.

Claims (4)

【特許請求の範囲】[Claims] (1)強磁性物質からなる形状が一定の単磁区微粒子を
非磁性基板上に対称配列してなることを特徴とする磁気
記録媒体。
(1) A magnetic recording medium comprising single-domain fine particles of a constant shape made of a ferromagnetic material arranged symmetrically on a non-magnetic substrate.
(2)微小ビーム描画プロセスにより単磁区微粒子を形
成してなる請求項(1)記載の磁気記録媒体。
(2) The magnetic recording medium according to claim (1), wherein single-domain fine particles are formed by a microbeam drawing process.
(3)単磁区微粒子の平面長さをその巾の2〜10倍と
してなる請求項(1)記載の磁気記録媒体。
(3) The magnetic recording medium according to claim (1), wherein the planar length of the single magnetic domain fine particles is 2 to 10 times the width thereof.
(4)単磁区微粒子の相互間隔をその巾と略均等として
なる請求項(1)記載の磁気記録媒体。
(4) The magnetic recording medium according to claim (1), wherein the mutual spacing of the single magnetic domain fine particles is approximately equal to the width thereof.
JP15589789A 1989-06-20 1989-06-20 Magnetic recording medium Expired - Lifetime JPH0628093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15589789A JPH0628093B2 (en) 1989-06-20 1989-06-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15589789A JPH0628093B2 (en) 1989-06-20 1989-06-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0322211A true JPH0322211A (en) 1991-01-30
JPH0628093B2 JPH0628093B2 (en) 1994-04-13

Family

ID=15615901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15589789A Expired - Lifetime JPH0628093B2 (en) 1989-06-20 1989-06-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0628093B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602620B1 (en) 1998-12-28 2003-08-05 Kabushiki Kaisha Toshiba Magnetic recording apparatus, magnetic recording medium and manufacturing method thereof
EP1975703A2 (en) 2007-03-30 2008-10-01 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
EP1975704A2 (en) 2007-03-30 2008-10-01 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
EP2109100A1 (en) 2008-04-09 2009-10-14 Fujitsu Limited Magnetic recording medium and magnetic recording and reproducing device
JP2010003408A (en) * 2004-11-04 2010-01-07 Tdk Corp Patterned magnetic recording medium
US7850441B2 (en) 2006-12-05 2010-12-14 Fujifilm Corporation Mold structure
US7900341B2 (en) 2008-02-29 2011-03-08 Hitachi, Ltd. Method of manufacturing hard disk recording device using patterned medium
US7998605B2 (en) 2005-09-28 2011-08-16 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium and method for production thereof
US8225843B2 (en) 2007-06-28 2012-07-24 Sumitomo Metal Industries, Ltd. Continuous casting mold and continuous casting method of round billet
US8329249B2 (en) 2008-06-04 2012-12-11 Fujitsu Limited Magnetic recording medium, magnetic recording and reproducing device with magnetic recording medium, and magnetic-recording-medium manufacturing method
US9053733B2 (en) 2010-04-14 2015-06-09 Kabushiki Kaisha Toshiba Magnetic recording medium with magnetic portions of different orientations and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245559A (en) 2008-03-31 2009-10-22 Fujifilm Corp Master carrier for magnetic transfer and magnetic recording medium
JP5422912B2 (en) 2008-04-30 2014-02-19 富士通株式会社 Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602620B1 (en) 1998-12-28 2003-08-05 Kabushiki Kaisha Toshiba Magnetic recording apparatus, magnetic recording medium and manufacturing method thereof
JP2010003408A (en) * 2004-11-04 2010-01-07 Tdk Corp Patterned magnetic recording medium
US7998605B2 (en) 2005-09-28 2011-08-16 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium and method for production thereof
US7850441B2 (en) 2006-12-05 2010-12-14 Fujifilm Corporation Mold structure
EP1975703A2 (en) 2007-03-30 2008-10-01 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
EP1975704A2 (en) 2007-03-30 2008-10-01 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
US8225843B2 (en) 2007-06-28 2012-07-24 Sumitomo Metal Industries, Ltd. Continuous casting mold and continuous casting method of round billet
US8397792B2 (en) 2007-06-28 2013-03-19 Sumitomo Metal Industries, Ltd. Continuous casting mold and continuous casting method of round billet
US7900341B2 (en) 2008-02-29 2011-03-08 Hitachi, Ltd. Method of manufacturing hard disk recording device using patterned medium
EP2109100A1 (en) 2008-04-09 2009-10-14 Fujitsu Limited Magnetic recording medium and magnetic recording and reproducing device
US8329249B2 (en) 2008-06-04 2012-12-11 Fujitsu Limited Magnetic recording medium, magnetic recording and reproducing device with magnetic recording medium, and magnetic-recording-medium manufacturing method
US9053733B2 (en) 2010-04-14 2015-06-09 Kabushiki Kaisha Toshiba Magnetic recording medium with magnetic portions of different orientations and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0628093B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US5815342A (en) Perpendicular magnetic recording/reproducing apparatus
JP2601491B2 (en) Magnetic disk structure and method of manufacturing the same
JPH0322211A (en) Magnetic recording medium
US4621030A (en) Perpendicular magnetic recording medium and manufacturing method thereof
EP0584768A1 (en) Method for making soft magnetic film
JPS58165306A (en) Vertical magnetic recording medium
GB2175013A (en) Perpendicular magnetic recording medium
JPH0628652A (en) Perpendicular magnetic recording medium
JP2001256640A (en) Magnetic recording medium and magnetic recording device
JP2561455B2 (en) Magnetic recording / reproducing device
JPH11232714A (en) Magneto-optical recording medium
JPS6390025A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS6029927A (en) Vertical magnetic recording medium
EP0169928A1 (en) Magnetic recording medium
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPS5987616A (en) Magnetic thin film head
JPH0570205B2 (en)
JP2508639B2 (en) Perpendicular magnetic recording media
JPH0760514B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0218711A (en) Magnetic disk and production thereof
JPS58171717A (en) Magnetic recording medium
JP2002074636A (en) Magnetic recording medium, method of manufacturing the same and magnetic recording device
JPH03113715A (en) Magnetic recording medium
Ouchi Magnetic materials for information storage devices

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term